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ABSTRACT: Benefiting from the specially tailored properties of the building blocks as well as 

of the scaffolds, DNA-assembled core-satellite superstructures have gained increasing interest in 

drug delivery, imaging and biosensing. The load of satellites plays a vital role in core-satellite 

superstructures and it determines the signal intensity in response to a biological/physical 

stimulation/actuation. Herein, for the first time, we utilize on-particle rolling circle amplification 

(RCA) to prepare rapidly responsive core-satellite magnetic superstructures with a high load of 

magnetic nanoparticle (MNP) satellites. Combined with duplex-specific nuclease assisted target 

recycling, the proposed magnetic superstructures hold great promise in sensitive and rapid 

microRNA detection. The long single-stranded DNA produced by RCA serving as the scaffold 
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 2

of the core-satellite superstructure, can be hydrolyzed by duplex-specific nuclease in the 

presence of target microRNA, resulting in a release of MNPs that can be quantified in an 

optomagnetic sensor. The proposed biosensor has a simple mix-separate-measure strategy. For 

let-7b detection, the proposed biosensor offers a wide linear detection range of approximately 

five orders of magnitude with a detection sensitivity of 1 fM. Moreover, it has the capability to 

discriminate single-nucleotide mismatches and to detect let-7b in cell extracts and serum, thus 

showing considerable potential for clinical applications. 

 

KEYWORDS: on-particle rolling circle amplification, core-satellite superstructures, magnetic 

nanoparticles, microRNA detection, optomagnetic biosensor 
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 3

INTRODUCTION 

Point-of-care diagnostics is one of the principal motivations behind the current development of 

nanotechnology. The various requirements for point-of-care diagnostics, e.g., ease-of-use, short 

assay time, high sensitivity and low cost, are challenging for traditional analytical methods and 

in most cases beyond the capability of monofunctional-material-based biosensors.1-3 In order to 

strengthen the performance of biosensors, materials with different functionalities are commonly 

used simultaneously. In contrast to the utilization of a mixture of different materials, using the 

assembly of various simple building blocks offers further improvement of the biosensing 

performance, and has a much broader range of applications since it takes advantage of both the 

intrinsic and collective properties of the constituents.4-7 Owing to the predictability, specificity, 

and diversity of hybridization, DNA as a scaffold/spacer shows great potential in assembling 

nano- to micron-sized superstructures.8-11 In particular, the use of DNA-assembled core-satellite 

superstructures in biosensing applications enables control of the dimension, composition, 

functionality of the core/satellite building blocks and of the sequence of DNA scaffold/spacer. It 

is thereby a flexible tool to meet the requirements for clinical diagnostics.12-18 

 

In our previous work, a multilayer core-satellite magnetic superstructure was reported for RNA 

biosensing.19 As a consequence of the duplex-specific nuclease (DSN) assisted DNA hydrolysis, 

satellites were released from the core-satellite magnetic superstructures into the suspension and 

measured. The as-reported multilayer core-satellite magnetic superstructure offered advantages 

of: (a) easy manipulation because of the magnetic micron-sized core, (b) multiplexing because of 

the controllable release of different nano-sized satellites, and (c) predictable enzyme-based 

reactions because of the programmable DNA scaffold/spacer. However, the layer-by-layer 

material preparation, i.e., conjugating one end of the DNA probes to the surface of the core 
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 4

followed by conjugating satellites to the other end of the DNA probes, limited the load of 

satellites and thus affected the sensitivity of the biosensor. Additionally, in this preparation 

method, satellites were often linked to the core via more than one DNA probe, which further 

reduced the sensitivity of the biosensor since several DNA hydrolysis reactions were required to 

release a single satellite.13,19 

 

In order to address the issues faced by layer-by-layer preparation based core-satellite 

superstructures, we herein take advantage of an on-particle rolling circle amplification (RCA) 

based method for improved preparation of core-satellite magnetic superstructures. RCA is a 

simple and efficient isothermal amplification tool that produces long single-stranded DNA 

