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ABSTRACT 

La
3+

 and mixed-rare earth magnetic chitosan beads (MCLB and MCLRB) were 

successfully prepared for fluoride removal, respectively. The adsorbents were 

characterized by scanning electron microscope and magnetic response. Batch 

experiments were carried out to investigate the adsorbent performance based on the 

influence of various factors such as adsorbent dosage, contact time, initial solution pH 

and co-existing anions on the fluoride adsorption. Results showed that MCLB and 

MCLRB followed the pseudo-second-order kinetic model with the correlation 

coefficient value of 0.9925 and 0.9985 respectively. The adsorption process was 

mainly chemical adsorption. The isotherm data was well fitted both Langmuir model 

and Freundlich model. The adsorption capacity of the adsorbents were 20.53 and 

22.35 mg/g respectively. The optimum pH value for fluoride ion removal was 5.0. 

The effects of co-existing anions on the fluoride sorption followed the decreasing 

order of CO3
2-

>HCO3
-
>SO4

2-
>NO3

-
>Cl

-
. Fluoride adsorption on MCLB and MCLRB 

could be attributed to ion exchange between fluoride and -OH groups with the Fe-O 

coordinate bond promotion. Our study revealed that MCLB and MCLRB performed 

strong adsorption capacity for fluoride ion. In particularly, MCLRB could be a more 

cost-effective adsorbent to remove fluoride from aqueous solution. 

Keywords: La
3+

; mixed rare earth; magnetic chitosan; fluoride removal 
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1. Introduction 

Fluoride has been reported to be beneficial for calcification of dental enamel and 

maintenance of healthy bones in human body at the concentration ranginge from 0.5 

to 1.5 mg/L, but it is considered to be a hazard when it exceeds 1.5 mg/L in drinking 

water. The WHO guideline on fluoride in drinking water also sets the permissible 

limit of 1.5 mg/L (0.079 mM) [1]. Currently, the occurrence of fluoride in drinking 

water is a worldwide problem and has attracted more and more attentions [2,3]. High 

fluoride concentration has been found in the ground waters, particularly in parts of 

India, China, Central Africa and South America [3]. Thus, many studies on 

defluorination were performed to remove the excess of fluoride effectively from 

drinking water [4]. 

Numerous treatment methods, including adsorption, ion exchange, precipitation, 

membrane and electro-dialysis, have been researched [5]. Among these methods, 

adsorption was found to be more suitable and effective for the defluoridation from 

drinking water due to its simplicity and selectivity [6, 7]. Furthermore, adsorbents for 

fluoride removal have also been in development, such as carbon nanotubes [8], 

La
3+

-impregnated cross-linked gelatin [9], aluminum-impregnated carbon [10], 

magnetic-chitosan particle [11] and mixed rare earth oxides [12]. Besides these 

absorbents, the biosorption method of fluoride removal can be also effectively utilized. 

It obtains the advantages of low cost, less chemical and/or biological sludge to be 

disposed of. As far as we know, the material of chitosan is N-deacetylated derivative 

of chitin, which is non-toxic, biodegradable and biocompatible. Large amounts of 
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chitosan derivatives have been used for defluorination, such as Al- Fe(III) chitosan 

hydrogel [13], Zr(IV)-chitosan [14], Ce(III)-chitosan [15], and lanthanum-chitosan 

[16]. Furthermore, rare earth ions have strong tendencies to dissociate OH groups into 

hydroxyl ions because of their relatively small ionic potential and strong basicity, 

which results in a promising ability for fluoride adsorption from water [17]. In our 

previous study, we have discussed a novel fluoride adsorbent with mixed rare earths 

modified chitosan which had a better ability for fluoride adsorption and even more 

cheaper than lanthanum modified chitosan.[18]. But this adsorbent is not easy to 

separate from water system after the adsorption process. 

