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Solving conic optimization problems via self-dual embedding and
facial reduction: a unified approach

Frank Permenter ∗ Henrik A. Friberg § Erling D. Andersen ¶

August 18, 2016

Abstract
We establish connections between the facial reduction algorithm of Borwein and Wolkowicz

and the self-dual homogeneous model of Goldman and Tucker when applied to conic optimiza-
tion problems. Specifically, we show the self-dual homogeneous model returns facial reduction
certificates when it fails to return a primal-dual optimal solution or a certificate of infeasibility.
Using this observation, we give an algorithm, based on facial reduction, for solving the primal
problem that, in principle, always succeeds. (An analogous algorithm is easily stated for the
dual problem.) This algorithm has the appealing property that it only performs facial reduction
when it is required, not when it is possible; e.g., if a primal-dual optimal solution exists, it will
be found in lieu of a facial reduction certificate even if Slater’s condition fails. For the case of
linear, second-order and semidefinite optimization, we show the algorithm can be implemented
assuming oracle access to the central-path limit-point of an extended-embedding, a strictly fea-
sible conic problem with strictly feasible dual. We then give numerical experiments illustrating
barriers to practical implementation.

1 Introduction
Let V be a finite-dimensional inner-product space and A : V → Rm a linear map with adjoint
A∗ : Rm → V. For b ∈ Rm and c ∈ V, consider the following primal-dual pair of conic optimization
problems over a closed, convex cone K ⊆ V and its dual cone K∗ := {s ∈ V : 〈s, x〉 ≥ 0 ∀x ∈ K}:

minimize 〈c, x〉
subject to Ax = b

x ∈ K

maximize 〈b, y〉
subject to c−A∗y = s

s ∈ K∗, y ∈ Rm.
(1)

Here, x ∈ V is the decision variable of the primal problem and (s, y) ∈ V × Rm is the decision
variable of the dual. The self-dual embedding technique [16, 7, 20, 26], originally due to Goldman
and Tucker [12], solves (1) by finding solutions to the following self-dual homogeneous model:

Ax− bτ = 0,
−A∗y − s+ cτ = 0,

〈b, y〉 − 〈c, x〉 − κ = 0,
(x, s, y, τ, κ) ∈ K ×K∗ × Rm × R+ × R+.

(2)
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Any solution (x, s, y, τ, κ) of (2) satisfies the complementarity condition τκ = 0; hence, solutions
fall into one of three categories. If τ > 0, then 1

τ (x, s, y) is a primal-dual optimal solution for (1)
with duality gap 1

τ2 〈x, s〉 equal to zero; in other words, 1
τ (x, s, y) is a complementary solution. If

κ > 0, then x and/or y are improving rays that certify dual and/or primal infeasibility. If, on the
other hand, τ = κ = 0, the solution (x, s, y, τ, κ) reveals nothing about the primal or dual optimal
value—either could be finite or unbounded from above or below.1 Further, if τ = κ = 0 holds
for all solutions, then complementary solutions and improving rays do not exist, and at least one
problem—primal or dual—fails the Slater regularity condition [8].

In this paper, we reexamine this latter case. Specifically, we show relative interior solutions of
(2) yield facial reduction certificates for (1) when τ = κ = 0 holds for all solutions. (Restricting
to the relative interior is inspired by the analysis of de Klerk et al. [7].) As we review, these
certificates allow one to regularize the primal or dual in the manner proposed by Borwein and
Wolkowicz [5] and resolve (2), repeating until a complementary solution or an improving ray is
obtained. As we show, this idea leads to simple algorithms that solve arbitrary instances of the
primal or dual, where solve means to find the optimal value and a solution if one exists. These
algorithms, of course, rely on a subroutine that produces relative interior solutions to (2). As we
show, such solutions are obtained from relative interior solutions to the extended-embedding of Ye
et al. [35], a strictly feasible conic optimization problem with strictly feasible dual. Note if K is
a symmetric cone, e.g., if (1) is a linear, second-order cone, or semidefinite program, the central
path of the extended-embedding converges to the relative interior of its solution set [13, 27]. Hence,
implementations of our algorithms are conceptually simple in this case, involving only basic linear
algebra (for regularization) and repeated calls to an interior-point method (for tracking the central
path to its limit point).

