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CITY-BASED CARBON BUDGETS FOR BUILDINGS 

A city-driven, industry-led bottom-up global response to emissions reduction 

by Søren Lütken and Per Harry Wretlind 

Abstract 
The construction of buildings consumes about 50% of all materials produced globally measured by 

weight. Materials such as cement, ceramic tile and steel are among the most carbon intensive materials 

to manufacture, and come with a carbon footprint of their own. This is called embodied carbon.  

Accounting for embodied carbon is a different way of visualizing the emission effect of the consumer 

rather than the generator of emissions. Bringing the consumer, and the related production value chains, 

into play can engage powerful market drivers in the combat against GHG emissions. The building sector, 

with its vast resource consumption, is the ideal place to start. This working paper provides concrete 

ideas on how to proceed. 

Currently, there is scant regulation addressing embodied carbon. Cities have great potential influence 

over the construction industry, as nearly all construction of buildings requires city government approval. 

Energy efficiency is the usual focus, though recent policy development regarding embodied carbon 

emissions in buildings has been observed in a number of cities and countries. Moreover, industry has 

been pushing the development of standards for calculation and reporting of embodied carbon in 

buildings. Embodied carbon is also addressed by several green building certification schemes. The 

development, however, needs to speed up.  

The construction sector and cities together are ideally positioned to establish a local up-scalable regime 

that will curb greenhouse gas emissions from within. This working paper suggests concretely how to 

design and implement a model in which cities use existing construction approval processes to allocate a 

carbon budget that combines emissions from operational and embodied carbon - and make usage 

permits for buildings constructed under this restriction contingent upon documented compliance - 

leaving it up to the sector itself to document its carbon footprint. A parallel is drawn to the 

dissemination of ISO standards 9001 and 14001, where quality and environmental demands from 

decisive commercial actors spread through the supply chain. The paper explores principles and specific 

limits regarding e.g. calculation of the carbon budget over time and the method of budget allocation in 

order to repeat this experience with the purpose of emissions reduction. The working paper also reveals 

that cities have a firm ground to stand on and that in curbing emissions through carbon budgets for 

construction they would act in their own self-interest. Adopting the model they would and will 

ultimately deliver a ground breaking initiative for cutting global emissions at scale – beyond that of the 

construction sector. If the ISO experience has any merit, it suggests less than a decade for the effects of 

carbon budgets to show themselves. 
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Introduction 
Global greenhouse gas (GHG) emissions have been on a rising trend for decades. While GHG emissions 

in developed countries seem to have peaked (at least momentarily), developing countries’ emissions are 

skyrocketing (UNEP, 2014). Major reasons for this are rapidly increasing wealth and fast growing middle 

classes whose desires are met by an increasing production of consumer goods and significant 

improvements of living conditions, partly in terms of better living accommodations. This creates an 

impetus for constructing better buildings. A high rate of urbanisation adds to the construction pressure 

(Lucon et al., 2014). Billions of square meters of residential buildings, offices, public service institutions 

and industrial facilities are being built every year, not only keeping pace with population growth, but 

also responding to demands for larger dwellings1. Industry experts predict that the construction industry 

will grow by 70% until 2025 (Global Construction Perspective, 2013). These trends are unlikely to be 

reversed or even reach maturity in the foreseeable future.  

The global construction sector has significant environmental impacts. Once constructed, buildings – or 

those who use them – consume about 32% of all energy produced (Lucon et al., 2014). This is called 

operational energy, and the associated carbon emissions are thus called operational carbon. The growth 

of energy use is a natural consequence of growing wealth and increasing demands for comfort.  

But there are other more significant emission effects of construction. In constructing, the rise in energy 

use is a consequence of growing wealth and increasing demands for comfort, and a large and growing 

cause of energy consumption is attributable to passive installations - mainly the buildings’ climatic 

envelope. During the building of inner and outer structures, walls and roofs, the construction sector 

consumes about 50% of all materials produced globally measured by weight (Adriaanse et al., 1997). 

Moreover, these materials (e.g. cement, steel, ceramic tiles and insulation) are carbon intensive in 

manufacturing (Circular Ecology, 2015). Hence, the construction materials come with energy and carbon 

footprint of its own from manufacturing.  

This is called embodied carbon. Embodied carbon encompasses the emissions from resource extraction, 

material production, the construction of buildings, as well as the transportation required for these 

activities. It stems from applying life cycle thinking to buildings (Liljenström et al., 2015). Some 

construction materials also have a direct influence on the operational carbon. Simply put, if 200 mm of 

insulation is good, 400 mm is not twice as good, because the insulating effect decreases exponentially 

(Bolattu, 2010). At some point, the energy (and emissions) it would take to produce that extra insulation 

would outweigh the reduction of emissions from the reduced energy consumption from operating the 

building – depending on the lifetime of the installation. 

                                                           

1 Recently, though, an opposite trend towards micro-dwellings in high-priced metropoles (Hong Kong, London, 

New York and a number of other developed country cities) has taken root, although still a microscopic fraction of 

the activities in the construction sector.  
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A singular focus on operational carbon will disregard the embodied carbon, and the only limiting factor, 

for instance the thickness of the insulation, will become the price. However, the application of life cycle 

assessments (LCA) changes this isolated approach. For buildings, LCA has come later than in many other 

industrial sectors mainly due to the nature of the building sector, with very long life cycles of buildings 

and the resulting complexities of conducting an LCA (Khasreen, Banfill, & Menzies, 2009).  

This, however, is changing as the building sector increasingly applies a life cycle perspective. Currently, 

this is mainly driven by the industry itself, but in order for it to become common practice, policy 

instruments are needed. This paper suggested a city based carbon budget model as a way to achieve 

lower levels of embodied carbon in buildings, which also reaches beyond the construction sector, 

promoting a decarbonisation of production value chains as a whole. 

