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Abstract

Laser printing with a spatial light modulator (SLM) has several advantages over

conventional raster-writing and dot-matrix display (DMD) writing: multiple pixel ex-

posure, high power endurance and existing software for computer generated holograms

(CGH). We present a technique for the design and manufacturing of plasmonic meta-

surfaces based on ultrafast laser printing with an SLM. As a proof of principle, we

have used this technique to laser print a plasmonic metalens as well as high resolution

plasmonic color decorations. The high throughput holographic resonant laser printing

(HRLP) approach enables on-demand mass-production of customized metasurfaces.
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The emerging Internet of Things 1 stimulates the development of new sensor technology,

which requires cost-efficient, compact, and light-weight optical components. Such ultra-thin

optical elements, of thickness comparable to the wavelength of light and even below, are

achievable with optical metasurfaces:2–20 Lithographically defined, spatially varying arrays

of sub-wavelength dielectric or metallic elements that can control the propagation of elec-

tromagnetic radiation. In particular, metasurfaces have the capability of manipulating the

phase, amplitude and polarization of light. Recent research reports on metallic as well as

dielectric or hybrid metasurfaces with diffraction-limited focusing, sub-wavelength resolution

imaging and for total control of reflected or transmitted light. In this paper, we present a

flexible and up-scalable method for laser printing of flat optical components in prefabricated

metasurfaces, extending the concepts of plasmonic colours21–25 and ink-free color laser print-

ing in metallic (plasmonic)26,27 and dielectric metasurfaces,28 which can be manufactured by

production-grade methods29 and laser reshaping and even ablation30–35 to provide control

over plasmonic colors.

In our previous work26,28 on resonant laser printing (RLP) we obtained a world record

laser printing resolution beyond 127, 000DPI by raster scanning a focused laser beam across

the metasurface to re-shape a single nano-scale metasurface element, or unit cell, at a time.

As a new paradigm, holographic laser post-processing at the unit cell level is hereby in-

troduced and used to inscribe local metasurface functionalities, i.e., beyond the control of

color for e.g., high-density information storage or security marking purposes.23 In order to

advance the writing speed, the laser beam is reflected on a holographic SLM (LCOS-SLM

X10468) to generate and translate multiple foci (800×600 pixels), and expose 128×128 unit

cells in 100ms. In this way, we improve writing speeds by orders of magnitude. SLMs are

widely used for ultra-fast 3D laser micro-machining,36 known as holographic femtosecond

laser processing37 and laser-lithography.38 As a proof of concept for the effectivness of our

approach, we demonstrate holographic resonant laser printing (HRLP) of various flat optics

components such as Fresnel zone plate (FZP) lenses with nearly diffraction-limited focus-
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ing and axicons in plasmonic metasurfaces comprising a CMOS compatible approach with

ultrathin aluminum (Al) films.39,40 We also use the technique for single-exposure writing of

plasmonic color images. Our results open a new avenue for manufacture of small series or

individualized products by laser post-processing of components that are volume manufac-

tured with a common optical metasurface template. The laser post-processing method also

allows for individual alignment of optical elements on complex, or assembled components —

e.g., plastic sensor chips, as well as trimming of the optical elements even at the metasurface

unit-cell level.41,42

Taking advantage of plasmon-enhanced light-matter interactions,43 we laser-post-process

Al metasurfaces with morphology-dependent resonances. Strong plasmonic absorption un-

der pulsed laser irradiation locally elevates the temperature in a very short time scale

(1 ns), where rapid photo-thermal melting/sintering of the metal allows for morphology

changes26,31,43,44 with associated spatially modification of transmittance. With the exci-

tation of the surface plasmon resonances, the plasmon-enhanced photo-thermal melting en-

sures that the writing process only takes place at the plasmonic metasurface within the focal

plane, causing a strong heat power confined at the interface and thus decreases the power

consumption. To avoid the need for tedious and time consuming scanning procedures we

have developed the approach of HRLP, in which an image is being projected on a uniform

array of metasurfaces. It is the spatial variation of this image, generated by an SLM and

projected onto the metasurface plane, which controls the individual final shape of each and

every metal disk, allowing the implementation of various flat optics devices and decoration

effects.

