Technical University of Denmark

A preliminary study on replication and quality correlation of on-part and on-runner polymer injection moulded micro features

Giannekas, Nikolaos; Tosello, Guido; Zhang, Yang

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Giannekas, N., Tosello, G., & Zhang, Y. (2017). A preliminary study on replication and quality correlation of onpart and on-runner polymer injection moulded micro features. Poster session presented at Polymer Replication on Nanoscale 2017, Aachen, Germany.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A preliminary study on replication and quality correlation of on-part and on-runner polymer injection moulded micro features N. Giannekas, G. Tosello, Y. Zhang

Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet, Building 427A, Kgs. Lyngby, DK-2800, Denmark

Abstract

Injection molding is increasingly gaining place in manufacturing of polymer components as is can ensure a cost efficient production with short cycle times. To ensure the quality of the produced parts and the stability of the process it is essential to perform frequent metrological inspections. In contrast to injection moulding's short cycle time, a metrological quality control can require a significant amount of time. The late detection of the problem can result to high losses and scrap rate. This work presents an alternative approach to process monitoring and part quality control with fast off/in-line metrology of physical part quality indicators ("Product Fingerprint"). The proposed approach is based on the concept of metrology applied to dedicated micro pillar features, positioned on the runners, similar or equal to those in the part in order to access the quality of the produced plastic parts. A designed experiment was employed to map the experimental space and quantify the pillars replication depending on position and processing parameter combinations. The pillars were assessed and the main effects of the processing parameters, were calculated to reveal that the effects of process parameter changes were similar in all measurement positions.

Objectives and geometry

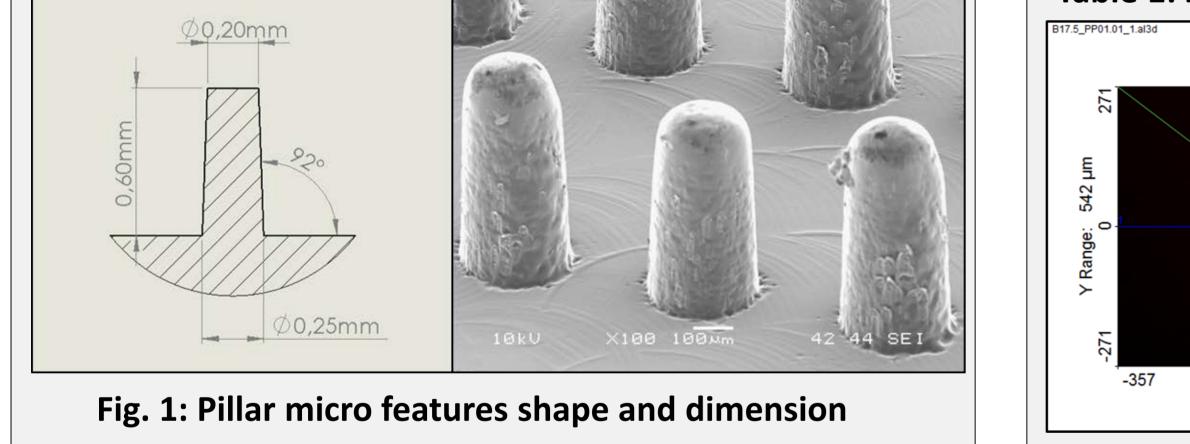
- Objective \Rightarrow To study the replication and quality correlation of on-part and on-runner polymer injection moulded micro pillar features
 - Increase quality of pillars ⇔ better products and process stability
 - Correlate quality on part and runner reduction of metrological effort