It has been reported that magnetic particle adsorbents can be developed for 

bio-separation and removal ions from aqueous solutions with excellent and 

controllable properties. Meanwhile, the magnetic particle can be easily and simply 

separated by the external magnetic field. According to the report, Ma et al. [19] 

synthesized and performed lanthanum immobilized magnetic-chitosan in powder form 

for fluoride adsorption from drinking water. The results showed lanthanum modified 

magnetic-chitosan could effectively improve the adsorption capacity. Meanwhile the 

material was easily separated, and reused after fluoride adsorption. While, for all we 

know, the flake form of chitosan is less stable, it can produce significant pressure drop, 

and affect filtration [20]. K. Fujiwara et al. researched to modify chitosan with various 

crosslinking agents to the form of chitosan beads or resin in the prepared methods 

[21]. However, little information has been reported on lanthanum or mixed rare earths 

modified chitosan for fluoride adsorption. 
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In this present work, lanthanum or mixed rare earths modified chitosan beads 

(MCLB and MCLRB) were prepared by inverse suspension method for the first time. 

Besides, the effects of key operation parameters, such as pH, contact time, initial 

concentration of fluoride, coexisting anions on fluoride removal, were also 

investigated in this study. In addition, the adsorption isotherm and adsorption kinetics 

were carried out to evaluate the fluoride adsorption process by MCLB and MCLRB. 

Furthermore, the fluoride removal mechanism was revealed and proposed in this 

work. 

2. Materials and methods 

2.1. Materials 

Chitosan (5.1×10
5
 Da viscosity average molecular weight, 5.4% deacetylated) was 

purchased from Shandong Hecreat marine bio-tech Co., Ltd. (Qingdao, China). Acetic 

acid, NaF (as the source of F
-
), liquid paraffin, glutaraldehyde, dithiocarbamate, 

FeSO4·7H2O, Fe2 (SO4)3·xH2O, La (NO3)3 and all the other reagents used in this 

experiment were of analytical grade and conducted without any further purification. 

The mixed rare earths contain several elements, such as La, Ce, Pr, and Sm with La 

(3823.0 mg/kg) and Ce (788.43 mg/kg) as the major elements [18]. Deionized 

distilled water (18.2 MΩ, Millipore) was used throughout the whole study.  

2.2. Preparation of Magnetic iron oxide synthesis 

Fe3O4 was synthesized by the chemical co-precipitation of ferric and ferrous ions 

under the alkaline condition of the water. In details, 7.396 g Fe2(SO4)3
-
·xH2O was 

dissolved in 50 mL deionized water at 40 
o
C, and 5.0 g FeSO4·7H2O was added to 
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prevent the oxidation of Fe
2+

. The obtained black precipitates, i.e., Fe3O4, were 

washed with deionized water three times, and then collected and heated in air for 3 h 

at 150 
o
C. The brown powder was collected after magnetic separation and kept away 

from light before using [22]. 

2.3. Preparation of MCLB and MCLRB 

MCLB and MCLRB were synthesized, according to our previous reported paper 

with a bit of modifications [23]. The preparation scheme of MCLB as similar as 

MCLRB was shown in Fig. 1. Briefly, 100.0 g of chitosan was added to the 

lanthanum nitrate solution (100 mL, 1.0 g/mL) and blended for 3 h. Then, the 

resulting solution was added to 100 mL acetic acid solution (4 vol.%), and kept for 24 

h. Next, liquid paraffin was added to form a dispersion phase. Formaldehyde and 

glutaraldehyde were added as crosslinking agents with the γ- Fe2O3 added at the same 

time. The reaction was continued for 4 h. Finally, the mixture was filtered and washed 

three times by acetone, ethanol, and distilled water in sequence. MCLRB was 

synthesized the same as the MCLB, in which lanthanum nitrate was replaced by the 

rare earth with high content of La
3+

. 

