

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Oct 26, 2019

Implementing Resource-aware Multicast Forwarding in Software Defined Networks

Poderys, Justas; Sunny, Anjusha; Soler, José

Published in:
Proceedings of the 6th World Conference on Information Systems and Technologies (WorldCist'18)

Link to article, DOI:
10.1007/978-3-319-77712-2_29

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Poderys, J., Sunny, A., & Soler, J. (2018). Implementing Resource-aware Multicast Forwarding in Software
Defined Networks. In Á. R. (Ed.), Proceedings of the 6th World Conference on Information Systems and
Technologies (WorldCist'18) (pp. 299-308). Springer. Advances in Intelligent Systems and Computing
https://doi.org/10.1007/978-3-319-77712-2_29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/154332722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-77712-2_29
https://orbit.dtu.dk/en/publications/implementing-resourceaware-multicast-forwarding-in-software-defined-networks(8acc372d-e98c-43dd-8a1e-7654b3050bc6).html
https://doi.org/10.1007/978-3-319-77712-2_29

Implementing Resource-aware Multicast
Forwarding in Software Defined Networks

Justas Poderys1, Anjusha Sunny2, and Jose Soler1

Department of Photonics Engineering,
Technical University of Denmark,

Kongens Lyngby, Denmark
1{juspo, joss}@fotonik.dtu.dk,

2s150896@student.dtu.dk

Abstract. Using multicast data transmissions, data can be efficiently
distributed to a high number of network users. However, in order to ef-
ficiently stream multimedia using multicast communication, multicast
routing protocols must have knowledge of all network links and their
available bandwidth. In Software Defined Networks (SDN), all this infor-
mation is available in a centralized entity - SDN network. This work pro-
poses to utilize the SDN paradigm to perform network-resources aware
multicast data routing in the SDN controller. In a prototype implementa-
tion, multicast data is routed using a modified Edmonds-Karp algorithm,
by taking into account network topology and links load information. This
paper presents the algorithm, implementation details, and an analysis of
the testing results.

Keywords: multicasting, SDN, Edmonds-Karp Algorithm

1 Introduction

Streaming television delivery is a core part of a triple-play offering (data, tele-
phony and television) by telecommunication operators. Streaming services re-
quire low delay data transmission with specific bandwidth requirements known
in advance [4]. Since data-delivery service guarantees are highly desirable for
these applications, streaming multimedia data paths should be engineered by
taking into account network bandwidth, jitter, packet loss, and delay [7].

The use of unicast data delivery for streaming services consumes a large
amount of network bandwidth resources. This can be mitigated with the in-
troduction of multicast streaming. Multicast communication allows to deliver
information to multiple receivers while consuming less network bandwidth than
unicast communication. In multicast communication, the network infrastructure
is used to duplicate data whenever required. Thus, it is possible to send data to
all the interested receivers in a single transmission.

The emerging Software Defined Networking (SDN) paradigm promises to
provide better network resource management, traffic control, and application
classification in order to design an efficient Quality-of-Service (QoS)-aware data

2 Justas Poderys et al.

routing mechanism [3]. SDN uses a centralized control plane which is separated
from the data plane. The SDN controller’s global visibility of the network con-
tributes to a better information for the routing algorithms, which aids to build
optimal data routing trees [5].

The work presented here describes an implementation of network-resources
aware multicast data routing in a SDN network. In the prototype implementa-
tion, the SDN controller computes the best paths for multicast data flows that
meet the QoS requirements of the traffic transmitting applications. This is done
by using the information available to the SDN controller about the different
network parameters such as network’s topology, links capacity and load.

2 Related Work

Several different algorithms have been proposed to find an optimal routing for
the multicast packets in SDN. A summary of the previous works focusing on an
efficient routing of multicast data in SDN is listed below.

A proposal for a reliable multicast tree, Recover-aware Steiner Tree (RST)
has been described in [11] for reliable multicast routing in SDN. The RST min-
imizes the tree and recovery costs. Here, the tree cost refers to the total cost of
sending data along all edges of the tree. Finding the RST is NP-Hard. To solve
the RST, a k-approximation algorithm, recover average edge reduction algorithm
could be deployed in the SDN controller to minimize the tree and recovery costs
[11].