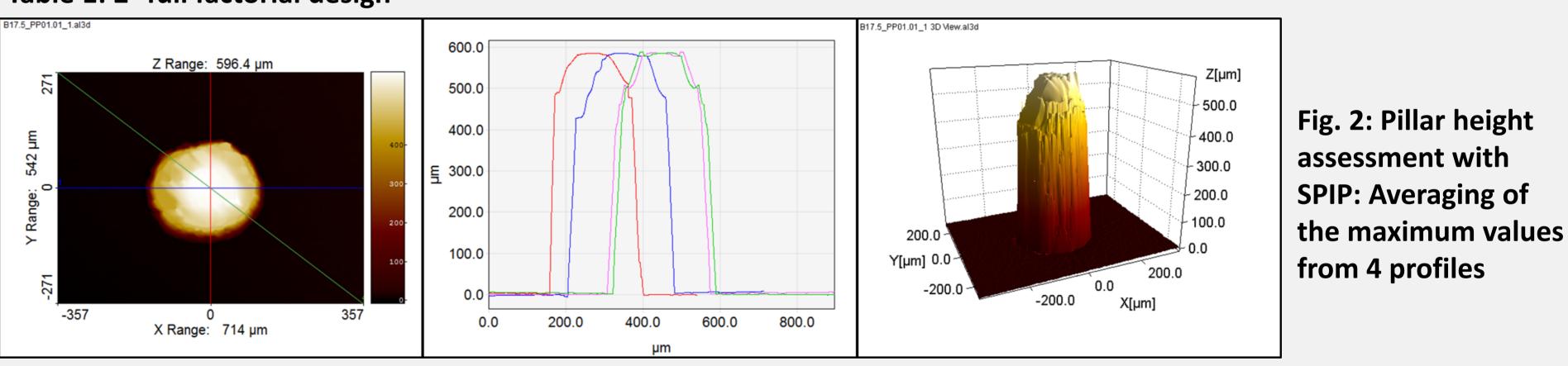
•Tablet biochip $20 \times 20 \times 2mm^3$ geometry

• Key injection molding parameters

- \Rightarrow Melt temperature
- \Rightarrow Injection speed
- \Rightarrow Mould temperature
- \Rightarrow Packing Pressure
- •Key geometry parameters
 - \Rightarrow Pillar position

Experimental set-up


- Design of Experiments (DOE) technique was employed
- 2⁴ full factorial design (Table 1) in ABS material
 - Melt temperature
 - Mould temperature \Rightarrow 40°C, 60 °C
 - Injection speed
 - Packing pressure
- \Rightarrow 100 mm/s, 140 mm/s \Rightarrow 440 bar, 540 bar


 \Rightarrow 220°C, 260 °C

- •4 measurement positions for each part
 - 3 pillars per position- 4 profiles per pillar
- ●Alicona (infinite focus): focus variation microscope ⇔
 - Constant scanning settings:
 - Objective x20
 - \bullet Scanning area of 714 \times 542 μm^2
 - Centered on pillar center
 - Vertical resolution of 299 nm
 - Lateral resolution of 2,93 μm