The FZP45–47 represents one particular class of flat, thin optical lenses, where the intensity

and/or the phase of the transmitted light is spatially modulated by concentric ring zones to

focus the light at a given distance away from the substrate. There are two classifications

of FZPs, based on either amplitude or phase modulation. Clearly, one can also implement

a hybrid type of FZP, where both the amplitude and the phase are spatially modulated.
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In all cases, the periodicity of the rings is becoming shorter towards the periphery such

that the FZP supports higher diffraction angles needed for the focusing of optical rays far

from the optical axis. A binary amplitude FZP, as demonstrated by Li et al.,46 comprises

a sequence of transparent and opaque, concentric ring zones. A binary phase FZP45 can

be fabricated by etching or adding the concentric ring zones of an optically transparent

material, whereby the optical thickness, and thereby the phase of the transmitted light

is modulated spatially. The phase-based FZP provides higher diffraction efficiency. An

adaptive FZP reported by Wang et al.47 utilizes laser-induced heating in a phase-changing

material. To define the concentric ring zones, the contrast in dielectric properties is obtained

by switching between an amorphous state and multiple metastable cubic crystalline states

by use of a short high-density laser pulse. Hereby, we demonstrate experimentally a laser

printed ultrathin FZP within plasmonic metasurfaces. Figure 1(a) shows a schematic of

a transmissive plasmonic FZP fabricated by RLP. The building elements of the ultra-thin

FZP are prefabricated plasmonic nano-resonators, which are subsequently laser re-configured.

Space-variant metasurfaces can be constructed from plasmonic resonators either for focusing,

Fig. 1(b), or for other types of beam manipulations, e.g., the construction of axicons which

are typically used to form nondiffractive Bessel beams, Fig. 1(c). The HRLP technology is

employed to spatially modify the transmittance of the plasmonic metasurfaces. In contrast to

many previous designs, our FZP is only 50 nanometer (approx. one-tenth of the wavelength)

thick and can potentially be mass-produced.

In plasmon-assisted laser printing, pulsed-laser irradiation generates transient thermal

power in the plasmonic structures which in turn modifies the spectroscopic transmission

patterns by melting and reshaping the structures. As illustrated in Fig. 2a, we developed

a mask-free RLP technology to pattern plasmonic resonant metasurfaces with a superior

resolution. This technology uses a pulsed laser (1 ns pulse duration) with an on-resonance

frequency (corresponding to a wavelength of 532 nm) and related apparatus to control the

intensity of the pulse trains, the 3D motion of the samples and diffraction-limited focusing of
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Figure 1: (a) Illustration of laser printed flat optics. (b) Schematics of a FZP and (c) an
axicon lens made by an ultrathin patterned layer of plasmonic nanostructures.

the laser spot. As a result, different plasmonic resonances arise depending on the laser pulse

energy density, which in turn leads to different transmittances as well as an on-resonance

phase change. The RLP technique here was extended to an HRLP technique which is

developed as a flexible and single shot post-writing technology for flat optics, where rapid

melting of a ∼ 100×100 µm2 area allows for surface-energy-driven morphology changes with

associated modification of amplitude, phase and polarization of the reflected, transmitted

and scattered light over each individual element of the plasmonic metasurfaces. Fig. 2b

shows the transmitted amplitude control of an axicon lens which is conducted by our HRLP

technique.

To manipulate the strength of the transmittance we controlled intensity of optical pulses,

while preserve their repetition rate, typically at 1 kHz. We achieved a diffraction limited

resolution of printing using a lens with a numerical aperture (NA) of 0.85 and a magnification

of 50× (Fig. 2a). When applying the HRLP to a plasmonic metasurface with a resonance

located at 600 nm, the resonant transmittance peak of the printed area blueshifts from 600 nm
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Figure 2: (a) schematic setup and laser printing of the ultrathin lens on optical metasur-
faces. (b) Amplitude contrast presented by the transmission difference between the printed
and non-printed zones. The transmitted signals are normalized and taken under a white-
light illumination. (c) Experimental transmittance spectra of the printed zones which are
printed with different laser intensities. For clarity, the spectra have been stacked with a
+0.1 displacement. (d) Corresponding absolute transmittance at the wavelength of 532 nm
under different printing power which are read from (c) (indicated by the dashed red line). (e)
Simulated transmittance spectra for laser modulated metasurfaces. For clarity, the spectra
have been stacked with a +0.1 displacement. (f) Normalized electric field distribution of the
original plasmonic nanostructure at a 532 nm excitation.
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to 500 nm, which results in the contrast in the transmission images as in Fig. 2b. The proof