2.4. Characterization of MCLB 

2.4.1. SEM-EDX and BET analysis 

Scanning electron microscope (SEM) (JEOL, JXA-840A) was taken to analyze 

the surface structure and morphology of the MCLB and MCLRB. In addition, the 

energy dispersive X-ray (EDX) was taken to determine the elemental composition of 

the surface after F
-
 adsorption at a voltage of ∼10 keV [24]. 
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The microstructure of the MCLB and MCLRB was further characterized by 

Brunauer-Emmett-Teller (BET) analysis. The BET surface area and average pore 

diameter analysis were tested using gas adsorption surface area and pore size analyzer 

(NOVA 1000e, Quantachrome Ins.) respectively according to the BET equation. 

2.4.2. Hysteresis loop of MCLB 

In this study, a small magnet was performed to observe the magnetic response 

between two sample bottles which were filled with magnetic adsorbents previously. In 

addition, the magnetic properties were characterized by superconducting quantum 

interference device (SQUID) magnetometer (MPMS-XL-7). 10.0 mg of dried powder 

was placed in the device, measured at an applied field of 5000 G over the temperature 

ranginge from 4 K to 300 K, and measured again after coating with a lens wiping 

paper [25].  

2.5. Batch adsorption experiments 

Batch fluoride experiments were carried out in 50 mL Erlenmeyer flasks. 0.1 g 

adsorbent and 10 mg/L F
-
 aqueous solution was added up to the volume of 50.0 mL. 

The pH of aqueous solution was adjusted from 5.0 to 9.0 by adding 1.0 mol/L NaOH 

or 1.0 mol/L HCl aqueous solution and measured with a pH meter  (Delta 320, 

Mettler-toledo). The batch experiments were carried out at a constant temperature for 

24 h. After adsorption equilibration, the adsorbent was separated by filtration. The F
-
 

concentration in the filtrate was determined by the method of F
-
 selective electrode. 

The adsorption capacity of adsorbent for F
-
 was calculated through the expression as 

Eq. (1) [26]:  
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W

VC-C
q 0

e




）（
                                                     (1) 

where qe is the adsorption capacity of the adsorbents (mg/g); C0 and C are the 

concentrations of F
-
 in the initial and equilibrium solution (mg/L), respectively; V is 

the volume of F
-
 aqueous solution (L) and W is the weight of dry beads (g). 

2.6. Regeneration and stability of MCLB and MCLRB 

0.1 g of MCLB and MCLRB was mixed into 50 mL 10 mg/L F
-
 solution reacting 

at 30 
o
C for 2 h, and then soaked in 0.5 mol/L sodium hydroxide solution for 12 h and 

rinsed with distilled water until neutral, drying to obtain the regeneration of 

defluoridators. The adsorption desorption regeneration was repeated for 7 times and 

the fluoride concentration in the solution was measured.  

2.7. Data accuracy 

Each F
-
 adsorption experiment was conducted in triplicate so as to obtain 

reproducible results with an error of less than 5%, and the original F
-
 solution (control) 

was used in all the analysis. The residual F
-
 concentration in the aqueous phase was 

analyzed. 

2.8. Statistic analysis 

The statistical analysis of the data was performed with Tukey’s 

multiplecomparison test using a statistical package program Minitab 16 (Minitab Inc., 

State College, PA, USA). Significant differences were accepted at P < 0.05. 

3. Results and discussion 

3.1. SEM-EDX and BET analysis 

The surface morphology of MCLB and MCLRB were illustrated in Fig.2 (a-d). It 
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was clear to see that the surfaces of adsorbents were spherical (Fig. 2a and Fig. 2 c), 

smooth, and porosity (Fig. 2b and Fig. 2 d), which increased the specific surface area 

of adsorbents and the adsorption capacity on fluoride ion [27]. As shown in Fig.3, the 

energy dispersive X-ray (EDX) analysis spectrum of MCLRB after fluoride ion 

adsorption, there was an obvious content of fluoride ion in the EDX spectrum after 

fluoride adsorption, which illustrated MCLRB was an efficient adsorbent for fluoride 

ion adsorption [28]. The surface area and average pore diameter for MCLB and 

MCLRB were shown in Table 1. MCLRB illustrated higher surface area compared to 

MCLB and they had similar mean pore diameter. Obviously, MCLRB showed more 

attractive advantages, and its uptake capacity would be higher due to its adsorption 

sites. 