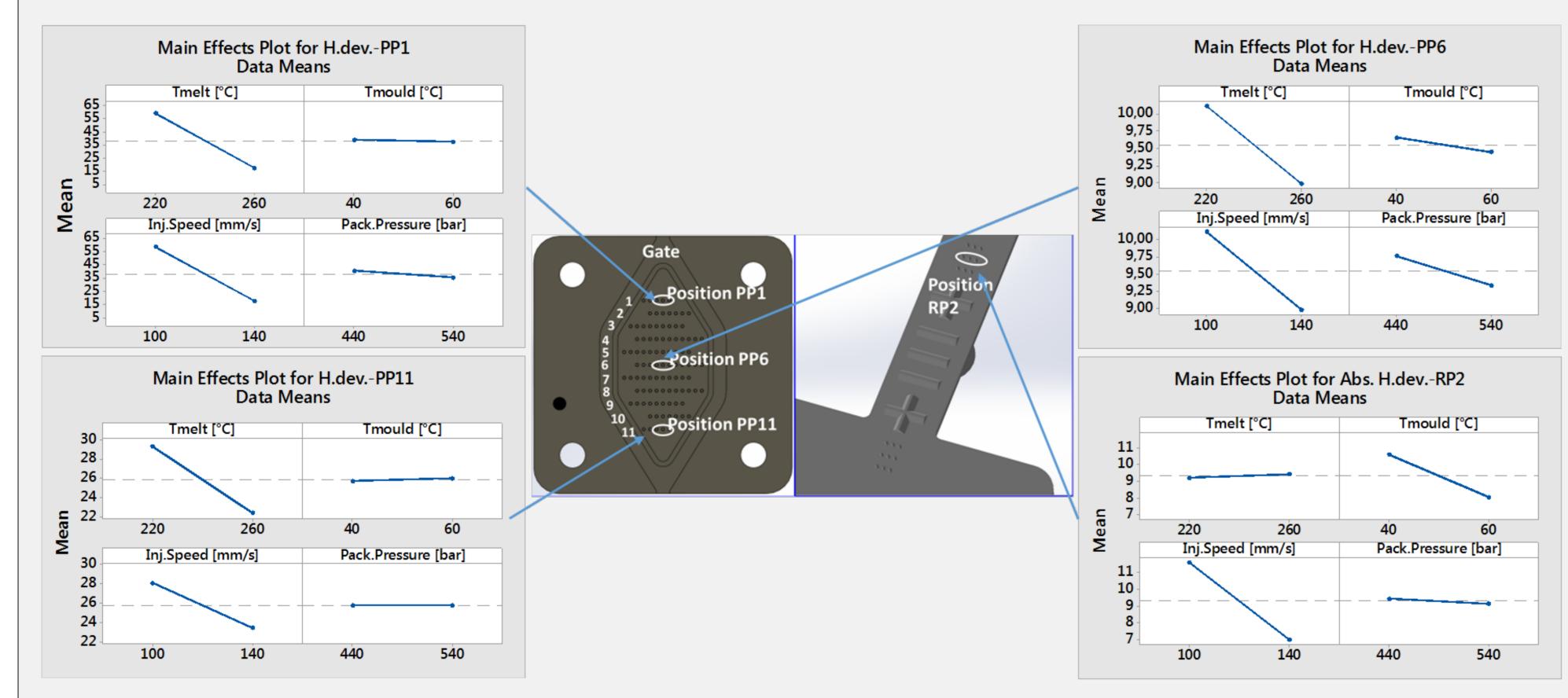

Experimental Run No#															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
220	260	220	260	220	260	220	260	220	260	220	260	220	260	220	260
40	40	60	60	40	40	60	60	40	40	60	60	40	40	60	60
100	100	100	100	140	140	140	140	100	100	100	100	140	140	140	140
440	440	440	440	440	440	440	440	540	540	540	540	540	540	540	540
	220 40 100	220 260 40 40 100 100	220260220404060100100100	22026022026040406060100100100100	123452202602202602204040606040100100100100140	123456220260220260220260404060604040100100100100140	123456722026022026022026022040406060404060100100100140140140	123456782202602202602202602202604040606040406060100100100140140140140	123456789220260220260220260220260220404060604040606040100100100140140140140140	1234567891022026022026022026022026022026040406060404060604040100100100140140140140140100	12345678910112202602202602202602202602202602204040606040406060404060100100100140140140140100100100	123456789101112220260220260220260220260220260220260404060604040606040406060100100100140140140140100100100100	12345678910111213220260220260220260220260220260220260220404060604060604040606040100100100140140140140100100100100140	1234567891011121314220260220260220260220260220260220260220260404060604040606040404060604040100100100140140140140140100100100140140	123456789101112131415220260200 </td

 Table 1: 2⁴ full factorial design

Effects of process conditions and position on pillar height replication

Conclusions

A designed experiment was employed to map the process window and quantify the pillars replication depending on position and process conditions in each run. The replication of the pillars was evaluated and the effects of the processing parameters were calculated to reveal that the effects of process parameter changes were similar in all measurement positions; It is indicated that the proposed approach can be used to assess part quality based on offpart/on-runner micro features.

Fig. 3: Influence of injection speed, packing pressure, melt (Tmelt) and mould (Tmould) temperature on pillar heights depending on measurement positions. High melt temperature results to better pillar replication, beside position RP2 (runner) were the parameter causes opposite effects, though in smaller magnitude. Injection speed has the next biggest effect with the same effect behaviour to be present in all positions, producing better replicated features.

Acknowledgements

This paper reports work undertaken within the framework of the project MADE (Manufacturing Academy of Denmark). MADE is a collaborative research project supported both by the industrial partners and by the Innovation Fund.

References

[1]M. Calaon, "Process chain validation in micro and nano replication," PhD Thesis, Technical University of Denmark. Department of Mechanical Engineering, 2014.
[2]R. X. Gao, X. Tang, G. Gordon, and D. O. Kazmer, "Online product quality monitoring through in-process measurement," CIRP Ann. - Manuf. Technol., vol. 63, pp. 493–496, 2014.
[3]D. Kusić, T. Kek, J. M. Slabe, R. Svečko, and J. Grum, "The impact of process parameters on test specimen deviations and their correlation with AE signals captured during the injection moulding cycle," Polym. Test., vol. 32, no. 3, pp. 583–593, 2013.