of concept experiments were relayed on a plasmonic metasurface formated by depositing

a thin film (20 nm) of aluminum on top of an array of dielectric (OrmoComp, microresist

technology GmbH, Berlin, Germany) pillars with a height of 30 nm, a radius of 45 nm and a

periodicity of 200 nm. The transmittance of the printed areas was measured by an imaging

spectrometer with a grating of 300 lines/mm (Andor Shamrock 303i and Newton 920 CCD

camera). Results due to white-light illumination are shown in Fig. 2c. Gradually tuning

the laser intensity upon printing, we demonstrated the manipulation of the transmittance at

a certain wavelength (e.g., 532 nm). As shown in Fig. 2d, more than 2 times transmission

contrast between the pristine and printed samples can be achieved with laser pulses of a

couple of µJs.

Following previous works,26,28 we used a simplified model of the complex thermodynamic

phase transition. By sweeping the thickness (from 20 nm to 45 nm with a 5 nm step, as

illustrated in the right of Fig. 2e) of round-cornered disks (to the final spherical shape),

while preserving the overall initial material volume of the disks in simulations, the plasmonic

peak varies from 600 nm to 450 nm (Fig. 2e). For the transmittance, the result also matches

the resonance induced enhanced transmitted signal in Fig. 2d. The substantial increasing

of the transmittance at 532 nm is attributed to the fact that the melted disks together with

the underneath holes support a strong hybridized plasmonic resonance.27 The excitation of

that resonance arouses the extraordinary optical transmission which is now well-known to

be due to the interaction of the light with electronic resonances in the surface of the metal

film,48 as shown in Fig. 2f. It should be mentioned that we used a simplified model of the

complex thermodynamic phase transition. In Fig. 2c, the peaks are seen in the experimental

spectra for the highest laser intensities. This can be attributed to the further laser-induced

modification of the structure, leading to multiple resonances as well as the extra peaks in

the transmittance spectra.

Holographic resonant laser printing with an SLM has several advantages over conventional
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raster-writing49 and dot-matrix display (DMD) writing: multiple pixel exposure, high power

endurance and existing convenience for computer generated holograms (CGH), see also the

supplementary information. Fig. 3(a) shows the optical setup that has been used for the

HRLP. Briefly, the beam emerging from a frequency-doubled Nd:YAG laser is expanded,

and its intensity is controlled via a polarized beam splitter and a half waveplate. Next, light

is impinging on the SLM, and the desired hologram is being created. Finally, the image of

the hologram is projected onto the back aperture plane of a microscope objective. In the

focal plane of the microscope objective, a Fourier transform of the image is being created

and this desired light distribution is interacting with the metasurface pattern. Fig. 3(b)

and (c) show the concept of laser printed flat optics, illustrated by the writing of a Fresnel

zone plate (FZP) in a plasmonic template constituted by hybridized nanodisk and nanohole

arrays, initially developed for plasmonic colors,27 and now available through mass-production

techniques.29 Because of advantages of HRLP, most of the current commercial lasers can

provide the needed power even for laser printing with hi-res SLMs, for instance, the 4K SLM

with 3840×2160 pixels (EXULUS-4K1, Thorlabs), which will highly improve the uniformity

of exposed patterns.

To realize easy-to-fabricate ultra-thin flat FZPs, we implemented the HRLP by an SLM

providing 800× 600 pixels, where the laser intensity is varying dynamically in space. Fig. 4a

shows a printed plasmonic metasurface optical component (100µm in width) with an opti-

mized transmission contrast serving as a focusing lens. While classic silica lenses are several

millimeters thick, the plasmonic FZP features a 50 nm functional layer of Al disk-hole struc-

tures. Fig. 4b shows a scanning electron microscopy (SEM) image of a part of the fabricated

FZP with exposed and unexposed areas of outermost rings composed of dense plasmonic ele-

ments. Typical hologram from SLM achieves diffraction pattern in the first diffraction order.

