Technical University of Denmark

Determination of 226Ra in natural water samples by liquid scintillation counting

Osváth, Szabolcs; Rell, Péter; Kónyi, Júlia Kövendiné ; Szabó, Gyula

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Osváth, S., Réll, P., Kónyi, J. K., & Szabó, G. (2017). Determination of 226Ra in natural water samples by liquid scintillation counting. Poster session presented at International Conference on Advances in Liquid scintillation Spectrometry 2017, Copenhagen, Denmark.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Determination of ²²⁶Ra in natural water samples LSC 2017

An International Conference on Advances in Liquid Scintillation Spectrometry 1-5th May, 2017, Copenhagen, Denmark http://lsc2017.nutech.dtu.dk

Poster ID = 282

by liquid scintillation counting

Szabolcs Osváth ^{1, 2}, Péter Rell ¹, Júlia Kövendiné Kónyi ¹, Gyula Szabó ¹

¹National Public Health Institute, Budapest, Anna utca 5., 1221, Hungary ²Current workplace: DTU Nutech, Roskilde, DTU Risø Campus, Frederiksborgvej 399, 4000, Denmark Corresponding author's e-mail: osvath.szabolcs@osski.hu

Abstract

A relatively fast, simple and reliable method has been developed for determination of ²²⁶Ra from natural water samples, using radiochemical separation and liquid scintillation counting (LSC). This method is based on the usage of 133 Ba as tracer, sorption on MnO₂ Resin[®] and precipitation of Ba(Ra)SO₄. Ba(Ra)SO₄ was converted into Ba(Ra)CO₃, solubilized, and then measured by LSC. The ¹³³Ba tracer and the ²²⁶Ra analyte were determined parallel using the same LSC measurement. Analyzing model solutions and real samples, 60(±15)% average recovery and 10 mBq of limit of detection were observed. (Detection time was 100 min.) This method was successfully used for analysis of bottled mineral waters, medicinal thermal waters and natural surface waters.

Highlights

- A method has been developed for determination of ²²⁶Ra from natural water samples.

- The method is relatively fast, simple and reliable.

- The method is based on radiochemical separation and LSC measurement.

- Activities of ¹³³Ba and ²²⁶Ra were determined from the same LSC measurement.

- ²²⁶Ra in natural water samples was analyzed.

Keywords: Ra-226, LSC, MnO₂ Resin[®], natural water

Introduction

Determination of ²²⁶Ra in drinking waters, natural waters and other environmental samples is an important task due to its high radio-toxicity. ²²⁶Ra can be determined directly or via its progenies (e. g. ²²²Rn, ²¹⁴Po). According to the newest comprehensive papers (IAEA, 2010; Jia and Jia, 2012), α-spectrometry, y-spectrometry, liquid scintillation spectrometry (LSC) and mass spectrometry are mostly used as measurement techniques for determination of ²²⁶Ra. However, in another recent comprehensive paper (Vasile et al., 2010) only α-spectrometry, γ-spectrometry and Rn emanation technique are referred, while LSC is only mentioned as a technique for determination of ²²⁸Ra.

Method

Figure 1 shows the sample preparation procedure used. 0.5-1.5 L sample was taken, filtered through a 0.45 µm filter and pH was adjusted to 4-7 using 1 M HNO₃ or 1 M NaOH. After that 4 Bq ¹³³Ba tracer and 1.25 g MnO₂ Resin[®] were added. (As Ba/Ra divergence does not seem to be an issue using this method, ¹³³Ba was chosen as tracer. Its activity was chosen to be much higher as that of β-emitter ²²⁸Ra, possibly also present in drinking and natural waters.) The sample was stirred for at least 1 hour, and the resin was allowed to settle (preferably for a night). The supernatant was decanted, the resin was centrifuged and the supernatant was discarded. Ba and Ra were eluted from the resin using 12 mL 6 M HCl, 1 drop 30% H₂O₂ was added to make the solution colorless, then it was filtered through a 0.45 µm filter. (Application of MnO₂ Resin[®] for concentration of Ra and Ba from natural waters was developed and published by Moon et al. (2003).) 100 µL 1:1 acetic acid was added to make complex with Pb²⁺. 19 mg Ba(NO₃)₂ and 5 mL 40% (saturated) Na₂SO₄-solution were added. The sample was slightly warmed and stirred for 30 minutes to form BaSO₄ precipitate, then it was centrifuged (3000 rpm, 5 min) and the supernatant was discarded. The precipitate was suspended in 2 mL saturated K₂CO₃ solution and it was evaporated with 3x2 mL distilled water to dryness to convert BaSO₄ to BaCO₃. (This is a well-known procedure, see for example Kirby and Salutsky (1964).) 30-40 mL distilled water was added, and the slurry was centrifuged. This step was repeated until the pH of the supernatant reached 7 (typically 3 times). The BaCO₃ precipitate was dissolved in 1 mL 0.5 M HNO₃, 1 drop 30% H₂O₂ was added to make it colorless. The solution was transferred into a 20 mL plastic LSC vial, 16 mL Ultima Gold LLT cocktail was added and LSC measurement was performed using a Tri-Carb 2900TR (Packard, USA) equipment.