3.3. Characterization of magnetic beads of adsorbents 

The magnetic analysis of adsorbents was shown in Fig.3. Both the adsorbents 

could be absorbed to the bottle walls of the magnetic field instantly, which 

demonstrated that they had strong magnetic responsiveness to the magnetic field. 

Thus they could be separated from aqueous solution quickly. The magnitude of the 

saturation magnetization of MCLB was around 5.17 emu/g, but MCLRB was 

9.90 emu/g. MCLRB with 9.90 emu/g was also much higher than MCH with 6.0 

emu/g [21]. Furthermore, the weak hysteresis phenomenon for MCLB and MCLRB 

suggested that the resultant MCLB and MCLRB were nearly super paramagnetic [25, 

29]. 

3.4. Adsorption fluoride ion on different adsorbents 
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   As shown in Fig. 5, the F
-
 adsorption capacities on CTS  and MCB (magnetic 

chitosan beads) were increased significantly (P < 0.05) after modification by La
3+

, 

especially rare earth modified of magnetic chitosan beads. The adsorption capacity of 

F
-
 on CTS and MCB were 0.10, 1.63 mg/g, respectively. Surprisingly, it was  

increased to be 3.52, 3.80 mg/g with MCLB and MCLRB, separately. These results 

suggested that La
3+

 and mixed rare earth played a key role in adsorption process of F
-
. 

3..5 Effect of pH on fluoride ion adsorption 

The effect of pH on fluoride ion sorption plays an important role in the adsorption 

of fluoride ion at the adsorbent-water interface and was related to the pHzpc (the pH 

point of zero charge) of the adsorbents [30]. Thus, the F
-
 adsorption onto both  

MCLB and MCLRB were performed at five different pH levels of 5.0, 6.0, 7.0, 8.0 

and 9.0 by keeping other parameters such as contact time and initial fluoride ion 

concentration the same. Fig. 6 displayed that the maximum adsorption capacity was 

recorded at pH 5.0, and then showed a decrease within the range of pH 5.0-9.0, which 

was in accordance with the previous work [29]. The fluoride adsorption of MCLRB 

was higher than MCLB, which was similar to our previous report. With the increase 

of pH, the OH
-
 concentration in the aqueous solution was increased. And then OH

-
 

could compete with F
-
 for the adsorption sites on the surface of adsorbents, which 

lead to a decline of the F
-
 adsorption capacity [30]. The adsorption of F

-
 onto 

adsorbents were achieved with the anion exchange between OH
-
 and F

-
. In addition, 

Lewis acid-base interaction could also play an important role in the adsorption 

process mentioned above [31]. According to the literatures [32, 33], fluoride 
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adsorbents were performed under pH 5.0~7.0, which demonstrated that F
-
 adsorbents 

could be utilized under pH 7.0.  

Chitosan (CTS) and its derivatives are usually cationic organic polymer 

adsorbents. Under acidic conditions, the negative charge of heavy metal ions 

decreases, which leads to the decrease of neutralization capacity. Under alkaline 

conditions, the negative charge of the solution is increased, but the adsorbent 

molecule contains amide group, which is partly hydrolyzed to carboxyl after 

alkalization, and the adsorption is decreased. In particular, MCLRB was more 

effective to adsorb F
-
 from Fig. 6 , thus it was promising to be utilized in the future. 

This result obtained was similar to our previous report [18]. Hence, all subsequent 

studies could be conducted with neutral aqueous solution. 