(ssDNA) molecules with programmable repeating sequences, which can further be utilized as 

scaffolds for assembling nanostructures into one-dimensional superstructures.20-23 Moreover, the 

RCA reaction can be performed on the surface of a particle (on-particle RCA) followed by 

assembling nano-sized satellites, which provides programmable three-dimensional core-satellite 

superstructures.24-28 Here, we develop on-particle RCA with biotinylated DNA building blocks to 

prepare core-satellite magnetic superstructures with a high load of magnetic nanoparticle (MNP) 

satellites. The on-particle RCA products contain repeating sequences that can hybridize to target 

RNAs, forming DNA:RNA heteroduplex structures, which can subsequently be cleaved by DSN. 

The RNA strands are preserved in the hydrolysis and then released to the suspension to trigger 

more reactions. This process, denoted DSN-assisted target recycling,29-34 cleaves on-particle 

RCA based core-satellite superstructures and releases one-dimensional assemblies of MNPs. The 

one-dimensional superstructures can be further cleaved as the DSN-assisted target recycling 

continues to release individual MNPs. 
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 5

 

MicroRNAs are 19 to 23-nucleotide long tissue-specific biomarkers for tumor progression and 

metastasis.35-38 Standard RNA analysis strategies, i.e., Northern blotting,39,40 oligonucleotide 

microarrays,41,42 and quantitative reverse transcription polymerase chain reaction (qRT-

PCR),43,44 have been widely used for microRNA analysis, but still have their own limitations, 

e.g., low sensitivity, labor-intensive processes, or lack of 5´-end specificity.45,46 By the 

combination of on-particle RCA based core-satellite magnetic superstructures, DSN-assisted 

target recycling and the 405 nm laser-based optomagnetic sensor, we demonstrate a 

homogeneous and volumetric detection biosensor for microRNA. Relying on the high load of 

MNPs, the on-particle RCA based method shows improvements in terms of response speed, 

signal amplitude and sensitivity in comparison with our previous work which used layer-by-layer 

assembled core-satellite magnetic superstructures. As far as we know, this is the first 

demonstration of a biosensor based on the combination of RCA and DSN-assisted target 

recycling. 

 

RESULTS AND DISCUSSION 

Detection Principle. On-particle RCA produces long ssDNA containing repeating DNA 

sequences that are complementary to the target RNA, i.e., let-7b used in this study. The ssDNA 

is serving as a scaffold to assemble MNPs onto micro-particle (MP) cores to form on-particle 

RCA based core-satellite superstructures (MP-RCA-NPs). Target RNA molecules present in the 

suspension can hybridize to the ssDNA scaffolds to form DNA:RNA heteroduplexes, which can 

be recognized and cleaved by DSN, resulting in a release of MNPs from the MP-RCA-NP 

superstructures. The target RNA is preserved in the DSN-based hydrolysis and is thus able to 
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 6

bind to other complementary sequences on the same or on another ssDNA scaffold. The working 

principle is schematically illustrated in Figure 1. 

 

 

Figure 1. Working principle of microRNA detection based on MP-RCA-NP superstructures and 

DSN-assisted target recycling. Target RNA hybridizes to an ssDNA scaffold and forms a 

DNA:RNA heteroduplex. The DNA:RNA heteroduplex is cleaved by DSN and MNPs are 

subsequently released. The target RNA is preserved in the reaction and is thus able to bind to 

other complementary sequences on the same or on another ssDNA scaffold. 

 

MNPs released to the suspension are quantified with a 405 nm laser-based optomagnetic sensor. 