Discussion 1: Evaluation of LSC measurements

250

200

Focal point of this method is that the same LSC measurement was used for determination of activity of ¹³³Ba tracer as well as that of ²²⁶Ra analyte (see Figure 2), as proposed by Tinker and Smith (1996).

LSC spectrum of ²²⁶Ra and its progenies (without ¹³³Ba tracer). The peaks in the α -spectrum correspond (from left to right) to ²²⁶Ra (4784 keV), ²²²Rn (5490 keV), ²¹⁸Po (6002 keV) and ²¹⁴Po (7687 keV). As no ¹³³Ba tracer is present, the β-spectrum consists of β counts from β-emitter progenies of ²²⁶Ra (²¹⁴Pb and ²¹⁴Bi) as well as of spillover of α counts.

Results

Some results of 38 analyzed water samples (bottled mineral waters, medicinal thermal waters and natural surface waters) can be seen in Tables 1 and 2. Our experiments have showed that the average chemical recovery was 60(±15)%, and we could not find correlation between recovery and sample composition (alkaline earth content).

According to 2.2 cpm background between channels 90-500 of the α-LSC spectrum and applying 100 min detection time, typically 10 mBq of minimal detectable activity (MDA) was achieved. Therefore, analyzing a sample of 0.5-1.5 L, the limit of detection described in the Council Directive 2013/51/Euratom [3] (namely 40 mBq/L for drinking water) is easily achievable. Typical relative uncertainty of results (in cases they were over MDA) was 8%, calculated using a coverage factor of 1 (k=1).

Discussion 2: Method reliability

To check the reliability of the method, 2 water samples of a proficiency test (Determination of activity concentration of ³H, ²²⁶Ra, ²⁴¹Am, ²³⁹Pu in food and environmental samples; Institute of Nuclear Chemistry and Technology (INCT), Warsaw, Poland 2014-14) were analyzed. The results show acceptable agreement with the reference values (see Table 1).

The well-known medicinal thermal waters of Spa Rudas were also analyzed, results are reported in Table 2. The result of sample 'Hungária' was checked and confirmed by y-spectrometry. A 20 L aliquot was evaporated and the residue was ashed. According to the y-spectrum of the ash, activity concentration of ²²⁶Ra in the original sample was 447±17 mBq L⁻¹. Earlier results are also presented in Table 2, taking into account their high variability, the results

Results of analysis of some popular bottled mineral waters (selected randomly) are reported in Table 3. Differences between older and newer values can be explained by changes in exploitation or processing technology (e.g. changing of the spring).

150						
ounts						
о З 🗧 🗧						 Alpha Beta
100						
50						
	and the second s					
0	All and an					in a tanin in the last
-	100	200	300	400	500	600

of ²²⁶Ra. As these spectra were acquired right after separation, progenies of ²²⁶Ra are not present.

To optimize the pulse decay discriminator setting of the LSC analyzer, ²⁴¹Am standard was used as pure α -emitter (as the α -emitter ²²⁶Ra has some β emitter progenies) and ¹³³Ba standard was used as "pure β-emitter". ¹³³Ba decays by electron capture but its γ-rays, X-rays, Auger electrons and conversion electrons can be counted by LSC as β-counts (Chylinski and Radoszewski, 1993). The crossover point was at 125 ns, but 140 ns discrimination time was used to reduce the spillover of ¹³³Ba counts into the α -counting region.