A routing model for multicast data in SDN networks with segment routing
has been proposed in [12] which ensures that the data is routed along feasi-
ble paths with service guarantees. The paper focuses on building a bandwidth-
efficient multicast routing tree for the requests of the multicast group which
minimizes the likelihood of rejecting the traffic requirements and increases the
network throughput. It also proposes an algorithm which considers the residual
bandwidth, node loading, link criticality, and scalability.

An SDN based multicast algorithm has been proposed in [5], that enables
multicast in data center switches. The paper proposes the AvRA routing algo-
rithm [5], which attempts to minimize the size of the routing tree of the multicast
group for data center topologies. It tries to find the shortest path to the existing
tree node rather than finding the shortest path from the multicast server to the
receiver.

Research on implementation of load-balancing and multicast routing algo-
rithms based on the extended Dijkstras algorithm for SDN is presented in [6]. In
the proposal, clients send data to the Virtual IP address which is an IP address
that does not correspond to an actual physical network interface. The requests
are forwarded to one of several servers. Here the load balancing algorithm routes
the request to the nearest server whose link-load is below the predefined thresh-
old value. The multicast routing algorithm is based on the multicast tree con-
struction algorithm which uses the extended Dijkstras algorithm for a multicast
data routing.

Resource-aware Multicast in SDN 3

3 Background

3.1 Multicast data delivery

Multicast is a group-based data distribution method. In IP networks, data trans-
mitted to the multicast group address is delivered to all registered members of the
group. Multicast groups are uniquely identified using class-D IP addresses [2]. In
IP networks, multicast data delivery is implemented using two sets of protocols
described in the following.

The first set of protocols is used by hosts to manage the membership of the
groups. Internet Group Management Protocol [2] (IGMP) is used to manage
the membership of the multicast groups in IPv4 networks and the Multicast
Listener Discovery [13] (MLD) protocol is used to manage the membership of
the multicast groups in IPv6 networks. When a host wants to join, query or
leave a multicast group, it sends an IGMP or MLD message which is processed
by the first-hop router on the sending host’s network.

The second set of protocols is used to forward multicast data between the
routers. Protocols in this group can implement full routing protocol functionality,
like DVMRP, or MP-BGP [10]. Alternatively, multicast routing protocols can
utilize information maintained by interior gateway protocol for multicast data
delivery, like the family of Protocol Independent Multicast protocols [3, 10].

3.2 SDN and OpenFlow

Software Defined Networking (SDN) is a network paradigm allowing dynamic
network management with by decoupling data and control planes. An SDN net-
work consists of data-plane devices (switches), and a central network entity im-
plementing the control-function - an SDN controller.

SDN data-plane devices (SDN switches) operate by matching every received
packet to a set of rules maintained in the SDN switch, by the SDN controller.
If the received packet does not match any of the rules, the packet is forwarded
to the SDN controller for processing. Upon processing the packet, the controller
can choose to install new rules in the SDN switches that will be used for the
subsequent packets. Typically, SDN switches communicate with the controller
using the OpenFlow protocol.

4 Solution Design and Implementation

Centralization of network functions in the SDN controller allows to significantly
reduce the complexity of multicast data delivery. By performing multicast data
routing in the SDN controller, the whole set of distributed protocols can be elim-
inated from the network. For example, consider the network shown in Fig. 1.A,
consisting of 4 routers and 2 hosts. In this network, all routers run instances of
a multicast routing protocol. Furthermore, routers connecting user hosts to the
network must run protocols used to join and leave multicast groups.

4 Justas Poderys et al.

Client

protocols

Multicast routing

protocols

Client

protocols

Client

protocols

Client

protocols

OF

switch

SDN

Controller

A)

B)

Fig. 1. Multicast implementation comparison between conventional and SDN-based
networks.

The same network using OF switches and a centralized controller is shown
in Fig. 1.B. In this network, OF switches forward all group joining or leaving
messages received from the user hosts to the SDN controller for processing. The
SDN controller processes these membership messages by updating the member-
ship lists of the groups. It additionally creates and installs flow rules used to
forward data to the multicast group members, as required.

In addition to reducing the protocol overhead in the network, using a central-
ized entity to manage the network allows to implement network resources-aware
multicast routing. As the SDN controller has full and up-to-date information
about the network topology and link speeds, this information can be used to
improve routing decisions. Specifically, multicast groups in the proposed SDN
network can be assigned with a reserved bandwidth value. These values later can
be used to route multicast data flows in an optimal way. The exact method used
to route multicast data flows with respect to available bandwidth is described
in the next section.