The sensor records the second harmonic modulation of the transmitted light intensity in response 

to an applied field B(t)=B0sin(2πft). The output signal, 02 VV ′ , is the real (sin(4πft)) part of the 

second harmonic component of the transmitted light intensity normalized by the simultaneously 

measured total transmitted light intensity. A typical 02 VV ′  spectrum in this study is 

characterized by a peak located around 200 Hz representing the response from suspended MNPs, 
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 7

which is used for the quantification of target microRNA. Detailed description as well as the 

underlying theory of the 405 nm laser-based optomagnetic sensor can be found in our previous 

publications.47-51 

 

Characterization of On-Particle RCA Based Core-Satellite Magnetic Superstructures. To 

prepare MP-RCA-NP superstructures, biotinylated dUTPs are used to replace a part of dTTPs as 

DNA building blocks during the on-particle RCA. The utilization of biotin-dUTP results in 

ssDNA products containing biotin groups that can subsequently assemble streptavidin coated 

MNPs. To study the performance of the MP-RCA-NP superstructures and to compare with 

ssDNA probe based MP-NP superstructures, on-particle RCA reactions were performed with 

high or low biotin-dUTP concentrations, by employing biotin-dUTP:dTTP ratios of 3:1 or 1:3, 

respectively. In Figure 2a and b scanning electron microscopy (SEM) micrographs are shown 

for MP-RCA-NP superstructures with high or low MNP loads, respectively. From the SEM 

micrographs it can be concluded that the MNPs are assembled on the MP cores. Due to the 

assembly of several MNPs on the same ssDNA molecule forming a random-coil structure, drying 

effect, and the nonspecific binding between nearby ssDNA strands, MNPs are not uniformly 

distributed but form islands on the MP-RCA-NP superstructures. The size of MNP islands is 

influenced by the concentration of biotin-dUTP used in RCA, i.e., a higher biotin-dUTP:dTTP 

ratio leads to a higher MNP load of the superstructure and thus larger MNP islands on MPs. As a 

comparison, Figure 2c shows the morphology and structure of the ssDNA probe based MP-NP 

superstructures, on which the MNPs are uniformly distributed. 
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 8

The sensitivity and accuracy of core-satellite superstructure based biosensors are strongly 

influenced by the load of releasable MNP satellites. To evaluate the capability of releasing 

MNPs, three different kinds of core-satellite superstructures (MP-RCA-NPs with high MNP 

load, MP-RCA-NPs with low MNP load and MP-NPs) were reacted with 10 nM of let-7b to 

cleave ssDNA through DSN-assisted target recycling. For the MP-RCA-NPs with high and low 

MNP loads, the signal increased at a higher rate than for the MP-NPs during the first 30 min of 

the reaction. This implies that fewer DSN-based hydrolysis reactions were needed for MP-RCA-

NPs to release MNPs (cf. slopes of lines in Figure 2d). Due to the layer-by-layer preparation of 

the MP-NP superstructures, MNPs were linked to the MP core via more than one ssDNA probe, 

resulting in a slower response to targets.19 From analysis of the concentration of MNPs released 

from the superstructures after an incubation time of 90 min, the average ratios between MP cores 

and MNP satellites were calculated to 1:143, 1:75 and 1:73 for MP-RCA-NPs with high MNP 

load, MP-RCA-NPs with low MNP load and MP-NPs, respectively (Supporting Information, 

section S1). Although the MP-RCA-NPs with low MNP load and MP-NPs have similar 

MP:MNP ratio, their arrangement and distribution of MNP satellites are very different. 

 

The arrangement of MNPs on the RCA products is another critical parameter that influences the 

analytical performance of the MP-RCA-NP superstructures. Biotin groups are randomly 

distributed along the ssDNA. A high MNP load means a high-density arrangement of MNPs on 

the ssDNA (illustration in Figure 2a). Moreover, since there are more target-recognizing 

sequences between two nearby MNPs on the same ssDNA for a low-density MNP arrangement 

(illustration in Figure 2b), fewer MNPs are released by each DSN-based hydrolysis reaction, 

resulting in a lower rate of the signal increase, see Figure 2d where blue circles and red 
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 9

diamonds represent high-density and low-density MNP arrangements, respectively. However, 

since the target recognizing sequences in the ssDNA also contain biotin groups that can bind to 

the MNPs, a high-density MNP arrangement may hinder the hybridization of target microRNA 

as well as the DSN-based hydrolysis, which leads to an increased number of un-releasable 

MNPs. Despite this small drawback, we still chose MP-RCA-NP with a high-density MNP 

arrangement for the following experiments to obtain a better accuracy with a quicker response. 