3.6. Effect of the presence of co-anions 

In the practical application, the F
- 

contaminated water or aqueous solution 

contains other coexisting anions, which can compete with F
- 
in the adsorption process 

[34]. The concentration of common anions was 200 mg/L with reference to the 

national standard of groundwater quality (GB/T14848-93). The adsorption 

experiments were carried out in the presence of 200 mg/L salt solutions of SO4
2-

, 

CO3
2-

, NO3
-
, Cl

-
, and HCO3

-
, separately. Results were displayed in Fig. 7. The 

existence of these anions had a negative effect on the adsorption of F
-
. The presence 

of Cl
-
 decreased the adsorption capacity onto MCLB and MCLRB from 3.16, 3.67 

mg/g to 2.65, 3.44 mg/g, respectively, which indicated that Cl
-
 had less influence of 

adsorption. However, CO3
2-

 decreased F
- 
adsorption capacity significantly, the same as 
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HCO3
-
, which indicating that CO3

2-
 and HCO3

-
 showed an adverse effect on the F

-
 

adsorption process [35]. This phenomenon could be explained that the coexistence 

anions could compete the F
- 
adsorption sites on the surface of adsorbents [36]. In 

addition, increasing the concentration of CO3
2-

 and HCO3
-
 could raise the pH of the 

aqueous solution. Hence, F
-
 adsorption capacity onto adsorbents decreased, 

significantly [37]. 

3.7. Effect of contact time on fluoride ion adsorption 

The effect of contact time on F
-
 adsorption was shown in Fig. 8, the adsorption 

studies were performed for contact time ranging from 10 to 500 min. It was clear that 

the adsorption capacity of F
- 
onto adsorbents increased with an increasing of contact 

time and reached adsorption equilibrium at approximately 120 min. The adsorption 

process could be divide into two stages, an initial rapid stage where adsorption was 

quick to equilibrium uptake. It was illustrated the fast adsorption was achieved in a 

short time [38], and second stage was slower due to the total metal adsorption sites 

being really small. It could be interpreted as the gradual adsorption stage where 

intraparticle diffusion controls the adsorption rate until the adsorption sites reach 

equilibrium finally [39]. After 120 min, the change of adsorption capacity was not 

obvious. As a result, this time was chosen for the further adsorption experiments. 

In the case of F
-
, the time dependent adsorption data at 30 °C was analyzed by 

two different adsorption kinetic models such as the pseudo-first-order model  and 

pseudo-second-order model [40].  

The linear form of pseudo-first-order mode is given as [41]: 
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303.2

tK
log)log( 1 ete qqq                                            (2) 

where qe is the equilibrium adsorption capacity (mg/g); qt is the adsorption 

capacity of t (mg/g); K1 is the rate constant of the pseudo-first order kinetic equation 

(min
-1

).  

The calculated values K1, qe and correlation coefficients (R
2
) of typical 

pseudo-first-order model at 30 °C are listed in Table 2. 

The pseudo-second order kinetic model equation is expressed as Eq. (3) [42]: 

eet q

t

qKq

t


2

2

1                                                     (3) 

In this equation, K2 is the rate constant of the pseudo-second order kinetic 

equation (min
-1

) and the other parameters are consistent with the first order kinetic 

parameters. 

Based on the data of Fig. 8, plots of t/qt versus t for the adsorption of F
-
 were 

obtained and shown in Fig. 9. The pseudo-first-order and pseudo-second-order kinetic 

model rate constants for adsorption of F
-
 were summarized and displayed in Table 2. 

From Table 2, the calculated R
2
 from pseudo-first-order kinetic model was much 

lower than that of pseudo-second-order kinetic model. This result demonstrated that F
-
 

adsorption onto adsorbents was better expressed by pseudo-second-order kinetic 

model than pseudo-first-order kinetic model. In particular, MCLRB was better 

described than MCLB. The pseudo-second-order kinetic model assumed that chemical 

adsorption should be the rate-limiting step in the adsorption process [43]. In addition, 

the data of initial adsorption rate illustrated that the F
-
 adsorption onto MCLRB was 

faster than MCLB. 
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3.8. Effect of concentration on fluoride ion adsorption 

In this study, the effect of initial F
-
 concentration on the adsorption capacity of 

MCLB and MCLRB were carried out by adding 0.1 g adsorbent into 25 ml aqueous 

solution at 30 °C, separately. The results were shown in Fig. 10. It was clear that the 

F
-
 adsorption capacity onto adsorbents increased when increasing the initial 

concentration of F
-
 in the aqueous solution. This result was consistent with the 

reported study on adsorption of F
- 

from aqueous solution [14]. Furthermore, the 

adsorption isotherm study was evaluated by Langmuir adsorption isotherm model and 

Freundlich adsorption isotherm model. 

