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Abstract: We perform contactless full-wafer maps of the electrical 
conductance of a 4-inch wafer of single-layer CVD graphene using terahertz 
time-domain spectroscopy both before and after deposition of metal  
contacts and fabrication of devices via laser ablation. We find that there  
is no significant change in the measured conductance of graphene before and  
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after device fabrication. We also show that precise terahertz time-domain 
spectroscopy can be performed when the beam spot is at sufficient distance 
(>1.2 mm) from metal contacts. 

Keywords: CVD graphene; terahertz time-domain spectroscopy; laser ablation; 
T-ray. 
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1 Introduction 

As commercial graphene applications are developing there is an increasing demand for 
high-quality large-area graphene. Many lithography-based methods for determining  
the electrical properties of graphene necessarily require metals, solvents and resists, 
which are known to adversely affect electrical properties [1–3]. Therefore, methods for 
determining electrical properties that require no physical contact with the graphene are 
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preferred, and one such method is terahertz time-domain spectroscopy (THz-TDS).  
THz-TDS has shown to be a viable method for obtaining electrical parameters from 
graphene, such as conductance [4,5], carrier mobility [6] and field-effect properties [7].  
It is and will continue to be important to benchmark THz-TDS against standard  
electrical measurements. Here we show that the conductance of graphene measured  
(as by THz-TDS) is not significantly affected by fabrication of graphene devices by 
shadow-mask metal deposition and subsequent laser ablation graphene patterning. 

2 Methods 

All measurements took place on a THz-transparent double-sided-polished high  
resistivity (>10 kΩ cm) silicon wafer, as shown in Figure 1(a), with a highly p-doped 
(n = 2.6 × 1019 cm−3) polysilicon layer, and an insulating layer of 165 nm a Si3N4.  
Single layer graphene was then transferred on top of the Si3N4. The frequency dependent 
graphene sheet conductance was mapped by raster-scanned non-contact transmission 
THz-TDS at normal incidence, using a Picometrix T-ray 4000 fibre-coupled spectrometer 
in the range of 0.25–1.2 THz [7]. The frequency range corresponds to wavelengths of 
1.2–0.25 mm, which then represents the maximal spatial resolution. σDC was determined 
in each pixel of the scan by fitting the Drude model, 

 DC
real 2( ) ,

1 ( )
σσ ω

ωτ
=

+
 (1) 

to the real part of the measured sheet conductance spectra. 
Devices were fabricated using a laser ablation method shown in Figure 1 and outlined  

in Mackenzie et al. [8]. Initially, metal contacts (5 nm Cr, 45 nm Au) were deposited via 
electron-beam evaporation through a shadow mask using a Wordentec QCL 800,  
as shown in Figure 1(b). Selective laser ablation of the graphene was performed using a 
3D-Micromac AG microSTRUCT vario with a 10 ps 1064 nm pulsed laser, without 
damaging the underlying substrate, as shown in Figure 1(c). The resulting square device 
with centre area of 5 × 5 mm2 is illustrated in Figure 1(d). An advantage of this 
fabrication method is that the device area does not require contact with solvents or resists, 
which are known to affect the electrical properties of graphene [1–3]. 

Figure 1 Schematic showing fabrication of graphene devices using laser ablation. (a) Initially 
graphene is transferred to a silicon four-inch wafer with silicon nitride layer.  
(b) 5 nm Cr, 45 nm Au is deposited using electron beam evaporation and a  
shadow mask. (c) Definition of devices via selective ablation of graphene using a  
10 ps 1064 nm pulsed laser. (d) Final device, square of 5 × 5 mm2 (see online version 
for colours) 
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3 Results and discussion 

Our results are summarised in Figure 2. Figure 2(a) and (b) show the full wafer THz-TDS 
σDC maps before and after device fabrication, respectively. Maps were performed with a 
step size (and corresponding pixel size) of 400 µm. Because the THz-TDS signal at the 
contacts is dominated by the high conductance of the metal relative to the graphene, large 
values of conductance, which cannot be attributed to graphene (σ > 10 mS) are set to zero 
in the dataset, and correspond to white on Figure 2(a) and (b). The THz spot profile is 
approximately Gaussian with a frequency dependent FWHM, which is comparable to the 
wavelength. Figure 2(c) shows how the mean conductance value changes when areas of 
different proximity to the contacts are included. Figure 2(c) inset shows a device with 
coloured squares corresponding to the areas where the mean is calculated. When pixels 
closer than 1 mm to metal (device area greater than 3 × 3 mm2) are included in the 
analysis, the mean conductance is significantly higher for the post-device measurements. 
However, the values converge when pixels that are 1.2 mm or closer to metal are 
excluded (device areas of maximum size 2.4 × 2.4 mm2). As expected, the device area 
sampling-size has no effect for the pre-device measurement analysis. Therefore, in the 
analysis of both pre-device and post-device measurements, only the pixels in centre area 
of each device (2.4 × 2.4 mm2) were considered for the remaining analysis. 

Figure 2 Full wafer THz spectroscopy maps of a 4-inch graphene-coated wafer (a) before device 
fabrication and (b) after device fabrication. (c) Average THz conductance as a function 
of proximity of the THz spot to the metal contacts. Inset: Photograph of fabricated 
device, with laser-ablated cuts coloured in black for clarity. Each coloured box 
represents a different THz averaging area with varying distance to the metal contacts. 
From black = 0 mm to light blue = 2 mm. (d) Histograms, showing the distribution  
of conductances before (blue) and after (red) device fabrication. (e) Pixel-to-pixel 
correlation of the conductances before and post device fabrication. Each colour 
represents one device area within which several THz measurements were performed 
(see online version for colours) 

 

Histograms of the mean conductance inside device areas are shown via histograms  
in Figure 2(d). The mean of the pre-device fabrication was 2.94 ± 0.09 mS and the post 
fabrication mean was 3.09 ± 0.07 mS, with the uncertainty calculated as the standard 
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deviation of the device areas. Each individual device area is then compared in a 
correlation plot in Figure 2(e) with each colour corresponding to one device area.  
A linear fit produces a slope of 1.009 and a correlation of R2 > 0.97 between each pixel  
of the THz-TDS maps before and after device definition, which supports the claim of 
consistency between pre- and post-device fabrication measurements. 

Overall, there is a slight increase in measured conductance after fabrication of 
devices, however the difference is within measurement uncertainties and smaller than 
pixel-to-pixel variations, especially considering that no effort was made to control the 
environmental conditions, so any small conductance changes observed are well within 
differences expected from random variations in humidity and other absorbents on the 
graphene surface [3]. 

The two datasets are consistent within measurement uncertainties provided that the 
THz measurements are performed at a distance greater than 1.2 mm away from any metal 
structures. Overall, the study suggests that graphene properties are not significantly 
affected by the deposition of contacts and subsequent laser ablation as outlined in 
Mackenzie et al. [8]. 

4 Conclusions 

Wafer maps of electrical conductance were performed before and after device fabrication 
on a 4-inch graphene-coated wafer. Although a slight increase in conductance  
was observed over the entire wafer after devices were fabricated, any difference was 
insignificant compared to measurement uncertainties, device-to-device variations and 
variations in environmental conditions. 

Therefore we conclude that the laser ablation method outlined in Mackenzie et al. [8] 
does not significantly affect THz-TDS conductance measurements and can serve as a 
protocol for fast benchmarking in large-scale CVD graphene electrical characterisation. 
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