Centralizing multicast data routing in a single network entity (SDN con-
troller) requires special consideration regarding the controller’s availability. In
case of a controller failure, the described system would still be able to route mul-
ticast data. However, no new members would be able to join, and data-paths
would not be reconfigured after network topology changes.

To increase the SDN controller’s availability, multiple controllers can be run
in parallel, utilizing different active/standby strategies[8]. The ONOS controller
used in this work supports running in a cluster mode[1]. When multiple ONOS
controllers run in a cluster mode, they maintain a single synchronized view

Resource-aware Multicast in SDN 5

of the network. Running multiple controllers in a cluster allows increasing the
availability and OpenFlow messages processing capacity, compared to running
a single controller. Furthermore, as all controllers work using a shared network
view, failure of a single controller in a cluster does not affect the remaining
controllers.

4.1 Dimensioning Multicast flows

Dimensioning of traffic flows refer to the process of installing flows in a way that
bandwidth constraints (if any) are met. ONOS SDN controller is using Dijkstras
Shortest Path First (SPF) algorithm to dimension flows multiple-destination
flows. By definition, the SPF protocol finds paths having the lowest number
of intermediate hops (OpenFlow (OF) switches). Such approach is not always
suitable when dimensioning multicast data flows that have specific bandwidth
requirements. In order to dimension flows with respect to the required and avail-
able bandwidth a different approach is needed.

One possible way to perform resources-aware dimensioning is to use a maxi-
mum flow algorithm. Given the topology of a network and its link capacities, a
maximum flow algorithm returns a path from source to destination that has the
maximum available capacity. Among the best known maximum flow algorithms
are Ford-Fulkerson algorithm, Edmonds-Karp algorithm, King, Rao, Tarjan’s
(KRT) algorithm and other. This work uses a modified Edmonds-Karp (EK)
algorithm to find the best path for multicast flows following the protocol de-
scribed in [9]. The choice of the algorithm was motivated primarily by the faster
algorithm run-time and the ready availability of software libraries implementing
it.

The full algorithm to build the multicast data distribution tree is shown
in listing 1 below, and works as follows. Given the source node and a list of
receiver nodes, run the EK algorithm using the network’s topology to find a
maximum-flow from the source to each destination. Use the available bandwidth
of each link in the network as a corresponding edge weight. In case EK algorithm
produces more than one path between the source and destination nodes having
identical maximum-flow, use a path with a lower hops count. To produce the
final multicast tree, superimpose the paths produced by the EK algorithm. In
the current implementation, it is done by appending a list with edges from all
maximum-flow paths and removing duplicates.

In order for the algorithm to run successfully, it must have information about
network topology and available link resources. ONOS controller tracks this in-
formation by using the Topology Store and Resources Service. Furthermore, the
resources service was extended to track the allocated resources in addition to
the overall capacity of the link. The execution of the algorithm was triggered
by changes in topology or group membership events. The topology event is trig-
gered when the SDN controller detects that new devices or links are added to the
network. Similarly, a group change event is triggered when the IGMP message
informing about change in group membership is processed by the SDN controller.

6 Justas Poderys et al.

1 Function buildMcastTree(source, destinations[])
Data: The source and a list of destination nodes/vertices
Result: mcastTreeEdges - a list of multicast tree edges

2 foreach dest in destinations do
3 candidates ← EdmondKarps(source, dest, NetworkTopo, EdgeWeights);
4 if num(candidates) == 1 then
5 mcastTreeEdges←candidates;
6 else
7 mcastTreeEdges←min(candidates.hop count);

8 end
9 RemoveDuplicates(mcastTreeEdges)

10 end

Algorithm 1: Resource-aware multicast tree building algorithm.

5 Performance Evaluation

In order to test the functioning and performance of the proposed system, a
virtual testing environment was used having the following configuration. The
network was implemented using Mininet network emulator. OF switches were
implemented using Open vSwitch (v. 2.0.2) software. Open Network Operating
System (ONOS) (v. 1.5) was used as a SDN controller. Multicast data delivery
and reception were performed by streaming a video recording using VideoLAN
(VLC) software.