Life Cycle Assessments for Buildings  
The standard EN 15978 issued by the European Committee for Standardisation (CEN) delineates how to 

conduct an LCA for a building and how to calculate the emissions from each stage of the life cycle - 

product, construction, use and end-of-life stage (Liljenström et al., 2015). An illustration of the 

delineation is shown in Figure 1. Embodied carbon include Stages A and C, as well as B1-5. Operational 

carbon covers B6-7, thus coming from emissions created when generating the energy consumed for 

space heating and cooling, water heating, conditioning, and lighting as well as appliances and equipment 

(elevators, pumps, ventilation etc.). The unnumbered box below the Use Stage, also titled ‘Operational 
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Figure 1. Standard EN 15978 delineates the different stages of a LCA of a building, providing a standard way of conducting a LCA 
(CEN - TC, 2011). 
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Energy’, represents the energy used by appliances such as computers, televisions and refrigerators. This 

is beyond the scope of the instrument, and is besides targeted more effectively by a number of other 

instruments. The last stage, D, is an optional stage that can be included within an LCA to show potential 

benefits with a certain material or way of building. 

The conventional understanding of the split between embodied and operational carbon is a 20/80 split 

(see e.g. Adalberth, Almgren, & Holleris Petersen, 2001). However, as the stringency of the construction 

standards is continuously increasing in terms of their requirements for energy consumption, the carbon 

content of construction materials become increasingly prominent in the carbon footprint of buildings. In 

the United Kingdom, studies conducted by industrial actors such as the UK Embodied Carbon Industry 

Task Force and the UK Green Building Council (UKGBC) show that the current levels of embodied carbon 

within buildings in the UK cover 30-70% of the lifetime carbon emissions (Embodied Carbon Industry 

Task Force, 2014). The span depends on building type and use – for example, for a warehouse with a low 

need for heating, embodied carbon can account for 70% of the total life cycle climate impact. In a semi-

detached residential house, however, the split is approximately 35/65, with operational carbon taking 

the larger share (Lockie & Berebecki, 2012).  

Total Operational and Embodied Carbon Split in different scenarios (OC/EC in tCO2eq) 

100 m2 apartment used for 
60 years 

Energy consumption 
(kWh/m2/year) 

Embodied carbon (tCO2eq/m2) 

Grid emission factor 
(kgCO2eq/kWh)2 

0.7 

  0.85 0.6 0.5 0.25 0.1 

150 630/85 630/60 630/50 630/25 630/10 

100 420/85 420/60 420/50 420/25 420/10 

60 252/85 252/60 252/50 252/25 252/10 

35 147/85 147/60 147/50 147/25 147/10 

20 84/85 84/60 84/50 84/25 84/10 

              

0.35 

150 315/85 315/60 315/50 315/25 315/10 

100 210/85 210/60 210/50 210/25 210/10 

60 126/85 126/60 126/50 126/25 126/10 

35 73.5/85 73.5/60 73.5/50 73.5/25 73.5/10 

20 42/85 42/60 42/50 42/25 42/10 
Table 1. Displays the total carbon emitted by both the operational and embodied phases of a 100m2 apartment used for 60 
years in different scenarios. The energy consumption scenarios are chosen to reflect current as well as future levels of energy 
consumption. The range of embodied carbon/m2 is derived from what Balson, Lowres, & Johnson, 2011 as well as Liljenström 
et al., 2015 finds in their studies. 

                                                           

2 The grid emission factor refers to the average GHG emissions from all generation units on the grid that are 

caused by the production of 1 kWh of electricity delivered to the grid, whether the grid is electrical or heated or 

cooled water. Grid losses are not included and should in principle be added.  



 

 6 

Table 1 is meant to illustrate the split between operational and embodied carbon, and its dependency 

on the grid emission factor of energy. It is a simple calculation based on reasonable options for 

construction and operational carbon. The figures are naturally under significant influence of the 

emission factor3 for the energy consumed by the building. For ease, the electric grid emission factor is 

used. In a setting with a relatively high grid emission factor of 0.7 (corresponding to the average of 

Africa or Central & Eastern Europe, but less than China), the embodied carbon only starts becoming 

significant if construction standards prescribe less than 100 kWh/m2/year. This is the upper bounds of 

the current level of the building code in, for example, Sweden – the Swedish regulation limits energy 

consumption for multi-family houses with electrical heating to 85-45 KWh/m2/year depending on 

climatic zone (Boverket, 2015a) – but significantly above the standard in Denmark (2015: 30 kWh/m2, 

2020: 20 kWh/m2; Bygningsreglementet.dk, 2016a, 2016b). However, as grid emission factors keep 

falling due to increasing penetration of renewable energy, at least in some countries, a more realistic 

picture may be a grid emission factor of 0.35, corresponding to the Danish grid emission factor. 

Countries that predominantly use hydropower, such as Sweden and Norway, obviously have much lower 

factors. Even with a high grid emission factor of 0.7, an embodied carbon level per m2 of 0.85 tCO2e 

balances with operational carbon on low consumption levels of 20 kWh/m2/year. At a lower grid 

emission factor of 0.35 and consumption of only 20 kWh/m2/year – i.e. what the Danish conditions will 

be like in 2020 – embodied carbon is in fact the largest source of emissions for all except the two lowest 

levels of embodied carbon, as included in Table 1.  

Materials Responsible for Embodied Carbon  
There appears to be an overdue need to account for embodied carbon - but which materials does it 

stem from? Embodied carbon, ideally, incorporates the GHG emissions from the material 

manufacturing, construction itself, maintenance and refurbishments, as well as the end-of-life phase, 

the phases represent varying shares of the climate impact. As reported in Soulti & Moncaster (2014), 

Gavotsis finds that transport, construction and end-of-life account for 8%, 7% and 4%, respectively, 

while the manufacturing of the building material is responsible for 50% of the embodied emissions, and 

the refurbishment for 31%. Within the refurbishment, it is the use of materials that carries the largest 

impact. Liljenström et al. (2015) found similar results in a Swedish perspective, as did Birgisdóttir, 

Mortensen, Hansen, & Aggerholm (2013) for a Danish office building.   

                                                           

3 A grid emission factor can of course equally be calculated for heat or gas fed into the building. It does not have to 

be electricity. 
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The degree of embodied carbon for a 

given building will ultimately depend on 

the choice of materials for construction. 

It is difficult to generalise on a global 

scale, as the conventional way of 

constructing a building is highly 

dependent on geography – traditions 

have developed over time depending on 

which resources have been abundant in 

the surrounding area and the prevailing 

weather conditions (Asif, Muneer, & 

Kelley, 2007). However, common traits 

do appear. Figures 2, 3 and 4 display the 

percentage split of CO2 emissions per m2 

for typical houses in Spain and Sweden, 

and for an office building in Finland4. In 

the Spanish case, cement has the largest 

share, at 30%. If mortar and lime are 

added, as both are ingredients used to 

make concrete (which is the level this is 

aggregated in the other two cases), the 

share increases to 45%. Concrete, 

including pre-fabricated concrete, 

shoulders the lion’s share in the Swedish 

case, while the Finnish building seems to 

have a steel frame instead. Steel, 

however, is significant in all three cases. 