Langmuir adsorption isotherm model assumes that the homogenous adsorption 

occurs on a monolayer surface coverage, and no interaction exists between the 

adsorbed species. The linearized Langmuir equation is expressed in Eq. (4) and (5) 

[44]: 

eL

eL
e

CK

CKQ
q




1

max
                                                 (4) 

maxmax

111

QCKQq eLe

                                               (5) 

where qe (mg/g) is the equilibrium adsorption capacity (mg/g); Ce is the 

concentrations of fluoride in the equilibrium solution (mg/L); Qmax (mg/g) is the 

saturated adsorption capacity and KL (L/mg) is the Langmuir adsorption constant, 

which related to the free energy of adsorption. 

The Freundlich isotherm assuming an exponentially decaying adsorption site 

energy distribution and applicable to non-ideal adsorption on heterogeneous surfaces 

showing multi-layer adsorption is written as Eq. (6) [45]: 
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Fee KC
n

q lglg
1

lg                                               (6)  

where qe is the amount of fluoride adsorbed (mg/g) at equilibrium, Ce (mg/L) is 

the final concentration at equilibrium, KF is the Freundlich adsorption constant [(mg/g) 

(mg/L)
1/n

], n is Freundlich constants relatedto adsorption capacity and heterogeneity 

factor, respectively. K2 and n values could be calculated from the intercept and slope 

of the linear plot between log Ce and log qe. 

The isotherm constants and correlation coefficients (R
2
) for linear Langmuir and 

Freundlich equations were given in Table 3. Based on the R
2 

values, the Freundlich 

isotherm model was better to show R
2 

values than the Langmuir model. The 

Freundlich isotherm model for adsorption of F
-
 onto MCLB and MCLRB were 

presented in Fig. 11, the straight lines of plots indicated that the adsorption processes 

of all cases could be well described by Freundlich isotherm model. This implied the 

multi-layer adsorption of F
- 

onto homogeneous active sites on the surface of the 

MCLB and MCLRB.  Besides, the maximum adsorption capacities of MCLB and 

MCLRB for F
-
 removal were estimated to be 20.53 mg/g, 22.35 mg/g, respectively. It 

suggested that in this temperature MCLRB was an efficient adsorbent for F
-
 removal 

in this temperature. This might be due to the stronger interaction between F
-
 and the 

surface components of the MCLRB, and the Fe-O could also promote F
-
 moving 

towards the surface of MCLRB.  

In particular, the essential properties of Langmuir isotherm model could be 

expressed in terms of dimensionless constant separation factor RL, which is performed 

to predict when an adsorption system is ‘unfavorable’, ‘favorable’, ‘irreversible’ or 
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‘linear’. The separation factor RL is expressed as Eq. (7). 

01

1

CK
R

b

L


                                                   (7) 

where RL refers to the favorability and the capacity of the adsorbent/adsorbate 

system, C0 (mg/L) is the initial F
-
 concentration and Kb (L/mmol) is the Langmuir 

adsorption equilibrium constant. The RL value is classified as RL>1, 0<RL<1, RL=0, 

and RL=1, which suggests that the adsorption was unfavorable, favorable, irreversible 

and linear, separately. In this study, both MCLB and MCLRB, the RL values were all 

between 0 and 1 for F
-
 removal, which indicated that the uptake of F

-
 onto adsorbents 

were favorable.  