The remaining light intensity is mostly located in the zero-diffraction order, which results

in the defects in HRLP. In order to avoid this zeroth peak from the SLM, one can adjust

the focus positions and transform the original on-axis diffractive images into off-axis ones by
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Figure 3: (a) Optical configuration for single-shot laser printing with the aid of a spatial
light modulator (SLM). We used a half-wave plate and a beam splitter (BS) to continuously
modulate the laser pulse energy when printing. Beam expanders (B1 and B2) were employed
to match the spot size onto the SLM window. Several lenses (L1 to L4) are used to generate
and recover the Fourier plane at the end-surfaces, as well as to ensure full coverage of
the aperture of the microscope objective. Inset shows a SEM image of a representative
plasmonic metasurface. Scale bar: 500 nm. (b) and (c) Concept of laser printed flat optics,
here illustrated by the writing of a Fresnel zone plate (FZP) in a plasmonic template.
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combining a blazed grating or a FZP in the original CGH patterns. However, the method to

spatially separate the undesired zeroth order from the first order has disadvantages, such as

the geometric distortions, the beam aberrations and the decreasing of the printing energy.

In this work, the original CGH is used as a proof-of-concept method for HRLP. Noted that

the light transmitted from the defect consists a very small portion of the light at the focal

point when considering the size.
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Figure 4: (a) Microscopic image of a fabricated FZP. Scale bar: 20µm. (b) SEM image
of a selected region (red box) in (a) which shows both the printed and unprinted areas.
Scale bar: 2µm. (c) Experimentally obtained image of the focused plane under a 532 nm
laser illumination. (d) Fitted experimental focal field intensity for laser illumination with
wavelength of 532 nm by integrating the intensity signals in a radial manner, which results
in (a) . (e) Measured beam intensity profile of the FZP in the axial direction around the
focal point. The intensity (I) along the center of focal beam is plotted along the z axis.
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When illuminated with a coherent plane wave at a wavelength of 532 nm, the printed FZP

creates a highly symmetric focal spot at a distance of 258µm, as shown in Fig. 4c. Note

that the experimental focal distance is slightly shorter than the theoretical design (300µm),

which probably originates from limited fabrication precision while performing the pixelized

Fourier transformation within the SLM. Fig. 4d shows a diffraction-limited (λ/2NA) full-

width at half-maximum (FWHM) of about 1.5µm by integrating the intensity signals in a

radial manner of the focal spot. In addition, we also measured the beam intensity profile of

the FZP in the axial direction around the focal point (Fig. 4e). It should be mentioned that

the long-working-distance flat lens may play a role in applications such as optofluidics50 or

optical trapping.51
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Figure 5: (a) Microscopic images of a fabricated FZP and (b) an axicon on plasmonic
metasurface fabricated by DUV lithography. Scale bar: 20µm. (c) Experimentally obtained
images of the focused plane via the corresponding FZP and (d) axicon under a 635 nm laser
illumination. (e,f) Graphics printed by holographic laser beam reconstructions with the
SLM.

Because of its full flexibility, large-scale capability and direct one-step process, HRLP
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may revolutionize the conventional product chain for optical systems and has the potential to

commercialize the integrated optoelectronic system with printed flat optics. To demonstrate

the diversity of our technology and its strength for end-products, we next relax the extreme

conditions of this method. Plasmonic metasurfaces made by deep-UV stepper lithography (a

main-steam industrial manufacturing tool) were also fabricated and subsequently employed

and HRLP-patterned with other functional flat optical components. When illuminated with

a coherent plane-wave light beam at a 635 nm wavelength, laser printed metasurface optical

components serving as a lens (Fig. 5a, see also in the Supplementary information) and

an axicon (Fig. 5b) create a single focal spot (Fig. 5c) and a nondiffractive Bessel beam

(Fig. 5d), respectively. Moreover, the laser printing on plasmonic colored metasurfaces with

spatial wave shaping by the SLM is also immediately applicable for more efficient plasmonic

color printing. Fig, 5e and 5f present graphics in red printed by holographic laser beam

reconstructions. It is worthy to emphasize that the results further reveal the strength of

HRLP for flat optics, high definition and ink-free color printing and with a potential for

future functional metasurfaces.

To sum up, as a superior alternative to using state-of-the-art and costly fabrication tech-

nologies, we demonstrate that HRLP, which is realized by applying opto-thermal modification

of individual nanoscale elements, combined with holographic projection of an image pattern

using an SLM, is a powerful tool for the fabrication of ultrathin flat optics within plasmonic

metasurfaces. Ultra-thin flat FZPs and axicons capable of generating diffraction-limited fo-

cal spots and nondiffractive Bessel beams are achieved with the HRLP process. The concept

of HRLP makes the meta-optics closer to reality by providing a path for mass-production

and ready-for-applications technique. This may pave the way of ultrathin flat optics into

consumer products in everyday life.
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