The results diverge with ceramic tiles 

appearing in the Swedish and Spanish 

                                                           

4 Comparisons between these diagrams should be made with caution as the numbers report different aspects. The 

Finnish case, for example, only reports the CO2 emissions caused while the other two studies report climate 

impact. Furthermore, the Finnish case includes materials used in both the initial construction as well asand 

maintenance of the building, while the Swedish and Spanish cases report just the initial construction. The Swedish 

case uses concrete as one building material category, while the Spanish case breaks it down to e.g. cement, 

additives, and lime. 

30%

20%19%

8%

7%

16%

Spain

Cement

Ceramic

Steel

Lime

Mortar

Other

Source: Zabalza Bribián, Valero 

Capilla, & Aranda Usón, 2011. 

34%

24%

7%

7%

7%

22%

Finland
Steel, cast iron

Concrete

Insulation

Nonferrous
metals
Paints

Source: Junnila & Horvath, 

2003. 

52%

19%

8%

5%
4%

12%

Sweden
Concrete

Pre-fab concrete
element

Steel reinforcement

Insulation

Ceramic tiles

Source: Liljenström et al., 

2015. 

Figure 2, 3 & 4. Displaying the materials and their 
respective percentage splits of embodied carbon 
emissions for buildings in Spain, Finland, and 
Sweden.   
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cases, and aluminium and paint in the Finnish case. Hence, concrete, cement and steel appear as the 

materials most significant in terms of embodied carbon. 

There are several ways to address the emissions from materials manufacturing – see Fischedick et al., 

(2014) for a good overview – captured under three main headings for the construction industry:  

1) to increase material efficiency (i.e. use less material),  

2) to choose the same materials but with less embodied carbon (i.e. manufactured more efficiently 

or with less ‘carbon’ input),  

3) to fully substitute one material with another.  

In addition to these three options, there is the reduction of the carbon content of the energy input, 

which is the one factor that can have the greatest spillover impact on other sectors – unless the energy 

input is delivered through a captive energy production unit, i.e. the manufacturers own energy supply. 

Increasing material efficiency reduces embodied carbon, as less material needs to be manufactured. The 

IPCC points to, for example, possibilities to reduce the use of cement by 40% by using curved moulds 

instead of standard ones (Fischedick et al., 2014). The European Union (EU) also suggests this as a way 

forward to reduce the life cycle impact of buildings in its ‘Roadmap to a Resource Efficient Europe’ (DG 

Environment, 2012). There are also possibilities to reduce the materials needed by changing the design 

of the building, e.g. by reducing the building height, which would then influence transport carbon during 

usage of the building’s shifting vertical transport carbon to horizontal transport carbon5. Additionally, 

the strength of materials can be increased in order to reduce the amount needed. This is relevant for 

both concrete (Fischedick et al., 2014, p. 759) and steel (see e.g. Jernkontoret, 2015). Reddy (2009) 

investigated the reduction potential of the embodied energy of a number of building materials and 

found that through the use of alternative low-energy materials, a reduction of embodied energy of up to 

50% was possible. Therefore, there is a considerable reduction potential of carbon emissions within the 

material manufacturing industry.  

Nevertheless, it is important to keep in mind that emissions from material manufacturing are in some 

cases not only attributable to heat and electricity use, but also for process emissions. These are chemical 

reactions inside the production process itself, especially in cement and steel production (Fischedick et 

                                                           

5 Such considerations are normally captured in ‘Transport Oriented Development’ projects (-- see e.g. the NAMA 

Facility supported project in Colombia (NAMA-Facility, 2014). Interestingly, vertical transport carbon (elevators and 

escalators) is never considered as transport, but as general power consumption together with lighting, ventilation 

and other ‘community power consumption’ in housing block communities.   
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al., 2014). For cement, ‘unavoidable’ process emissions are responsible for 50% of the emissions 

(Fischedick et al., 2014, p. 758)6.  

On the whole, these two factors - the consumption of energy for the manufacturing of construction 

materials, and the energy consumption when the building is used - make the construction sector7 the 

largest singular source of GHG emissions, by far. However, there is close to no regulation currently in 

place targeting the reduction of embodied carbon in buildings.  

Current Regulation of the Sector 
The construction sector is accustomed to regulations. These stem from all levels of government: local, 

regional, national and supranational. At the supranational level, the EU has several policies in place 

addressing the building sector. The Energy Performance of Buildings Directive (Council Directive 

2010/31/EU) and the Energy Efficiency Directive (Council Directive 2012/27/EU) are presented as key 

legal acts to reduce the energy consumption of buildings. While neither of these address embodied 

carbon, legislation currently under development is intended to do so. The EU has launched a 

‘Communication on Resource Efficiency Opportunities in the Building Sector’ (Commission 

Communication COM(2014)445 final). As the title shows, the focus is on resource efficiency rather than 

embodied carbon, but the two issues are closely connected. The Communication describes how another 

document, the ‘Roadmap to a Resource Efficient Europe’ (Commission Communication COM (2011) 571) 

emphasises that policies need to look at the environmental impact from a life-cycle perspective in order 

to achieve the goals. New policy instruments are necessary (COM(2014) 445). It is further underscored 

in ‘Roadmap to a Resource Efficient Europe’ as it states that “it is not expected that significant 

improvements will be achieved in resource efficiency with the current policy context” (DG Environment, 

2012:2). It sketches out possible policy options to be investigated, highlighting that the European 

Commission is in the midst of formulating policies which includes instruments directed specifically at 

embodied carbon. 