Activity of ¹³³Ba was calculated on the basis of the β -LSC spectrum. Counting efficiency (f_{β}) of ¹³³Ba was calculated using the formula:

	Sample code	Measured va	lue Refer	ence value			Brand name
	R1/13.	< 24	5	0 ± 10			Balfi
	R2/13.	432 ± 37	4	40 ± 60			
		Table	1				Borsec
	Activity con	centration of	²²⁶ Ra (mBq l	₋¹) in two			[sparkling; Roma
	intercomparis	son samples. T	he uncertai	nty is given			Borsec
	using	a coverage fac	tor of 1 (<i>k</i> =	1).			[still; Romania
							Fonyódi
							Kereki Theodor
		1				1	Kékkúti Theodo
Name of sp	ring Measur	ed value	Earl	ier results			
Hungária	a 452	± 45	993 ± 96 (Baradács, 19	999)		
			699 ± 69 (Baradács, 20	002)		Mizse
			532 (Ba	radács, 2002	2)		Natur Aqua
Attila	729	± 57	2150 (S	zerbin, 1996	5)		Óbudai Gyémái
		16	50 ± 30 (Kas	ztovszky et a	al. <i>,</i> 1996)		,
			912 ± 89 (Baradács, 19	999)		
			834 ± 81 (Baradács, 20	002)		
			500 (Ba	radács, 2002	2)		Szentkirálvi
Juventus	5 708	± 61	710 ± 67 (Baradács, 19	999)		Visegrádi
			646 ± 64 (Baradács, 20	002)		
						1	

Table 2 Activity concentration of ²²⁶Ra (mBq L⁻¹) in medicinal thermal waters of Spa Rudas. The uncertainty is given using a coverage factor of 1 (k=1).

Conclusions

A relatively fast, simple and reliable method has been developed for determination of ²²⁶Ra from natural water samples, using radiochemical separation and LSC measurement. Activities of ¹³³Ba (for determination of the chemical yield of the procedure) and ²²⁶Ra were determined from the same LSC measurement.

Balfi	< 10	85 (Baradács et al., 2001)
		< 200 (Ugron, 2010)
Borsec	343 ± 38	
[sparkling; Romania]		
Borsec	41 ± 9	
[still; Romania]		
Fonyódi	< 10	
Kereki Theodora	< 10	
Kékkúti Theodora	< 10	270 (Szerbin and Köteles, 1999)
		77 (Baradács et al., 2001)
		< 170 (Ugron, 2010)
Mizse	< 10	
Natur Aqua	< 10	
Óbudai Gyémánt	100 ± 9	110 (Baradács et al., 2001)
		68 ± 29 (Guczi, 2005)
		128 ± 17 (Guczi, 2005)
		92 ± 33 (Ugron, 2010)
Szentkirályi	< 10	
Visegrádi	159 ± 14	204 (Baradács et al., 2001)
		< 129 (Guczi, 2005)
		< 180 (Ugron, 2010)

Measured value

Earlier results

Table 3 Activity concentration of ²²⁶Ra (mBq L⁻¹) in some popular Hungarian (and Rumanian) bottled mineral waters (purchased from local supermarkets). The uncertainty is given using a coverage factor of 1 (k=1).

where I_{cal}^{β} stands for measured β -intensity of a calibration sample (containing known A_{cal} activity of ¹³³Ba) and I_{ba}^{β} stands for measured β -intensity of a background sample of the same composition as real samples.

Adding different amounts of 65% HNO₃ to the calibration samples, the effect of quench was also studied. Counting efficiency of ¹³³Ba (using channels 0-2000 of the β-LSC spectrum) was found to be 118% and independent on quench. (As not only the Auger and conversion electrons but even some γ- and Xparticles are detected via their Compton electrons, counting efficiency can be higher than 100%.)

Either channels 0-2000 or channels 10-250 of the β-LSC spectrum can be used for determination of recovery (R) of ¹³³Ba. According to our results, there is no significant difference between the recoveries calculated using the different regions. In some cases, recoveries were checked and confirmed by determining the activity of ¹³³Ba by y-spectrometry. When analyzing samples whose activity of ²²⁸Ra is commensurate with that of ¹³³Ba tracer, channels 40-250 can be used as well (as the β -endpoint of ²²⁸Ra is 40 keV), but this increases the uncertainty of recovery too much – this is why in such cases it is advisable to use another method.

Recovery of ²²⁶Ra was assumed to be the same as that of ¹³³Ba. Activity of ²²⁶Ra (A_{sample}) was calculated using channels 90-500 of the α-LSC spectrum subtracting spillover of ¹³³Ba counts into the α -counting region ($I_{cal}^{\alpha}/I_{cal}^{\beta}$; typically 0.2%-0.5%) by the formula:

$$A_{sample} = \frac{I_{sample}^{\alpha} - \frac{I_{cal}^{\alpha}}{I_{cal}^{\beta}} I_{sample}^{\beta}}{f_{\alpha}}$$

where I_{sample}^{α} is α -intensity of the sample,

 I_{cal}^{α} is α -intensity of the calibration sample,

 I_{sample}^{β} is β -intensity of the sample and

 f_{α} is detection efficiency of α -particles (95%).