 

 

Figure 2. Representative SEM micrographs of (a) MP-RCA-NP superstructures with a high 

MNP load, (b) MP-RCA-NP superstructures with a low MNP load, and (c) ssDNA probe based 

MP-NP superstructures. (d) Time-resolved peak amplitude increase for three different core-
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 10

satellite superstructures reacted with 10 nM of let-7b. All the measurements were performed 

three times independently and the standard deviations were plotted as error bars. 

 

Quantitative MicroRNA Detection. The quantification of target microRNA using the high 

MNP load MP-RCA-NPs was investigated. The target RNA, let-7b, was diluted by the reaction 

buffer to a series of concentrations ranging from 1 µM to 10 aM, followed by reaction with MP-

RCA-NPs and DSN cleaving for 60 min. Thereafter, the concentration of MNPs in the 

suspension, mainly released from the core-satellite superstructures (see Supporting Information, 

section S1), was measured by the optomagnetic sensor. As shown in Figure 3a, the peak in the

02 VV ′  spectra, representing the signal from suspended 100 nm MNPs, increased monotonously 

with increasing let-7b concentration. Although centrifugation was adopted as the last step in the 

preparation protocol for the superstructures to remove unbound MNPs, it could not provide 

conditions for complete removals, thereby resulting in a background signal for all of the 

measurements. When measuring low target concentrations, the peak positions were slightly 

shifted to the low-frequency region, implying the presence of suspended dimers and/or short 

chains of MNPs. Figure 3b shows the 02 VV ′  peak amplitudes plotted against the target 

concentration. From the dose-response curve it can be seen that the linear detection range spans 

over approximately five orders of magnitude (10 fM to 1 nM) and that there exists a signal 

plateau at high target concentrations (≥ 10 nM). The red dashed line in Figure 3b indicates the 

cutoff value, which was calculated based on the three-sigma criterion, i.e., the average peak 

value of the blank controls plus three times of their standard deviations. The limit of detection 

(LOD) of the proposed biosensor, defined as the lowest target concentration that can generate a 

peak amplitude higher than the cutoff value, was obtained as 1 fM. The average coefficient of 
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 11

variation (CV) was 4.1%, indicating high reproducibility. The major factors which cause 

variations in measured peak amplitudes are most likely sample-to-sample variations in the 

concentration of superstructures and temperature fluctuations during the DSN-assisted release of 

MNP satellites. For plasma, the total microRNA concentration was reported to be at the 100 fM 

level,52 implying that the femtomolar level LOD provided by the proposed biosensor is sufficient 

for microRNA analysis in plasma. It should be emphasized that the LOD and detection range can 

be further adjusted by simply choosing different reaction times for DSN-assisted target 

recycling. 
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Figure 3. Optomagnetic spectra (a) and dose-response curve (b) for MP-RCA-NP superstructure 

(high MNP load) based quantification of let-7b. The black dashed vertical line in (a) indicates the 

peak position at 164 Hz. The black solid line and the red dashed line in (b) indicate the linear 

detection range and the cutoff value, respectively. All the measurements were performed three 

times independently and the standard deviations were plotted as error bars. 

 

Compared to the MP-NP superstructure based microRNA detection in our previous work,19 the 

MP-RCA-NP based biosensing shows improvements in both signal amplitude and reaction 

speed. Relying on the high load of MNP satellites, MP-RCA-NP superstructures can release 

more MNPs than MP-NP superstructures, thereby offering almost doubled optomagnetic peak 

amplitudes without increasing CVs and thus improved accuracy. In addition, since fewer DSN-

based hydrolysis reactions are needed for MP-RCA-NPs than for MP-NPs to release a certain 

number of MNPs, MP-RCA-NPs show a faster response to target molecules present in low 

concentrations. However, MP-RCA-NPs release chains of MNPs instead of individual ones 

when reacted with target molecules of low concentrations; these chains have very low 

optomagnetic signals and nearly negligible contributions to the peak amplitude located around 

200 Hz, which influences the sensitivity of the proposed biosensor. As a result, the MP-RCA-NP 

based biosensor is approximately 5 times more sensitive than the previous method based on MP-

NP superstructures. 