Nationally, building codes are seen as an effective instrument to generally improve buildings’ 

performance (IEA, 2013).  They exist throughout the world and many include standards for energy 

consumption. However, in many cases the codes are not compulsory (BCAP, 2009a, 2009b), as in 

numerous US states and in India. As these are countries, along with China where much of the future 

construction will happen – China will also continue constructing large quantities of new buildings, but 

                                                           

6  There are, however, ways to reduce the need to create it, or to prevent it from escaping into the atmosphere. 

The IPCC highlights improving material efficiency and reducing demand as the two major ways forward. There are 

also discussions of initiating pilot projects to install Carbon Capture and Storage technology (see e.g. Energiforsk, 

2015 for a Swedish example). This applies both to steel and cement manufacturing, as both processes have 

considerable ‘unavoidable’ process emissions. However, the IPCC report states that numerous barriers still prevent 

this from commercial scale development (Fischedick et al., 2014). 

7 This includes construction of both infrastructure and buildings. 
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has a mandatory building code. Lack of enforcement is often due to generic building regulations 

commonly being developed and issued at the national level, while enforcement is expected to happen at 

the local level, where interests may be more easily compromised. In places where building codes are 

mandatory and include requirements on energy efficiency they are believed to generate impact cost-

efficiently, especially when combined with other measures (IEA, 2015).   

Cities' Potential Role 
Cities have a large potential influence over the construction industry. Nearly all building constructions 

require city government approval. This is an immensely powerful instrument, which cities commonly use 

prudently in order to keep a good collaborative relationship with developers and the industry, in order 

to support development. The two parties are obviously mutually dependent, but the cities’ regulatory 

authority potentially puts them in a central role for reducing the construction sector's carbon footprint. 

Cities have been addressing climate change for several years (Bulkeley, 2010; Rosenzweig, Solecki, 

Hammer, & Mehrotra, 2010) though. Some cities have joined together in organisations such as C40 (a 

network of the world's megacities committed to reducing GHG emissions), ICLEI (an organisation 

bringing more than 1,200 local governments together to work on sustainability), and Covenant of 

Mayors (a primarily EU initiative where local actors pledge to implement policies to help reach the EU’s 

overall targets). The importance of cities is also highlighted in the Paris Agreement (134), and they are 

encouraged to scale up their efforts (135) (UNFCCC, 2015).  Cities look at both mitigation and adaptation 

efforts, and ideas that contain elements of embodied carbon accounting have in fact been floated. 

Almost ten years ago, researchers from the University of California proposed the introduction of city-

based carbon budgets for buildings and transport in order to mitigate GHG emissions (Salon et al., 

2010). Their suggestions, however, only targeted the operational carbon for the buildings, neglecting the 

increasing climate impact that the embodied emissions have. Since then, ambitious city programmes 

have been introduced that target operational carbon through focusing on energy use and efficiency. 

Examples are Tokyo’s Cap-and-Trade programme for buildings, or New York’s Greener Greater Buildings 

Plan (WGBC, 2013). However, recent policy development, at the city-level, regarding embodied carbon 

emissions in buildings has been observed in a number of countries. A few British municipalities have 

moved on and already started experimenting with concepts that sensitise the construction industry to 

its overall carbon footprint (as an example, see Brighton & Hove, 2011). There are also a few Swedish 

municipalities that have taken initiatives to address the GHG of building materials. Linköping 

municipality, for example, a city of some 100,000 inhabitants favours buildings with wooden frames in 

the construction of a new city district (Linköping Municipality, 2014). 

Therefore, rather than document why such an approach is not practicable, it is more interesting and 

beneficial to analyse how this just might be done. Current regulations have been effective in fostering 

energy efficiency in buildings. The next, and increasingly important, step would be for the city regulators 

to take on embodied carbon.  
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The Model: Carbon Budgets for Buildings 
The answer is carbon budgeting that combines the two main sources of emissions from the construction 

sector – the operational carbon that is currently indirectly targeted by building codes, and embodied 

carbon that generally is not addressed. The ultimate objectives are to: 1) reduce the carbon intensity of 

the production bases, and 2) inspire the substitution of carbon intensive construction materials with less 

intensive ones. The objective is not to replace the current building code requirements on energy 

efficiency, but to provide a context under which the materials used to achieve a given level of energy 

efficiency are also considered. The first point mainly targets the energy input to manufacture, where the 

industry can respond to high grid emission factors, either by establishing low-emission captive power 

production or, more long-term, trying to influence energy policies towards greater adoption of 

emissions-free energy. The second point is more focused on process carbon – central products like 

cement and steel – which cannot be influenced easily and, therefore, currently, can only be avoided by 

product substitution or increased efficiency in material usage. 

What is in a Budget? 
The budget must cater to the building’s carbon footprint, consisting of both embodied and operational 

carbon over a number of years, providing a reasonable balance between operational and embodied 

carbon. Specifically, the duration of the budget and the accounting period must roughly achieve balance 

between embodied and operational carbon, rather than ‘importing’ the industry’s apparent common 

practice of using a period of 50-60 years as the default budget period (see e.g. Balson, Lowres, & 

Johnson, 2011; Cabeza et al., 2013; Liljenström et al., 2015)Balson, Lowres, & Johnson, 2011; Cabeza et 

al., 2013; Liljenström et al., 2015). This, obviously, will leave some long lasting materials, like cement and 

steel, at a disadvantage and will favour short-lived products that need to be replaced at intervals that 

suit the chosen carbon budget period. Such issues must be factored into the budgets.  

Also, as the ultimate purpose of regulating the embodied carbon is to influence manufacturing, or 

choice of manufacturing bases and secondarily choice of material, the issue of treating buildings from a 

full-fledged LCA approach, although relevant, has less merit in this context. For the model to win 

ground, it cannot conjure considerable resistance from the industry. As conducting a fully fledge LCA is 

an onerous process, as it would be met with much resistance. Rather, an LCA perspective should be 

adopted at first, which provides a good idea of the distribution of climate impact. As data is collected 

and the knowledge of performing LCAs grows, it would be possible to gradually increase the scale of the 