In the region mentioned above, peaks of all α -emitter progenies of ²²⁶Ra (namely ²²²Rn, ²¹⁸Po and ²¹⁴Po) are present (as shown in Figure 3). Their in-growth was taken into account using a calibration curve based on the results and equations described by Fons et al. (2013):

$$A_{sample}^{\alpha}(t) = \left\{ 1 + 3 \cdot \left[1 - exp\left(-\frac{\ln(2) \cdot t}{91.68 \text{ hours}} \right) \right] \right\} \cdot A_{sample}(t=0)$$

(3)

(2)

where $A_{sample}(t = 0)$ is the ²²⁶Ra-activity of sample at separation,

 $A^{\alpha}_{sample}(t)$ is the α activity of sample at t hours after separation and 91.68 hours is half-life of ²²²Rn.

As no extra gamma-spectrometry was used for measurement of ¹³³Ba, the overall time consumption of this method (about 20 hours) is comparable with that of methods based on α -spectrometry and more convenient than that of methods based on ²²²Rn in-growth. (However, presence of ²²⁸Ra increases the uncertainty of recovery.)

This method was successfully applied for analysis of bottled mineral waters, medicinal thermal waters and natural surface waters.

References

- Baradács, E., Hunyadi, I., Dezső, Z., Mócsy, I., Csige, I., Szerbin, P., Vaupotic, J., 1999: ²²⁶Ra in geothermal waters of the Carpathian Basin. IRPA Regional Congress on Radiation Protection in Central Europe, Budapest, 23-27 August 1999
- Baradács, E., Hunyadi, I., Dezső, Z., Csige, I., Szerbin, P., 2001: ²²⁶Ra in geothermal and bottled mineral waters of Hungary. Radiat Meas 34, 385-390. Baradács E., 2002: Radon and radium content of thermal and mineral waters (in Hungarian). PhD thesis, University of Debrecen, Hungary
- Chylinski, A., Radoszewski, T., 1993: Liquid scintillation standardization of ¹³³Ba. In: Noakes, J. E., Schönhofer, F., Polach, H. A. (eds.): Liquid Scintillation Spectrometry 1992, Radiocarbon, 269-274
- Council of the European Union, 2013: Council Directive 2013/51/Euratom of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption
- Fons, J., Zapata-García, D., Tent, J., Llauradó, M., 2013: Simultaneous determination of gross alpha, gross beta and ²²⁶Ra in natural water by liquid scintillation counting. J Environ Radioact 125, 56-60.
- Guczi J., 2005: Unpublished results. "Frédéric Joliot-Curie" National Research Institute for Radiobiology and Radiohygiene, Hungary
- IAEA, 2010: Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples. International Atomic Energy Agency Analytical Quality in Nuclear Applications Series No. 19
- Jia, G., Jia, J., 2012: Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J Environ Radioact 106, 98-119.
- Kasztovszky, Zs., Kuczi, R., Szerbin, P., 1996: On the natural radioactivity of waters in Hungary. Centr Europ J Occup Env Med 2 (4), 335-347
- Kirby, H. W., Salutsky, M. L., 1964: The Radiochemistry of Radium. National Research Council, USA
- Moon, D. S., Burnett, W. C., Nour, S., Horwitz, P., Bond, A., 2003: Preconcentration of radium isotopes from natural waters using MnO₂ resin. Appl Radiat lsot 59, 255-262.
- Szerbin P., 1996: Natural radioactivity of certain spas and caves in Hungary. Environ Int, 22 (1), 389-398
- Szerbin P., Köteles Gy., 1999: Survey of natural radioactivity in drinking water (in Hungarian). Egészségtudomány 43, 287-296
- Tinker, R. A., Smith, J. D., 1996: Simultaneous measurement of ²²⁶Ra and ¹³³Ba using liquid scintillation counting with pulse shape discrimination. Anal Chim Acta 332, 291-297.
- Ugron Á., 2010: Unpublished results. "Frédéric Joliot-Curie" National Research Institute for Radiobiology and Radiohygiene, Hungary
- Vasile, M., Benedik, L., Altzitzoglou, T., Spasova, Y., Watjen, U., González de Orduna, R., Hult, M., Beyermann, M., Mihalcea, I., 2010: ²²⁶Ra and ²²⁸Ra determination in mineral waters — Comparison of methods. Appl Radiat Isot 68, 1236–1239.