3.9. Adsorption thermodynamics 

According to Henry's law, the activity coefficient remains constant in a low 

concentration solution. The thermodynamic parameters of the adsorption process can 

be calculated by the following formula: 

G
o
=-RTlnKc                                                                          (8) 

lnKc=
R

ΔS 0
-
RT

H 0
                                               (9) 

where R is the gas constant, T is the temperature and Kc is the equilibrium 

constant. The initial fluorine concentration is 200 mg/L, and the thermodynamic 

parameters were as follows: ΔG0＜0, indicating that the adsorption of fluoride ions 

was a spontaneous process, and ΔH0 was 7.89 kJ/mol (Table 4), which showed that 

adsorption of fluorine ions was endothermic process. According to the theory of 

adsorption for solid-liquid adsorption, solute molecules from the liquid phase to the 
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solid-liquid interface exchange will lose a degree of freedom, leading to the decrease 

of entropy, ΔS0＜0 in line with the theory. 

3.10. Measurement of released elements into solution at various pH 

The release of elements under different pH conditions was shown in Fig. 12. 

When pH was 5, the lanthanum ion was released most, and with the increase of pH, 

the concentration of lanthanum ion in the solution decreased slowly. This was because 

when pH was lower, the hydrogen ion increased, and it was easy to be protonated. 

The hydrogen ion affected the adsorption ability of rare earth ions on chitosan, and 

the concentration of lanthanum ion in solution was higher. 

3.11. Regeneration and stability 

The study on the regeneration of fluoride removal agent can help explain the 

recycling performance of the adsorbents. The application of MCLB and MCLRB are 

to be desorbed and reused. As shown in Fig. 13, MCLB and MCLRB could be reused 

several times after adsorption. The regeneration effect on MCLRB was better than 

that of MCLB. After several times of regeneration, the adsorption of F
-
 still had good 

adsorption ability. The adsorption performance was stable. 

3.12. Adsorption mechanism 

Lanthanum rare earth ions had better affinity to F
-
 and coordinated with it to form 

a stable complex [46]. La
3+ 

has a hydrolysis reaction in water and get hydration 

coordination rare earth ions La(H2O)
2+

. Under above conditions, the pH is about 

4.0~4.5 in water. When chitosan is suspended in the above water system of La(H2O)
2+

 

then the amino groups will be protonated. The chitosan and La(H2O)
2+  

coordinate to 
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be MCLB containing Fe-O coordinate bond eventually. The same as MCLRB, which 

contained the majority elements of La
3+ 

rare eaths modified-magnetic chitosan beads. 

Fe-O coordinate bond could promote F
-
 to move towards the surface of adsorbents 

adsorption sites. F
-
 replaced the group of -OH which belonged to Ln (H2O) n-m (OH) 

m (n-2), and had an ion exchange. Therefore, the adsorption mechanism of MCLB, 

similar to MCLRB, was proposed and shown in Fig. 14.  

4. Conclusion  

La
3+

 and mixed rare earths with high content of La
3+

 modified magnetic chitosan 

beads (MCLB and MCLRB) were synthesized successfully to adsorbe F
-
 from 

aqueous solution. Adsorption kinetics experiment demonstrated that the adsorption 

equilibrium were reached within 120 min. A better F
-
 adsorption capacity obtained at 

low pH (5.0~7.0). The maximum adsorption capacity of 20.53 mg/g, 22.35 mg/g were 

achieved at pH 7.0 with the contacting time of 120 min, which outperformed 

numerous reported literatures. The presence of CO3
2-

 and HCO3
-
 reduced 

defluoridation capacity of adsorbents, while SO4
2-

, NO3
-
, and Cl

- 
 showed slight 

effect. The SEM-EDX and magnetic responsiveness showed that both MCLB and 

MCLRB were efficient adsorbents for F
-
 adsorption. In addition, EDX illustrated 

MCLRB could adsorb F
- 

effectively from aqueous solution. The mechanism was 

considered to be ligand exchange between F
-
 and -OH in which Fe-O was also 

involved to promote F
-
 onto the adsorption sites. Results of this study suggested that 

MCLB and MCLRB are useful fluoride adsorbents. In particular, MCLRB is more 

effective and low-cost adsorbent to removal F
-
 from aqueous solution when compare 
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with MCLB. 
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Figure captions 

Fig. 1 Preparation procedure scheme of magnetic chitosan beads loaded La
3+

 or 

mixed-rare earths for fluoride ion removal. 