 

The widespread use of the DSN-assisted target recycling strategy allows for a convenient 

comparison between the proposed biosensor and previously published DSN-based biosensors. 

For reported biosensors using 0.5-1.5 h of DSN-assisted target recycling, LODs of 60 aM 
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 13

(electrochemical impedance spectroscopy),53 0.1 fM (UV-vis spectroscopy),54 0.3 fM (surface-

enhanced Raman spectroscopy),55 0.5 fM (UV-vis spectroscopy),56 3.36 fM (magnetic relaxation 

switch sensor),31 1 pM (UV-vis spectroscopy),34 1.03 pM (fluorescence spectroscopy)33 and 1.1 

pM (fluorescence spectroscopy)57 were reported for the detection of different microRNAs. 

However, except for the magnetic relaxation switch biosensor, all these biosensors need 

additional pretreatment, washing or signal generation steps, which limit their potential for point-

of-care applications. In comparison, the proposed MP-RCA-NP superstructure based 

optomagnetic biosensor has a simple mix-separate-measure strategy which can be easily 

integrated into microfluidic systems.58 

 

Specificity Test. Due to the strong sequence homology between different microRNAs within the 

same family discrimination between these is complicated. The specificity of the proposed 

method for let-7b against other control microRNAs was tested by comparing the optomagnetic 

peak amplitudes obtained from 0.1 nM of different let-7 microRNAs (using MP-RCA-NPs with 

a high MNP load, Figure 4). Sequences of the let-7 microRNAs measured in this study and the 

differences among them are summarized in Table S2. The two highest nonspecific signals, 

obtained from 0.1 nM of let-7c (single-nucleotide mismatches) and 0.1 nM of let-7a (double-

nucleotide mismatches), were found to be equal to the signals of 1.7 and 0.3 pM of let-7b, 

respectively. Nonspecific signals were induced by the 16-bp-long perfect DNA:RNA 

heteroduplexes formed between the non-target microRNAs (let-7c and let-7a) and the 

recognition sequences on the RCA products. From the results of the specificity test it is evident 

that the proposed method is capable of discriminating between sequences containing even single-

nucleotide mismatches. 
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Figure 4. Specificity test for the proposed let-7b detection method using high MNP load MP-

RCA-NPs. Optomagnetic peak amplitudes for five different types of let-7 microRNA (0.1 nM) 

are shown. All the measurements were performed three times independently and the standard 

deviations were plotted as error bars. 

 

Detection of Endogenous MicroRNA from HeLa Cells. Total RNAs that were extracted from 

human cervical cancer cells (HeLa) were investigated to demonstrate the performance of the 

MP-RCA-NP superstructure for target quantification in cell extracts. Cell extracts (containing 

total RNAs) were diluted by the reaction buffer to an RNA concentration of 1 µg mL-1 to serve 

as the pure extracts. Spiked samples containing 1, 10, 100 and 1000 pM of synthetic let-7b were 

prepared by spiking the target RNA into pure extracts. The optomagnetic spectra and signals of 

the pure and spiked RNA extracts are shown in Figure 5. For the spectra of RNA extracts 

(Figure 5a), no shape change was observed (compare with Figure 3a). The let-7b concentration 

of the pure extracts was found to be 39.7 ± 3.3 fM (corresponding to 2.387 ± 0.196 × 107 copies 

µg-1 total RNA) by calculating the linear fitting of the peak amplitudes obtained from the four 

spiked RNA extracts, which agrees well with the result obtained by qRT-PCR (44.3 ± 3.7 fM). 
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The results suggest that the MP-RCA-NP based biosensor is suitable for clinical diagnosis and 

prognosis applications. 