Though the aforementioned implementations are conceptually simple, they nevertheless face
significant practical barriers. Numerical experiments will be given to illustrate the following three
issues. First, interior-point methods only approximate the limit point of the central path; hence, in
practice, only approximate facial reduction certificates are obtained. Second, regularization with
approximate certificates can change the optimal value an arbitrary amount, e.g., by changing a
feasible problem to an infeasible problem. Note this second issue is rooted in the fact at least
one problem—primal or dual—is ill-posed in the sense of Renegar [28] when τ = κ = 0 for all
solutions;2 that is, at least one problem has optimal value infinitely-sensitive to perturbations
of A, b and c. Third, strict complementarity can fail badly, which can cause poor convergence
of interior-point algorithms. Indeed, the extended-embedding never has a strictly complementary
solution when τ = κ = 0 holds for all solutions, since, by definition, strict complementarity requires
τκ = 0 and τ + κ > 0. We emphasize these issues currently preclude a practical implementation of
the mentioned algorithms. Nevertheless, experiments indicate ‘good’ approximate facial reduction
certificates can be provided in many cases, which may have practical value; indeed, in Section 5.4, we
use approximate certificates to explain poor performance [18] of primal-dual solvers on a DIMACS
library instance [23].

Existence of facial reduction certificates implies failure of Slater’s condition, which, for feasible
problems, is a generic property [9]. In addition, failure of Slater’s condition is only a necessary
condition for non-existence of complementary solutions and improving rays. Hence, one might
assume instances (theoretically) solvable by our approach not (theoretically) solvable by a standard

1Though the solution reveals nothing, the asymptotic behavior of central-path-following techniques gives informa-
tion in certain cases. See Luo et al. [16] and de Klerk et al. [8].

2In this case, no complementary solution or improving ray exists. At least one problem—primal or dual—is thus
feasible and fails Slater’s condition or infeasible and fails to have a dual improving ray. In other words, at least one
problem is weakly feasible or weakly infeasible in the sense of [17] and hence ill-posed in the sense of Renegar [28].
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Case Interpretation
τ > 0, κ = 0 Complementary solution
τ = 0, κ > 0 Improving ray(s)
τ = 0, κ = 0 Facial reduction certificate(s)

Table 1: Interpretation of a relative interior solution to the self-dual homogeneous model (2) in
terms of the conic optimization problem (1). A main observation of this paper, given by Corollary 1,
is summarized by the last row.

interior-point algorithm are never encountered unless they are artificially constructed. We offer
two responses. First, the aforementioned instance from [23] suggests such instances can arise in
applications (though they may be rare). Second, the homogeneous model (2) is the back-bone of
widely-used solvers [30, 19, 21]; hence, careful examination of its solution set is warranted to (at
the very least) clarify the behavior of solvers across the full spectrum of inputs.

Our paper also contributes to the theory of facial reduction in a few ways. To explain, we
first recall the basic operation of facial reduction algorithms [5] [22] [33]: finding facial reduction
certificates, which themselves are solutions to conic optimization problems (so-called auxiliary
problems). The recent papers of Cheung et al. [6] and Lourenço et al. [15] propose methods for
finding certificates, addressing issues of numerical robustness [6] and strict feasibility of auxiliary
problems [6, 15], while other papers take a heuristic approach [24, 25, 11]. In this paper, we
show by finding relative interior solutions to (2), certificates are found only when they are needed
(complementary solutions and improving rays do not exist) as opposed to when they exist (e.g.,
Slater’s condition fails for feasible problems). In contrast, the methods of [5, 22, 33, 6, 15] find a
complete set of certificates for feasible problems and regularize until Slater’s condition holds (which
can be costly and unnecessary), and the heuristic methods of [24, 25, 11] may fail to find needed
certificates. We also show solutions to (2) automatically identify which problem—primal or dual—
needs regularization. In contrast, facial reduction procedures often only regularize the problem
one is interested in solving. This is insufficient, for instance, to solve the primal problem if it has
a finite unattained optimal value; in this case, dual regularization or regularization in the sense
of Abrams [1] is required. As we will show, relative interior solutions to (2) always provide the
necessary certificate for the required regularization. Indeed, the certificates provided by (2) allow
one to handle all pathologies (duality gaps, unattainment, etc.) in a unified facial-reduction-based
framework, where, in contrast, the method of [15] for semidefinite programming uses a combination
of techniques.