Fig. 2 SEM micrographs of MCLB: (a) SEM image (× 1500), (b) SEM image (×100, 

000); MCLRB: (c) SEM image (×1500), (d) SEM image (×100, 000). 

Fig. 3 EDX micrographs of MCLRB after fluoride absorption. 

Fig. 4 Magnetic hysteresis loop of MCLB and MCLRB. 

Fig. 5 Fluoride adsorption capacity of different adsorbents with the same pH, reaction 

time and temperature. 

Fig. 6 Effect of fluoride adsorption capacity of MCLB and MCLRB with initial pH. 

Fig. 7 Effect of anions on fluoride adsorption capacity of MCLB and MCLRB. 

Fig. 8 Effect of fluoride adsorption capacity on MCLB and MCLRB with contact 

time. 

Fig. 9 Plots for pseudo-second-order kinetic model. 

Fig. 10 Effect of initial fluoride concentration on absorption capacity of MCLB and 

MCLRB for fluoride removal. 

Fig. 11 Freundlich adsorption isotherm of fluoride sorption on MCLB and MCLRB. 

Fig. 12 Measurement of released elements into solution at various pH  

Fig. 13 Relationship between reuse times and fluoride adsorption capacity of MCLB 

and MCLRB. 

Fig. 14 Schematic description of fluoride adsorption by MCLB and MCLRB. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Tables: 

Table 1 BET surface area and average pore diameter of MCLB and MCLRB. 

Table 2 The values of kinetic parameters for pseudo-first-order equation and 

pseudo-second-order equation together with correlation coefficients. 

Table 3 Langmuir isotherm and Freundlich isotherm parameters for the adsorption of 

fluoride onto MCLB and MCLRB. 

Table 4 The standard thermodynamic parameters of the sorption of MCLB and 

MCLRB. 
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Figure graphics 

Fig. 1 
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Fig.2 
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Fig.3 
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Fig.4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 

0 100 200 300 400 500

0

1

2

3

4
q

e(m
g

/g
)

t(min)

 MCLB

 MCLRB

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Fig. 9  
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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Fig. 14 
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Note: In the schematic description of fluoride adsorption,  is Fe3O4,  is chitosan, 

and m, q=1 or 2. 
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Table 1 

adsorbents BET surface area (m
2
/g) average pore diameter (nm) 

MCLB 16.64 8.15 

MCLRB 21.24 7.92 
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Table 2 

adsorbents 

Pseudo-first-order model     Pseudo-second-order model 

Regression equation qe(mg/g) K1(min
-1

) R
2
  Regression equation qe(mg/g) K2(g/mg·min) R

2
 

MCLB log(qe-qt)=-0.00639t-0.88709 9.1129 0.0147 0.9489  t/qt=0.26361t+4.57628 3.7935 0.01518 0.9979 

MCLRB log(qe-qt)=-0.00579t-0.97601 9.0239 0.0174 0.8067  t/qt=0.24435t+4.11757 4.0933 0.01494 0.9993 
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Table 3 

adsorbents 

Langmuir isotherm model  Freundlich isotherm model 

Qmax(mg/g)  KL (L/mg) R
2
 RL  KF((mg/g) (mg/L)

1/n
) n R

2
 

MCLB 20.53 0.024 0.9832 0.625  2.15 1.201 0.9925 

MCLRB 22.35 0.022 0.9945 0.645  2.19 1.209 0.9985 
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Table 4 

adsorbents Temperature (K) ΔG0 (kJ mol
-1

) ΔH0 (kJ mol
-1

) ΔS0 (kJ mol
-1

K
-1

) 

MCLB 

303 -2.13 7.89 -1.32 

313 -2.98   

323 -3.35   

MCLRB 

303 -2.44 8.22 -1.08 

313 -3.13   

323 -3.78   
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