 

 

Figure 5. Optomagnetic spectra (a) and peak amplitude (b) obtained from diluted total RNA 

extracts (containing 1 µg mL-1 total RNA) spiked with let-7b. The black dashed vertical line in 

(a) indicates the peak position at 164 Hz. All the measurements were performed three times 

independently and the standard deviations were plotted as error bars. 
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Matrix Effects and Serum Detection. Apart from tissues, microRNAs are also circulating in 

body fluids such as plasma.52,59 Since cell extracts have limited matrix effects, the robustness of 

the biosensor was further studied by using fetal bovine serum (FBS, diluted with reaction buffer, 

Figure 6). Except for increasing the viscosity of the suspension, the matrix effects of FBS 

mainly include: (1) inducing MNP aggregation, and (2) inhibiting the DSN-based reaction. To 

evaluate the aggregation effect, MNPs (35 µg mL-1) in different FBS solutions were measured. 

No significant MNP aggregation was found at FBS concentrations lower than 40% (cf. Figure 

6a and S2a). However, when the MP-RCA-NP (high MNP load) based biosensor was utilized to 

detect 0.1 µM of let-7b in FBS solutions (Figure 6a and S2b), the optomagnetic signals were 

much lower compared to the direct suspension of MNPs, implying the inhibition caused by FBS 

(RNA binding proteins, nonspecific oligonucleotides, RNase, etc.). 

 

We further performed let-7b quantification in FBS using the MP-RCA-NP superstructures (high 

MNP load). The target RNA was spiked into 20% FBS to a series of concentrations and 

measured. Compared to the measurements performed in buffer solutions (Figure 3b), the dose-

response curve shown in Figure 6b has a narrower linear detection range from 0.1 pM to 1 nM. 

Moreover, matrix effects influenced the biosensing performance and resulted in a weakened 

LOD of 10 fM. Considering that the real serum samples in clinical diagnostics are much more 

complex than FBS, RNA extraction is recommended before microRNA analysis. Spectra of the 

optomagnetic measurements are shown in Figure S2c. 
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Figure 6. Stability study in FBS. (a) Bar graph of the optomagnetic signal at 164 Hz for direct 

MNP measurement and for MP-RCA-NP based let-7b detection in diluted FBS samples. (b) 

dose-response curve for MP-RCA-NP (high MNP load) based quantification of let-7b. The black 

solid line and the red dashed line in (b) indicate the linear detection range and the cutoff value, 

respectively. All the measurements were performed three times independently and the standard 

deviations were plotted as error bars. 
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CONCLUSIONS 

In this study, on-particle RCA based core-satellite magnetic superstructures were prepared and 

combined with DSN-assisted target recycling for optomagnetic detection of microRNA. As far 

as we know, this is the first demonstration of a biosensor based on the combination of RCA and 

DSN-assisted target recycling. Compared to the MP-NP superstructures reported by us in earlier 

work,19 the as-prepared MP-RCA-NPs have a doubled load of MNP satellites and need fewer 

hydrolysis reactions to release MNPs, thus providing improved sensing accuracy as well as 

sensitivity. The proposed biosensor offers a wide linear detection range (10 fM to 1 nM) with a 

detection sensitivity of 1 fM for let-7b detection. We have also demonstrated the ability of the 

proposed method to discriminate single-nucleotide mismatches and to detect let-7b in cell 

extracts and serum. Despite the advantages mentioned above, the MP-RCA-NP superstructure 

based method has some limitations for biosensing applications: (1) micro-particles easily 

aggregate and precipitate during the on-particle RCA process, thereby limiting the length of the 

RCA products; (2) a separation step is needed to remove the micro-particles after the DSN-based 

reaction since the micro-particles influence the optomagnetic measurement. To further improve 

the detection strategy to achieve a mix-measure format, MNP chains could be considered in a 

follow-up study. In this study RCA products serve as scaffolds to stabilize MNP chains formed 

in a rotating magnetic field,60 thereby preparing one-dimensional superstructures that can be used 

for microRNA detection. In summary, by utilizing the special properties of MP-RCA-NP 

superstructures, DSN-assisted target recycling and optomagnetic sensing, we have presented a 

sensitive, rapid, homogeneous and isothermal microRNA detection method in a simple mix-

separate-measure format that can be added to the toolbox for versatile clinical applications, e.g., 
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magnetic actuation based tissue engineering, magnetic field controlled drug delivery and 

hyperthermia therapy. 