This paper is organized as follows. Section 2 introduces notation and reviews facial reduction.
Section 3 studies the solution set of the homogeneous model and the extended-embedding. Section 4
gives a theoretical algorithm for solving arbitrary instances of the primal problem. (An analogous
algorithm for the dual is easily stated.) Section 5 gives numerical experiments, highlighting barriers
to practical implementation.

2 Background on facial reduction
This section reviews the basic concepts underlying facial reduction algorithms [5, 22, 33]. These
algorithms take as input either the primal problem or the dual problem of (1) and replace K or
K∗ with a face containing the primal feasible set or the set of dual feasible slacks. After this
replacement, the new problem has optimal value equal to that of the input problem. Moreover, if
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the input problem is feasible, the new problem satisfies Slater’s condition, and if the input problem
is infeasible, the new problem is strongly infeasible, meaning a strictly-separating hyperplane (i.e.,
an improving ray for a dual problem) exists proving infeasibility. For this reason, this replacement
is called regularization.

These algorithms work by finding a finite sequence of hyperplanes that provably contain the
feasible set, where the normal vectors of these hyperplanes are called facial reduction certificates.
They terminate when facial reduction certificates no longer exist. The number of steps taken by
these algorithms depends on the facial reduction certificates used. The minimum number of steps
taken is called the singularity degree [31] and is intrinsic to the input problem. To explain these
ideas in detail, we first review properties of convex cones and their faces.

2.1 Cones and faces

A subset C of V is called a cone if it is closed under positive scaling, i.e. λx ∈ C for any λ > 0 when
x ∈ C. A convex cone is a cone that is convex. The dual cone C∗ of any subset C of V is the convex
cone {z ∈ V : 〈z, x〉 ≥ 0, ∀x ∈ C}. In this paper, we are only concerned with convex cones that
are also closed and non-empty. Note if C is a non-empty, closed, convex cone, then C contains the
origin and C∗∗ = C.

Let C be a non-empty, closed, convex cone. A face F of C is a closed convex subset for which
a, b ∈ C and a+b

2 ∈ F implies a, b ∈ F . A face F of C is called a proper face if it is non-empty
and not equal to C. (Note this definition includes C ∩ (−C) as a proper face, which some authors
exclude.) Let z⊥ denote the hyperplane {x ∈ V : 〈x, z〉 = 0}. For z ∈ C∗, the set C ∩ z⊥ is easily
seen to be a non-empty face (said to be exposed by z). The face C ∩ z⊥ is hence proper if and only
if z ∈ C∗ \ C⊥, where C∗ \ C⊥ is the subset of C∗ not contained in the orthogonal complement of
the span of C. Since the dual cone C∗ and the proper faces of C are also nonempty, closed, convex
cones, all of these concepts translate if C is replaced with a proper face F , with the dual cone C∗,
or with one of the proper faces of the dual cone. For instance, z ∈ F∗ \ F⊥ exposes a proper face
F ∩ z⊥ of F , just as z ∈ C \ (C∗)⊥ exposes a proper face C∗ ∩ z⊥ of C∗.

2.2 Primal and dual problems

It will be convenient to define primal and dual problems parametrized by a closed, convex cone C:

Definition 1. For a non-empty, closed, convex cone C ⊆ V, and the problem data A : V → Rm,
b ∈ Rm and c ∈ V of the primal-dual pair (1), let P(C) denote the primal optimization problem

minimize 〈c, x〉
subject to Ax = b

x ∈ C,

and let D(C) denote its dual optimization problem

maximize 〈b, y〉
subject to c−A∗y = s

s ∈ C∗, y ∈ Rm.

Note with this notation, P(K) and D(K) denote the primal and dual problems of (1), respectively.
We call inf

{
〈c, x〉 : Ax = b, x ∈ C

}
the optimal value of P(C) and sup

{
〈b, y〉 : c−A∗y ∈ C∗, y ∈ Rm

}
the optimal value of D(C). Moreover, we say P(C) satisfies Slater’s condition if {x ∈ V : Ax =
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b}∩relint C is non-empty. Similarly, D(C) satisfies Slater’s condition if {c−A∗y : y ∈ Rm}∩relint C∗
is non-empty.