5.1 Testing Strategy

The network topology shown in Fig. 2 was used for testing. The test network
consisted of six OF switches (SW1-6), two streaming servers (SRV1-2), and six
hosts used to receive the multicast video streams (H1-6). The topology and band-
width of the links between the OF switches was chosen specifically to illustrate
various features of the algorithm. The configuration of the multicast groups used
in testing is shown in Table 1.

Table 1. Multicast group parameters used in testing.

Gr. Group IP Source Clients Bandwidth constrain

1 239.5.2.1 SRV1 H1, H2 2.5 Mbps
2 239.5.2.2 SRV2 H3, H4 2 Mbps
3 239.5.2.3 SRV1 H5, H6 2.5 Mbps

It is important to note, that tests described here were intended to show
the correct functioning of the algorithm and hence used only a small number
of nodes. Any wide-scale deployment would require further load testing with a

Resource-aware Multicast in SDN 7

higher number of devices. The performance of any wide-scale deployment would
be affected by three factors: the rate of users arrival and departures, the fre-
quency of network topology changes, and the number of controllers process-
ing above-mentioned events. Users arrival and departure requires only a minor
change in the forwarding table of the switch users are connected to. A special
case, when all users connected to the same switch leaves, requires an extra flows
pruning step in the upstream switch. The performance impact of network topol-
ogy change and how topology change events can be processed in parallel are left
for future work. However, such network topology change events should not occur
frequently.

Implementation testing followed three different scenarios. In the first scenario,
flows were created using the ONOS built-in point-to-multipoint intent framework
utilizing the SPF algorithm. The second scenario repeated the test using the
proposed multicast-routing algorithm. Finally, the third scenario utilized the
proposed multicast routing algorithm in the same network. However, in the third
scenario, two paths with equal number of hops were available to deliver multicast
data to all receivers.

SW1 SW2

SW3

SW4

SW5

SW6

SRV1 SRV2

H1

H2

H3 H4 H5 H6

100 Mbps

4 Mbps 60 Mbps
25 Mbps

15 Mbps20 Mbps

14 Mbps

Fig. 2. Test network topology. Multimedia streaming was performed from servers SRV1
and SRV2 to clients H1-H6. Numbers next to the links indicate the link’s bandwidth.

5.2 Flow Selection Results

Scenario 1. The first test used ONOS built-in path creation method using the
SPF algorithm. After both clients (H1 and H2) joined the multicast group, the
resulting data path for the group was: SRV1-SW1-SW5-{H1, H2}. Subsequently,

8 Justas Poderys et al.

the remaining two clients (H3 and H4) joined the second multicast group. The
resulting data path was: SRV2-SW1-SW5-{H3, H4}. As expected, the SPF algo-
rithm ignored the link capacities constrain and routed both pats via the smallest
number of intermediate switch hops.

Scenario 2. The second test used a modified EK algorithm to set-up the mul-
ticast data paths. After members of the first group joined the multicast group,
the resulting data path was: SRV1-SW1-SW5-{H1, H2}. Subsequently, clients H3
and H4 joined the second group. The path created for the multicast data was:
SRV2-SW1-SW2-SW4-SW5-{H3, H4}. Here, it can be seen that the link SW1-SW5

was not used by the second data path. This was expected, as the available
bandwidth after provisioning the first group was 1.5 Mbps. Furthermore, the
algorithm did not select the SW1-SW3-SW6-SW4 path, even though it had higher
available bandwidth (15 Mbps). This shows, that the algorithm ranks all the
feasible paths and selects the one with the lowest number of intermediate hops.

Scenario 3. The third test used the modified EK algorithm as in the second
test. In this test, clients H5 and H6 joined the third multicast group. Two paths,
each having 3 hops, were available for the controller: SW1-SW5-SW4 with 4 Mbps
available, and SW1-SW2-SW4 with 14 Mbps available. As the second path had a
higher available bandwidth, it was the chosen path by the controller.

5.3 Flow Setup Time

The replacement of the path setup algorithm can increase the complexity and
the run-time of the algorithm. Hence, the average flow setup time using the SPF
and modified EK algorithms was measured using the following procedure. The
ONOS controller creates flows in a reactive way: when a packet arrives at an OF
switch and there is no flow matching that the packet, the packet is sent to the
controller. After inspecting the packet, the controller setups the required path
and resends the packet.