 

MATERIALS ANDMETHODS 

DNA and RNA Sequences. DNA sequences including biotinylated template and padlock probe 

were used for on-particle RCA. Single-stranded DNA probes were used for assembling MP-NP 

superstructures. RNA sequences including let-7b, let-7c, let-7d and let-7e were used as the target 

or controls. DNA and RNA sequences are listed in Table S2. All sequences were synthesized by 

Biomers (Ulm, Germany) and dissolved in 50 mM Tris-HCl (pH 8.0) for storage at -20°C. 

 

Chemicals. RNase inhibitor (20 U µL-1), Tris-HCl (1 M, pH 8.0), φ29 polymerase, φ29 buffer, 

ATP, T4 ligase, dA/T/C/GTP, biotin-11-dUTP and bovine serum albumin were purchased from 

Thermo Fisher Scientific (Waltham, USA). Duplex-specific nuclease was purchased from 

Evrogen (Moscow, Russia), dissolved in Tris-HCl (50 mM, pH 8.0) and glycerol (at 1:1 ratio) 

for storage at -20°C. DTT, glycerol, biotin, MgCl2 and FBS were purchased from Sigma-Aldrich 

(St. Louis, USA). Phosphate buffered saline (PBS, 20×) was purchased from AMRESCO (Solon, 

USA). For DSN-based reaction, the reaction buffer consisted of Tris-HCl (50 mM, pH 8.0), 20 

mM MgCl2 and 1 mM DTT. Streptavidin coated 100 nm MNPs (multicore magnetic beads 

containing clusters of small single domain particles, 6×1012 particles mL-1, 10 mg mL-1, product 

code 10-19-102) and streptavidin coated magnetic microparticles (5.5×109 particles mL-1, 25 mg 

mL-1, product code 08-19-203) were purchased from Micromod Partikeltechnologie GmbH 

(Rostock, Germany). All the pipette tips and storage tubes were RNase-free. 
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Preparation of RCA Template Conjugated Magnetic Microparticles. Streptavidin coated 

MPs (2.5 mg, 100 µL of the stock solution) were washed twice and resuspended in 200 µL PBS 

(1×) before conjugation. Biotinylated RCA template (10 µL, 1 µM) was pipetted into the MP 

suspension for conjugation (20°C, 20 min). Thereafter biotin (100 µL, 1 mM) was added to the 

suspension for blocking, and the suspension was incubated at 20°C for 10 min. The blocked 

template-MPs were washed three times by a magnetic stand to remove unused template and 

biotin, and finally resuspended in 400 µL H2O. 

 

Synthesis of MP-RCA-NP Core-Satellite Magnetic Superstructures by On-Particle RCA. 

The ligation mixture (500 µL) for on-particle RCA was prepared by mixing 50 µL of 10×φ29 

buffer, 25 µL of ATP (20 mM), 10 µL of padlock probe (1 µM), 10 µL of T4 ligase (1 U µL-1), 

400 µL of as-prepared template-MPs and 10 µL of H2O, followed by incubation at 37°C for 15 

min. For on-particle RCA reaction (to prepare MP-RCA-NP superstructures with high MNP 

load), 500 µL of ligation mixture (containing 2.5 mg of MPs) was mixed with 30 µL of 10×φ29 

buffer, 75 µL of dNTPs (containing 0.25 mM of dTTP, 1 mM each of dATP, dCTP and dGTP), 

75 µL of biotin-11-dUTP (0.75 mM), 75 µL of BSA (2 µg µL-1) and 25 µL of φ29 polymerase 

(10 U µL-1), followed by incubation at 30°C for 60 min with gentle shaking. Aggregates of MPs 

formed during the RCA reaction by coiling and nonspecific binding of ssDNA. The aggregates 

can be unfolded by incubating the suspension at 65°C for 10 min. Thereafter the on-particle 