We also call x ∈ C an improving ray for P(C) if Ax = 0 and 〈c, x〉 < 0. Similarly, we call (s, y) ∈
C∗ × Rm an improving ray for D(C) if 〈b, y〉 > 0 and s = −A∗y. Note existence of an improving
ray for P(C) implies infeasibility of D(C), and vice-versa. Finally, we call (x, s, y) ∈ C × C∗ ×Rm a
complementary solution for P(C) and D(C) if x is primal feasible, (s, y) is dual feasible and they
satisfy 〈c, x〉 = 〈b, y〉, or equivalently, 〈x, s〉 = 0. Note if (x, s, y) is a complementary solution, then
x is primal optimal and (s, y) is dual optimal.

2.3 Facial reduction certificates

A facial reduction certificate is a normal vector to a particular type of hyperplane. It is defined in
terms of a cone C ⊆ V and either the primal problem P(C) or dual problem D(C).

Definition 2. For a non-empty, closed, convex cone C ⊆ V, and the problem data A : V → Rm,
b ∈ Rm and c ∈ V of (1), define facial reduction certificates as follows:

• Call s ∈ C∗ a facial reduction certificate for P(C) if the hyperplane s⊥ contains the affine set
{x ∈ V : Ax = b} and C ∩ s⊥ ⊆ C holds strictly.

• Call x ∈ C a facial reduction certificate for D(C) if the hyperplane x⊥ contains the affine set
{c−A∗y : y ∈ Rm} and C∗ ∩ x⊥ ⊆ C∗ holds strictly.

A facial reduction certificate for P(C) exposes a proper face of C containing the feasible set of
P(C). Similarly, a facial reduction certificate for D(C) exposes a proper face of C∗ containing the
set of dual feasible slacks for D(C). Hence, existence of these certificates imply failure of Slater’s
condition for P(C) or D(C). For feasible problems, the converse is also true: a facial reduction
certificate exists if Slater’s condition fails. Specifically, the following is well-known.

Proposition 1. Let C ⊆ V be a non-empty, closed, convex cone. The following statements hold.

• Suppose the primal problem P(C) is feasible. A facial reduction certificate for P(C) exists if
and only if {x ∈ V : Ax = b} ∩ relint C is empty.

• Suppose the dual problem D(C) is feasible. A facial reduction certificate for D(C) exists if
and only if {c−A∗y : y ∈ Rm} ∩ relint C∗ is empty.

(See, e.g., Lemma 2 of [25] for a proof, and Theorem 7.1 of [5], Lemma 12.6 of [6], or Lemma 1 of
[22] for closely-related statements.)

Facial reduction certificates are also solutions to conic feasibility problems (so-called auxiliary
problems). Indeed, a hyperplane contains a non-empty affine set if and only if it has a normal
vector satisfying certain linear equations. Hence, the set of facial reduction certificates for P(C) or
D(C) is defined by particular linear and conic constraints:

Proposition 2. Let C ⊆ V be a non-empty, closed, convex cone. The following statements hold.

• s ∈ V is a facial reduction certificate for P(C) if there exists y ∈ Rm for which

〈b, y〉 = 0, s = −A∗y, s ∈ C∗ \ C⊥,

and all facial reduction certificates are of this form if {x ∈ V : Ax = b} is non-empty.
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• x ∈ V is a facial reduction certificate for the dual problem D(C) if

〈c, x〉 = 0, Ax = 0, x ∈ C \ (C∗)⊥,

and all facial reduction certificates are of this form (since {c−A∗y : y ∈ Rm} is non-empty).

Note the constraint x ∈ C \ (C∗)⊥ is satisfied if and only if x ∈ C and x has non-zero inner-product
with any point in relint C∗, and similarly for s ∈ C∗ \ C⊥.

Optimal facial reduction certificates. Faces exposed by facial reduction certificates are partially-
ordered by set inclusion. Thus, there is a natural notion of optimality for certificates. Formally:

Definition 3. Let C ⊆ V be a non-empty, closed, convex cone. Let Zp ⊆ V denote the set of facial
reduction certificates for P(C) and Zd ⊆ V the set of facial reduction certificates for D(C).

• s ∈ Zp is an optimal facial reduction certificate for P(C) if C ∩ s⊥ satisfies

C ∩ s⊥ ⊆ C ∩ ŝ⊥ for all ŝ ∈ Zp.

• x ∈ Zd is an optimal facial reduction certificate for D(C) if C∗ ∩ x⊥ satisfies

C∗ ∩ x⊥ ⊆ C∗ ∩ x̂⊥ for all x̂ ∈ Zd.