The flow setup time was measured by observing the time difference between
the time when the first packet in a flow was sent and received by the destination
host. As all virtual hosts performing the test were running on the same physical
server, the timestamps could be compared directly. Table 2 shows the average
flow setup times in the test network observed over 10 tests.

Table 2. Flow setup times

Num. Algorithm Flow Setup Time, ms

1 Shortest Path First 16.0
2 Modified Edmonds-Karp 28.9

As expected, due to the higher algorithm complexity, the flow setup time
using the modified EK algorithm is longer than using the SPF algorithm.

Resource-aware Multicast in SDN 9

6 Conclusions

Implementing multicast data communication with resource-aware data rout-
ing is not a trivial task. This paper presents a prototype implementation of
resources-aware data routing in SDN networks by using a modified Edmonds-
Karp algorithm. By implementing multicast routing algorithm in the SDN con-
troller, routing decisions can take into account up-to-date information about
network topology and links load. This allows reducing the protocol overhead
in the network and route data using the optimal data-path. The implemented
algorithm has worse run-time complexity compared to the default routing algo-
rithm (Shortest Path first). However, a longer run-time allows the algorithm to
perform resources-aware routing - a key requirement for high quality streaming
multimedia delivery.

References

1. Introducing ONOS - a SDN network operating system for service
providers (2014). URL http://onosproject.org/wp-content/uploads/2014/
11/Whitepaper-ONOS-final.pdf. Accessed: 2017-09-01

2. Deering, S.: Host extensions for IP multicasting. RFC 1112 (Internet Standard)
(1989). DOI 10.17487/RFC1112. URL https://www.rfc-editor.org/rfc/rfc1112.txt.
Updated by RFC 2236

3. Fenner, B., Handley, M., Holbrook, H., Kouvelas, I., Parekh, R., Zhang, Z., Zheng,
L.: Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specifica-
tion (Revised). RFC 7761 (Internet Standard) (2016). DOI 10.17487/RFC7761.
URL https://www.rfc-editor.org/rfc/rfc7761.txt

4. Huang, L., Zhi, X., Gao, Q., Kausar, S., Zheng, S.: Design and implementation
of multicast routing system over SDN and sFlow. In: Communication Software
and Networks (ICCSN), 2016 8th IEEE International Conference on, pp. 524–529.
IEEE (2016)

5. Iyer, A., Kumar, P., Mann, V.: Avalanche: Data center multicast using software
defined networking. In: Communication Systems and Networks (COMSNETS),
2014 Sixth International Conference on, pp. 1–8. IEEE (2014)

6. Jiang, J.R., Yahya, W., Ananta, M.T.: Load balancing and multicasting using the
extended dijkstra’s algorithm in software defined networking. In: ICS, pp. 2123–
2132 (2014)

7. Kenyon, T.: Data networks: routing, security, and performance optimization. Dig-
ital Press (2002)

8. Lee, B., Park, S.H., Shin, J., Yang, S.: Iris: the openflow-based recursive sdn con-
troller. In: Advanced Communication Technology (ICACT), 2014 16th Interna-
tional Conference on, pp. 1227–1231. IEEE (2014)

9. Mallick, K.K., Khan, A.R., Ahmed, M.M., Arefin, M.S., Uddin, M.S.: Modified
EDMONDS-KARP algorithm to solve maximum flow problems. Open Journal of
Applied Science 6, 131–140 (2016)

10. Savola, P.: Overview of the Internet Multicast Routing Architecture. RFC 5110
(Informational) (2008). DOI 10.17487/RFC5110. URL https://www.rfc-editor.
org/rfc/rfc5110.txt

10 Justas Poderys et al.

11. Shen, S.H., Huang, L.H., Yang, D.N., Chen, W.T.: Reliable multicast routing
for software-defined networks. In: Computer Communications (INFOCOM), 2015
IEEE Conference on, pp. 181–189. IEEE (2015)

12. Sheu, J.P., Chen, Y.C.: A scalable and bandwidth-efficient multicast algorithm
based on segment routing in software-defined networking. In: Communications
(ICC), 2017 IEEE International Conference on, pp. 1–6. IEEE (2017)

13. Vida, R., Costa, L.: Multicast Listener Discovery Version 2 (MLDv2) for IPv6.
RFC 3810 (Proposed Standard) (2004). DOI 10.17487/RFC3810. URL https:
//www.rfc-editor.org/rfc/rfc3810.txt. Updated by RFC 4604