RCA products were washed three times with 50 mM Tris-HCl (65°C) using a magnetic 

separation stand, followed by adding 100 µL of streptavidin coated 100 nm MNPs (10 mg mL-1) 

and incubating at 60°C for 15 min to form MP-RCA-NP superstructures. Unbound MNPs were 

removed by five times of centrifugation using a VWR Galaxy MiniStar microcentrifuge (2000 g, 
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10 s). Lastly, the MP-RCA-NP superstructures were resuspended in Tris-HCl (200 µL, 50 mM) 

for storage at 4°C. For the preparation of MP-RCA-NP superstructures with low MNP load, the 

synthesis procedure was similar except for reducing the ratio of biotin-dUTP:dTTP from 3:1 to 

1:3. 

 

Synthesis of MP-NP Core-Satellite Magnetic Superstructures by ssDNA Probes. 

Streptavidin coated MPs (2.5 mg, 100 µL of the stock solution) were washed twice and 

resuspended in Tris-HCl (50 mM, pH 8.0). Biotinylated ssDNA probes (120 µL, 100 µM) were 

added into the MP suspension for conjugation (20°C, 20 min). After that, the ssDNA probe-MPs 

were washed three times by a magnetic stand to remove unused probes, and resuspended in Tris-

HCl (100 µL, 50 mM). Streptavidin coated 100 nm MNPs (100 µL, 10 mg mL-1) were mixed 

with the ssDNA probe-MPs, followed by incubation at 20°C for 15 min. MNPs that have not 

bound to the MP were removed by five times of centrifugation. Lastly, the superstructures were 

resuspended in Tris-HCl (200 µL, 50 mM) for storage at 4°C. 

 

MicroRNA Detection Using DSN-Assisted Target Recycling. For let-7b detection, 91.5 µL of 

the sample (containing target microRNA), 2.5 µL of RNase inhibitor (20 U µL-1), 1 µL of DSN 

(1 U µL-1) and 5 µL of core-satellite magnetic superstructures were mixed and incubated at 60°C 

for 1 h. After the reaction, separation was performed either by centrifugation (2000 g, 10 s) or 

standing (10 min) to separate the released MNPs from the MPs. Herein we chose centrifugation 

for the separation step. The suspension containing released MNPs was pipetted to a UV-

transparent cuvette (REF 67.758.001, Nümbrecht, Germany) for optomagnetic measurement. 

Three independent measurements were performed for each sample. 
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Optomagnetic Measurement. The AC magnetic excitation field amplitude was 2.6 mT. The 

magnetic excitation field was applied perpendicular to the 405 nm laser beam. The light beam 

diameter and the optical path were 2 mm and 10 mm, respectively. During the optomagnetic 

measurement, 20 logarithmically equidistant points (30-3000 Hz) were recorded in 120 s. 

 

Scanning Electron Microscopy Characterization. Three different core-satellite 

superstructures, i.e., MP-RCA-NPs with high MNP load, MP-RCA-NPs with low MNP load and 

MP-NPs, were washed, resuspended in pure water and characterized by scanning electron 

microscopy (SEM, Zeiss-1530) to show the morphology and structure. An in-lens detector was 

utilized for detecting secondary electrons and the electron beam accelerating voltage was 5 kV. 

 

Endogenous MicroRNA Extraction. Human cervical cancer cells (HeLa) were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented with 10% FBS and 100 IU 

mL-1 penicillin streptomycin. The collected cells harvested by trypsinization were washed once 

with PBS (1×). The total RNA of the collected cells was extracted by the RNeasy mini kit 

(Qiagen, Hilden, Germany) and quantified by Nanodrop 1000 (Thermo Scientific). The qRT-

PCR quantification of let-7b in the RNA extracts was performed by the Rudbeck Laboratory, 

Uppsala University. 

 

ASSOCIATED CONTENT 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at DOI: 

Page 22 of 28

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 23

Calculation of the binding ratios between cores and satellites, standard curve for MNPs 

suspended in reaction buffer, concentrations of MNPs before and after DSN-assisted target 

recycling, sequences of oligonucleotides used in this study, and optomagnetic spectra for 

the stability study performed in FBS. 
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