Technical University of Denmark

99Tc measurement with matrix-assisted low energy AMS

Zhao, X.-L.; Cornett, R.J.; Hou, Xiaolin; Kieser, W.E.

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Zhao, X-L., Cornett, R. J., Hou, X., & Kieser, W. E. (2017). 99Tc measurement with matrix-assisted low energy AMS. Abstract from 14th International Conference on Accelerator Mass Spectrometry, Ottawa, Canada.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Abstract ID: 225 Track classification: NIM

⁹⁹Tc measurement with matrix-assisted low energy AMS

A renewed study of Tc and Ru fluoride anion formation in a Cs sputter source has confirmed an earlier observation that the relative yields of RuF_n^- are very dependent on the sputter target matrix composition. The yield of RuF_5^- can be suppressed relative to TcF_5^- with the presence in a PbF₂-based sputter target of certain elements, some strongly as in the case of Nb and some modestly as in the case of Fe. This provides an opportunity for ⁹⁹Tc to be detected by low energy AMS using ⁹⁹TcF₅⁻ with the assistance of a carefully composed matrix to form the sputter target. Depending on the Ru content in a sample and the effort to reduce it during sample preparation, best detection limits of ≤ 5 fg ⁹⁹Tc per mg FeO_xH_y precipitate were indicated so far, using targets made of (⁹⁹Tc)FeO_xH_y+PbF₂ (~1:10 by weight). In preliminary linearity tests with the detection of +4 ions in the final ionization chamber, the determination of ⁹⁹Tc concentration within a FeO_xH_y precipitate was shown possible with ~15% uncertainty. The quantification was made simply by the average count rate of ⁹⁹Tc subtracting that of ⁹⁹Ru (measured as 0.748 times that of the isobar-free ¹⁰¹Ru), over an hour long time under steady sputtering conditions. This quantification method avoids the normalization difficulties due to the lack of a stable Tc isotope; it is similar to ICP-MS except that with AMS it is a 'solid-state solution' that is placed into a Cs sputter ion source. This method has the potential for analyzing ⁹⁹Tc in Arctic seawater samples using ≤ 2 L volume sizes.

Dr. ZHAO, X.-L. (University of Ottawa); Co-author(s): Prof. CORNETT, R. J. (University of Ottawa); Prof. HOU, X.-L. (Technical University of Denmark); Prof. KIESER, W. E. (University of Ottawa)