LCA.  The budget will be allocated as part of the construction approval process.. A 'carbon budget' is 

assigned by the city to a particular construction permit, specifying a maximum allowed amount of GHG 

emission. The responsibility of monitoring, reporting and verifying the GHG emission change is left to 

the constructor. The sector routinely predicts the energy efficiency levels of buildings, and as described 

above, the construction industry has also developed methods to account for the embodied carbon. . The 

issuing of permits  will work in the same way as any other approval process in which developers are to 

observe general building codes and specific local regulations, for example, regarding the height of 

buildings or the usage in certain parts of a city (laid out for offices, industry and/or residential usage) - if 

the requirements are not meet, no permit will be issued. It is also up to respective city to set the budget 

in accordance with local conditions and traditions. 
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It is evident that part of a building’s budget usage is already given as ‘shadow consumption’ from 

cohering to the building code, which prescribes a given level of energy efficiency. Therefore, the 

approach to policing the building code can be incorporated into the model. Energy efficiency of buildings 

is often assessed ex ante, i.e. the construction must comply with the standard based on the calculated 

operational performance of the materials employed and the designs chosen. It is, therefore, 

independent of the users and how many electrical appliances they choose to buy. Knowing the emission 

factor of energy at the location, the annual energy consumption of the building can be multiplied with 

the number of years for which the budget is issued in order to first calculate the operational carbon and 

thereafter assess how much budget remains for embodied carbon, so that, combined, they comply with 

the carbon budget restriction. Developers in countries with highly ambitious building codes have already 

moved beyond, and include own generation – typically solar PV – as part of the building design. Such 

captive power production allows developers to manipulate the operational carbon in order to allow 

more space for embodied carbon.   

Calculation of carbon budgets 
From a city regulator’s perspective, getting the budget right from the outset is essential. A budget too 

tight will hamper construction activity; too lax will miss the chance to influence the industry. 

Additionally, the effect on the general housing price levels would need to be considered, particularly 

because the carbon budgets only apply to new buildings and not existing building mass. Even though 

increasing prices of dwellings per square meter have a positive – from a climate change mitigation 

perspective – effect of decreasing the average sizes of dwellings, such trends are unlikely to be 

considered beneficial from a city administration and local social policy perspective.  

Examples of current carbon content of buildings in Scandinavia are indicated in Table 2, indicating the 

balance between embodied and operational carbon. While this could serve as inspiration for benchmark 

setting, a geographical variability must be incorporated according to particularly climatic conditions.  

Table 2. Examples of embodied carbon in buildings. Various sources.  

Building Type 
Division EC/OC 

(percentage 
split) 

Country Source 

Residential 
Building 

50/50 Sweden 
 (Liljenström et al., 
2015) 

Office Building A 75/25 

Denmark 
 (Birgisdóttir, 

Mortensen, Hansen, 
& Aggerholm, 2013) 

Office Building B 28/72 

Office Building C 36/64 

Office Building D 21/79 

Office Building E 41/59 

Office Building F 33/67 

Office Building G 35/65 
Note: Data availability is very limited, hence the limited geographical distribution 
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It is likely that technological development, as well as significant operational learning in the construction 

processes can help drive embodied carbon downwards. New trade-offs will evolve, for instance 

balancing embodied carbon in insulation materials with their emissions reduction effect over the period 

for which the carbon budget is allocated. Therefore, budget allocation per square meter must naturally 

be adjusted downwards over time to achieve the desired emissions reduction effect. The transparency 

of such gradual reductions is important in allowing the industry to prepare, for example, by publicizing 

the carbon budget allocation per square meter according to year of permit for the following 5 or 10 

years – e.g. 3.5 tCO2e/m2 for buildings permitted up to 2020, 3.0 tCO2e/m2 permitted up to 2025 and 

2.5 tCO2e/m2 up to 2030. This is reported to have worked well in Denmark for energy efficiency, as the 

relevant authorities keep multiple future versions of regulations publicly available years in advance 

(Bygningsreglementet.dk, 2016b; IEA, 2015). This practice also provides time for the industry to prepare 

for the operationalization of the system.  

Allocation of Budgets 
Carbon budget allocation for construction may either be grandfathered or charged for. Grandfathering 

means that the budget is allocated for free and this approach thus provides no income opportunity for 

the city, leaving the developers with only the budget challenge to comply with and not an additional 

cost to purchase the required carbon budget. The alternative is that the city charges a fee for the 

budget, which beyond the possible income generation for the city may also have developers to consider 

how small of a budget they can do with, potentially beating the norm. This might also inspiring a 

desirable race to the bottom (in terms of emissions per square meter). 

While there are two options for the allocation of initial budgets, there are also two optional approaches 

for extending them: 1) carbon budgets are set without allowing topping up – i.e. a fixed budget that is 

enforced through strict penalties, or 2) the city establishes a pricing policy for adding a new carbon 

budget to the account once the initial assigned budget is depleted. The former approach is the one this 

paper advocates for, thus requiring the municipality to be more technical in its assessments of available 

construction options, in order to get the budget right. It is the preferable option for a number of other 

reasons as well, the most important of which is the traditional owner/tenant conflict of interest.  

Allowing topping up would encourage developers to use more carbon budget for construction, contrary 

to the purpose of the model, leaving future owners and tenants to take care of the topping up. Topping 

up would, therefore, require significant constraints to be added, which would need to be administered 

and monitored. Further, they only pertain to operational carbon, which is already indirectly targeted by 

current energy efficiency regulation. Therefore, topping up provides very little additional benefit to the 

model, while adding significant levels of complication. Prices would need to be at a level that 

unequivocally encourages prudence in the consumption of initially assigned, or purchased, budgets, but 

such prices could easily come under pressure. It would also require constant calculation of the 

operational carbon of the building with all the complications that this entails: multiple tenants, changing 

grid emission factors and lack of options to differentiate among different sources of consumption. Ex 

ante assessment of operational carbon is, consequently, much easier to administer and fundamentally 

aligns with current practices of applying construction standards – building codes – for grid electricity and 

heating. 



 

 14 

Trading 
Some may instantly think of carbon trading as a means of complying with allocated budgets. However, 

unless trading is kept strictly within city borders, carbon trading adds nothing to the objective, but 

rather subtracts from it. Intercity trading adds requirements on the fungibility of carbon budgets (a ton 

is a ton – or not) and comparability of conditions, e.g. climatic conditions and energy emission factors as 

well as cities' ambition and intended trajectory for local building's carbon footprint – i.e. how tight the 

budget is. Differences would challenge the exchange of carbon budgets beyond the city border. Even if 

kept inside city borders, trading may pose unwanted challenges in terms of market control to prevent 

other unintended circumventions on e.g. vintage of budgets, abandoned buildings and over-allocation 

that may hamper a gradual reduction of budgets over time. Intra-city trading of allocated budgets may 

become an option at a later stage when significant experience with such carbon budgets has accrued 

and budgets are tightened significantly. Only with such established experience can it reasonably be 

predicted how a trading option will influence the system. Therefore, in the short and medium term, 

trading would be an unnecessary complication of the model. 

New Versus Existing Buildings 
In most cities the existing building mass far outweighs the new construction. Does carbon budgeting 

make sense for existing buildings? The main objective of introducing carbon budgets for construction is 

to sensitise developers to the carbon content of the construction itself. Therefore, it has no relevance 

for buildings that are already constructed. If behavioural change is sought in the usage of existing 

buildings, including the improvement of their energy efficiency, there are more useful instruments 

available, like the compulsory phasing out of certain energy inefficient technologies – for instance, 

inefficient split A/C units. Hence, at least initially the existing building mass should not be targeted with 

carbon budgeting. It is possible, however, that carbon budgets for deep renovation (e.g. changing an 

industrial building into apartments) could benefit from a similar approach, considering the renovated 

building a new building with a different kind of materials and energy demand and a corresponding 

budget.  

Although old and new buildings compete for the same buyers and/or users, the carbon budget, in 

practice, only introduces a new restriction on embodied carbon -- operational carbon is already 

addressed by building codes’ energy efficiency regulation. It is not self-evident that considerations of 

embodied carbon automatically increase costs of construction. At the least, moderate reductions of 

embodied carbon have even led to cost reductions (as inter alia demonstrated in a number of projects 

listed by Skanska. See Skanska, 2012 for further information). 

What is in it for Cities? 
If the ultimate objective is to influence the production bases, what are the interests of the hosting city 

governments? What is in it for them?  

Cities have acted on climate change for at least the past 20 years, so this, in itself, is not new. Bulkeley 

(2010) describes how a first wave of mainly middle-sized cities in North America and Europe started to 

address climate change in the 1990s. In the early 2000s, a second wave of more geographically 
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dispersed cities emerged, including many in developing countries. A growing number of cities address 

more than just adaptation, which is rapidly becoming an issue of mainstream urban planning, globally. 

These cities adopt ambitious emissions reduction targets, many aiming at becoming carbon neutral at a 

given point in time, e.g. Copenhagen by 2025 (the Carbon Neutral Cities Alliance was established in 2014 

with initially 17 signing cities; see (CNCA, 2014). Other cities establish energy efficiency programmes in 

public buildings, improve traffic planning, introduce electric mobility strategies or change city lights to 

LED, just to mention a few initiatives. Some initiatives are profitable and have other drivers; some come 

at a net cost and can only be seen as political positioning – or as a genuine concern for the climate and a 

will to act. 

Bulkeley (2010) highlights certain factors that are important for a municipal action on climate change to 

be successful; political communication is an important factor in two aspects. First, the action has to 

entail an opportunity to display leadership. Carbon budgets provide such an opportunity, as there are 

still only a few cities and policies in place that address embodied carbon. Second, the climate action 

needs to be framed so that it generates additional benefits. Examples of this are actions that not only 

reduce GHG emissions, but also air pollution and, subsequently related health issues. 

Very few cities have targeted embodied carbon within buildings (see e.g. Boverket, 2015 for an 

overview), but according to the above observations, the novelty of the idea is in fact a potential success 

factor. If a city were to introduce carbon budgeting for embodied carbon in buildings, it would 

spearhead a development and become a frontrunner towards taking a life cycle perspective on 

emissions from buildings. So how many spearheading cities can the world host? Cities compete on 

different parameters (green/sustainability, business environment, living conditions etc.) at different 

levels; megacities compete globally, while second and third tier cities compete at more local levels. 

Many cities compete with their neighbours. Spearheading, therefore, is not necessarily an objective that 

allows only a small collection of cities to join. 

Moreover, carbon budgets have additional benefits as they may place the local construction material 

industry in a stronger position. Transport only accounts for a minor part of the embodied carbon (see 

Liljenström et al., 2015), so this element is quite limited. There is, however, more to it. Cities with 

objectives of carbon neutrality need to eventually include strategies for reducing the carbon intensity8 

of the local economy. That would include investments in energy production, e.g. co-generation or 

renewable energy sources. 

Essentially, cities that add to their climate change agenda by introducing a carbon budgeting model for 

building construction projects within the city boundaries are putting their money where their mouth is. 

The local industry will reap the benefits of the city's effort to become carbon neutral: local 

                                                           

8 Commonly carbon emissions per unit of GDP (at national level), but can equally be calculated for a subset of the 

economy like a city  
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manufacturing would unavoidably come closer to carbon neutrality in the process, mainly benefiting 

from lower emission factors, and locally manufactured construction materials with low levels of 

embodied carbon would obtain a ‘free’ competitive advantage. Hence, establishing carbon budgeting is 

not only logical, but it also creates additional benefits for climate conscious cities as they capitalize on 

their green strategies by, in effect, benefiting local industry. They may do so possibly without even 

violating any trade policies. 

Another potential benefit derives from material substitution. Currently, material substitution comes 

quite far down the line of possible measures to reduce embodied carbon – improving production 

processes of conventional material and changes in building design are higher up on the list. However, as 

carbon budgets grow tighter, and the construction industry gets used to taking the carbon content into 

account, material substitution might become a more interesting option. While some of these materials 

exist today, such as timber, the vastness of the construction industry’s material need might provide 

economic incentives to innovate and develop alternative materials, or indeed find new uses for 

materials beyond already known practices of recycling. Cities, or city networks or others that would help 

pioneer innovation and development of such material solutions, may reap additional benefits. 

The Industrial Response 
Introducing carbon budgeting for the construction industry seems an overwhelming task – one involving 

a global industry, a novel approach, and a significant demand for data. Meanwhile, all of this is to be 

targeted and inspired by a few pioneering cities. Would the industry take it seriously and is there any 

chance that it would take off? 

The foundation for a development towards carbon budgets for the construction industry already exists, 

and the industry itself has been pushing the development of standards for how to calculate and report 

the embodied carbon in buildings. The previously mentioned EN 15978 issued by the European 

Committee for Standardisation (CEN) in 2011 is central to this, building on a number of standards 

relevant for calculating the GHG emissions from buildings based on LCA. Prior to this, significant work 

had been done by the International Standards Organization (ISO) in collaboration with industry, on the 

ISO 14040 standard series9, which today include two standards that are relevant: ISO 14040:2006 laying 

down the principles and framework of how to conduct an LCA, and ISO 14044:2006 that introduces 

standardised requirements and guidelines (ISO 14040, 2006; ISO 14044, 2006). Further, ISO 21930 

(2007) provides “a framework for and the basic requirements for product category rules […] for type III 

Environmental Product Declarations (EPD) of building products” (ISO, 2015a). It incorporates Product 

Category Rules (PCR) specifying system boundaries and data requirements for an LCA for a specific 

product.  

                                                           

9 ISO 14040 (1997): Principles and framework, ISO 14041 (1998): Goal definition and inventory analysis, ISO 14042 

(2000): Life-cycle impact assessment, and ISO 14043 (2000): Life-cycle interpretation. 
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Building on these tools, the industry has included considerations of embodied carbon within the green 

building certification schemes to spur further development (Boverket, 2015b). The most globally used 

certification scheme, BREEAM, has included aspects of embodied carbon for several years. For LEED, the 

second most used scheme that is especially prevalent in the US market, criteria regarding embodied 

carbon has only been introduced in the newest version four (USGBC, 2013). German DGNB bases its 

evaluation of the building material solely on LCA data, thus making LCA an integral part of the 

environmental impact assessment (Schmidt, 2012). There are also on-going discussions within the 

Swedish system, Miljöbyggnad, to include considerations of embodied carbon (SGBC, 2015). While these 

standards increase their demands, so do general building codes.  

The shortcoming of the industry-led standards is, of course, that their usage and compliance with their 

demands is voluntary. It does not constitute regulation and, therefore, oftentimes leads to the building 

of a few ‘lighthouse’ examples in a few cities, while hundreds of buildings are being built around them 

according to traditional building standards – and at times, not even that. Moreover, the overwhelming 

majority of certified buildings are commercial. Residential buildings have not been considered relevant 

for certification, thus far, leaving a considerable number of buildings outside the scope of these 

schemes. Rademaker (2014) states that the market for residential building certification is not mature. 

While there are certified residential buildings through BREEAM, LEED and other schemes, these only 

constitute a minor part. For example, less than 5% of the LEED certified buildings in the USA are multi- 

or single-family houses, and the numbers are similar in other countries (USGBC, 2015). Thus, the current 

certification schemes do not cover embodied carbon satisfactorily. 

With recognized methodologies and standards available, it is entirely possible to calculate the embodied 

carbon of a given building. An existing challenge is data availability from the flow of materials and 

production processes between different companies and between countries. A construction company 

would have to require all the actors involved in its supply chain to provide the needed information to 

Figure 5. The growth of ISO 9001 and ISO 14001 certifications globally over time (ISO, 2015b).   
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perform the GHG calculations. While seemingly overwhelming at the outset, such industrial demands for 

provision of proof throughout the manufacturing value chains are not without parallel in history. 

ISO introduced ISO 9000 for Quality Management in 1987 -- a quality assurance system documenting 

every step of production and defining procedures to assure a constant and consistent level of 

production. The system was particular in requiring a similar level of quality assurance among suppliers of 

components, many of which were small and medium sized, even micro sized, companies (Corbett & 

Kirsch, 2001). These small companies initially believed that the requirements meant certain death. The 

costs of introducing and maintaining such quality assurance were considered insurmountable (Frost, 

2002; Lamprecht, 1992). However, a few years later no one discussed ISO 9000 anymore. Everybody had 

it, and was realizing the benefits of having systematized production -- even economic benefits that in 

many cases outweighed the cost of introducing the system. Today, the sheer extent of ISO 9000's global 

adoption makes it a critical ‘business standard’ that companies often find has become a ‘qualifying 

criterion’ in the global market. As such, companies seek certification regardless of whether they expect 

or believe the need for improvements in quality. In certain industries, ISO 9000 has even become a 

governmental requirement (Corbett and Kirsch, 2001).  

After the successful introduction of the ISO 9000 standards from 1987, the ISO 14000 series of 

environmental management systems standards was introduced in 1996 to ensure safe handling and 

disposal of hazardous materials, communication with interested parties, etc. (Corbett & Kirsch, 2001). 

The ISO 14000 series is now following its predecessor's footsteps. Figure 2 displays the development of 

the number of certifications issued globally for both ISO 9001 and ISO 14001, the main standard in each 

series respectively. In both cases there were no data at the outset; it had to be created through ISO 

certification that involved advisers who could guide companies in documenting their processes. Among 

these were also companies, for which the processes could not ensure a uniform product quality, 

thereby, requiring them to shape up in order to stay in the market. This would also be the case if the 

calculation of the amount of embodied carbon becomes a challenge for the product in the market. 

Some companies report that the ISO 9000 implementation has paved the way for an easier ISO 14000 

implementation. Half of the ISO 14000 certified companies in the United States see the experience with 

ISO 9000 as a motivating factor for achieving ISO 14000 certification (Corbett and Kirsch, 2001). But why 

did companies choose to become certified?  

Drivers for ISO Certification 

The proportion of certified companies can vary from sector to sector, and drivers for certification vary 

from company to company and region to region. In the USA, both governmental requirements and 

export considerations have been significant drivers for certification, together with companies' aspiration 

to improve quality and reduce cost, while in Western Australia, for instance, external drivers such as 

customer requirements were regarded as more important. Companies in developed countries generally 

do not consider certification a central non-tariff barrier to trade, and many companies follow practices 

even beyond ISO 14000 standards. In highly globalized manufacturing sectors there are even concerns 

of being excluded from export markets if an ISO 14000 certification cannot be demonstrated -- 

companies such as IBM and Bristol-Myers Squibb have encouraged their suppliers worldwide to become 
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ISO 14000 certified. The public sector is also creating a push for certification; non-environmental 

regulatory bodies such as the Ministry of Economic Affairs in Taiwan and the Ministry of International 

Trade and Industry (MITI) in Japan encourage certification -- although mostly for export-related reasons 

(Corbett and Kirsch, 2001). See Figure 3 for an overview of motivations.  

Generally, there seems to be a certain correlation between national environmental attitudes and ISO 

14000 certifications. It may be entirely possible that a push for carbon budgets in the construction 

industry could ride on a growing trend among countries and companies with high environmental 

awareness, particularly where there are already high levels of ISO certification. 

  

Figure 6. Overview of the reasons firms in Hong Kong, China became ISO 9000 certified (Lee, 1998). 

Challenges and Perspectives 
From a global perspective there are a number of challenges to the idea of carbon budgeting for building 

constructions in cities, the most obvious being getting countries and regions on board where the 

construction activity is the most significant. The question then becomes, how does doing carbon 

budgeting in a third of Europe help when half of the world’s construction takes place in emerging 

countries (Global Construction Perspective, 2013)? That depends on the time perspective and the 

efficiency with which the supply chains will do their part – apart from the obvious chance that cities in 

emerging countries begin to adopt the idea as well.  
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The scenario may not pan out exactly like the roll-out of the ISO 9000, because the central supply chains 

on steel and cement are shorter. In order to come closer to an ISO 9000 scenario, other more processed 

products with longer and more global supply chains would have to come into focus. That, again, would 

depend on the ambition of the involved cities, and their strategies for tightening the budgets – the slope 

of the curves for future carbon budget development (see Figure 7). A linear slope may be satisfied for a 

relatively long period with incremental improvements in steel and cement, while an exponentially falling 

slope would more quickly exhaust the options in cement and steel, and move to the less significant 

'carbon consumers' among the construction materials. Even that, however, would not affect the 

significant steel and cement consumption in emerging countries if cities there do not join in on carbon 

budgets. 

Another challenge is the option to shift products around so that those produced with less carbon 

content are used in sectors under carbon budget constraints, while the more carbon intensive raw 

materials go to the sectors without constraints. Again, using steel as an example, if 25% of steel in 

Europe is used for the manufacturing of cars and another 25% for buildings, cars would be built from 

new steel, while buildings would use recycled steel. As nearly all steel is currently recycled, and this 

constitutes about 20% of European steel consumption, there is a risk that the steel flows are simply 

adjusted and no real effect is achieved. The challenge could of course be met if European car 

manufacturers would set a parallel standard for steel input to their production. Otherwise, this is an 

issue that particularly to steel as most other essential construction materials have their main market in 

construction -- cement, insulation, and tiles have little use in car manufacturing or outside buildings 

construction, in general.  

Once budgets become tight and supply chains become affected there will be winners and losers in the 

manufacturing industry. Some will be punished for high carbon content in their energy supply, imposed 

on them through national energy systems with less emission-free power production compared to 

others. Nevertheless, it is unlikely this would become a trade restriction for the WTO to deal with. All 

suppliers are treated equally, and there is no brand preference or preferred origin. The carbon budget 

prescribes a certain quality of a product, and suppliers cannot insist on the right to deliver a product 

quality that does not meet the specified level. In addition, it is not a national regulatory entity that 

establishes the demand, but a local authority, and although WTO has occasionally looked at local cases 

(e.g. Ontario's 'local content' requirements), it is rare and the cases are weak. When Asian suppliers 

tCO2e/m2 embodied in 

the material 

Time Time 

tCO2e/m2 embodied in 

the material 

Cement/steel 

Cement/steel 

Figure 7. Illustrating how different ambition levels of cities affect the decrease of embodied carbon differently, and its effect 
on the time required. 
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realized the challenges they faced from ISO 9000, it did not become an international trade regulation 

issue. Instead, there is a chance for a positive spillover from companies facing a disadvantage due to the 

carbon footprint they 'import' from power delivered through their national electricity grids. This may 

either be considered emission-free captive power production, or even – if a large enough group of 

influential companies are affected – in the longer run possibly influence the national uptake of emission-

free energy sources on the national grid. 

It is imaginable that city based carbon budgeting could possibly be a challenge in the international 

climate change policy sphere if the effect, ultimately, would be a reduced demand for products 

manufactured in developing countries with high emission intensities. It could be regarded as a violation 

of the common view on the 'common but differentiated responsibilities' principle. If so, however, it 

would be a challenge that comes from a market-based change of demand. Although stemming from a 

political/administrative level (cities), it is at the sub-national level, which is not part of the international 

climate change architecture (despite the Paris Agreements' reference to non-state actors). Nevertheless, 

it would be difficult to imagine national legislation ruling against carbon budgeting in cities. 

At the other end of the value chain, the resulting buildings may become more expensive. Price increases 

may result either from purchasing carbon budgets -- if allocation through grandfathering is not the 

chosen model -- or if constraints lead to the need to use more expensive materials. City regulators 

should consider the allocation model carefully as other interests may be conflicting, for instance the 

common desire to ensure affordable housing. While there may be market forces that would limit the 

extent to which increased costs can be passed on to buyers, because existing buildings are not subject to 

carbon budgets and compete for the same buyers, it may be a different story for rent in social housing, 

which is commonly regulated. However, it need not push prices upwards. Tracking embodied carbon is 

an efficient way to manage and reduce material use, reducing both the procurement of unnecessary 

materials, as well as waste generated at the building site. Skanska reports that for many projects, 

managing embodied carbon goes hand-in-hand with cost effectiveness, and points to resource efficiency 

and actors seeing it as a management tool (Skanska, 2012).    

There are also other challenges that carbon budgeting may not have. The industry has already 

developed functioning standards for how to calculate and compile data to support such budgeting. 

Although they are applied on a voluntary basis they have been developed and are being adopted by the 

industry, providing ample proof of its viability. Only incentivizing their use through carbon budgets is 

needed. 

The chosen model for combining embodied and operational carbons avoids the usual 

developers/owners/tenants conflicts of interests that complicate most regulatory actions on the 

improvement of energy efficiency of buildings. By deeming the carbon content of the future energy use 

through the energy standard that the building complies with ex ante, the actual usage of the building, 

including potential rebound effects and change of usage, is eliminated from the equation. 

Reconstruction, which commonly requires a permit from the city administration, would be allocated a 

new budget pertaining specifically to the construction project. 
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There are obviously different ways in which the city-based carbon budgeting for the construction 

industry can be introduced. The ideal way would be to have a few progressive cities implement the 

model as a test scheme in order to gain experience and observe the initial effects. This would help 

immensely to shed light on how the establishment of carbon footprints and carbon accounting might 

succeed – how it could start and penetrate the sector, including spillover effects into other sectors. It 

would equally help determine the critical mass of participating city regulators to make the industrial 

response self-sustaining. It might even help with the first indications of international trade effects. The 

ball is in the progressive cities’ court.   
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