If facial reduction certificates exist, then so do optimal ones. Since facial reduction certificates are
closed under addition, this follows easily from the following identities

C ∩ (s1 + s2)⊥ = C ∩ s⊥1 ∩ s⊥2 , C∗ ∩ (x1 + x2)⊥ = C∗ ∩ x⊥1 ∩ x⊥2 ,

which hold for any s1, s2 ∈ C∗ and x1, x2 ∈ C. Hence, the sum of a maximal set of linearly
independent certificates for P(C) is an optimal certificate for P(C), and similarly for D(C).

2.4 Facial reduction algorithms

A facial reduction algorithm regularizes the primal problem P(K) of (1) by finding a sequence of
facial reduction certificates for P(Fi), where each Fi is a face of K. Similarly, it regularizes the dual
problem D(K) using a sequence of facial reduction certificates for dual problems defined by faces
of K∗. We explain the basic idea using the primal problem, and then summarize how it extends to
the dual. Additional details can be found in [5, 22, 33].

Facial reduction of the primal problem. Suppose we had a facial reduction certificate z ∈ K∗
for P(K). Replacing K with the face K ∩ z⊥ yields a new primal-dual pair

minimize 〈c, x〉
subject to Ax = b

x ∈ K ∩ z⊥

maximize 〈b, y〉
subject to c−A∗y = s

s ∈ (K ∩ z⊥)∗, y ∈ Rm,
(3)

where the primal problem P(K ∩ z⊥) and the original P(K) have the same feasible set and equal
optimal values (since, by Definition 2, the hyperplane z⊥ contains all solutions to Ax = b). We
can, of course, repeat this process. For an integer dP > 0, consider the recursion

F0 = K, Fi = Fi−1 ∩ z⊥i i ∈ {1, . . . , dP },
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where zi ∈ F∗i−1 is a facial reduction certificate for P(Fi−1). If C is replaced with any face Fi in
this recursion, the primal problem P(Fi) and the original P(K) also have the same feasible set
and equal optimal values, given that each hyperplane z⊥i contains all solutions to Ax = b. We call
replacement of K with one of these faces primal regularization.

Facial reduction algorithms compute the recursion Fi = Fi−1 ∩ z⊥i and terminate when a facial
reduction certificate for P(Fi) does not exist. If optimal certificates zi are used, the length dP of
the sequence F0, . . . ,FdP

is unique and does not depend on the specific certificates zi. This length
is called the singularity degree of P(K). If P(K) is feasible, the last face FdP

in the sequence is
called the minimal face of P(K). One can show if P(K) is feasible, the regularized problem P(FdP

)
satisfies Slater’s condition, and if P(K) is infeasible, the dual D(FdP

) of the regularized primal
problem has an improving ray.

Facial reduction of the dual problem. The dual problem D(K) of (1) is regularized in a
similar way. Given a facial reduction certificate z ∈ K for D(K), one can reformulate (1) as:

minimize 〈c, x〉
subject to Ax = b

x ∈ (K∗ ∩ z⊥)∗

maximize 〈b, y〉
subject to c−A∗y = s

s ∈ K∗ ∩ z⊥, y ∈ Rm,
(4)

where K∗ has been replaced with the face K∗ ∩ z⊥. Since the hyperplane z⊥ contains all vectors of
the form c − A∗y, the dual problem D

(
(K∗ ∩ z⊥)∗

)
and the original D(K) have the same feasible

set and equal optimal values. As with P(K), we can repeat this process to identify a sequence of
faces containing the set of dual feasible slacks. Replacement of K∗ with one of these faces is called
dual regularization. The singularity degree and minimal face of D(K) is defined similarly.

2.5 Primal-dual facial reduction asymmetry

While a facial reduction algorithm leaves the feasible set of the input problem unchanged, the same
is not true for the corresponding Lagrangian dual problem—in other words, facial reduction is
asymmetric with respect to duality. Compare the primal-dual pair (1) with the primal-regularized
pair (3). While the primal feasible sets are the same, the dual feasible set of (3) is potentially
larger. An analogous statement holds when comparing (1) with the dual-regularized pair (4); while
the dual feasible sets are the same, the primal feasible set of (4) is potentially larger. Hence, by
solving (3) or (4), one won’t (generally) find solutions to both the primal P(K) and dual D(K).

2.6 Connections with our approach

In this paper, we show optimal facial reduction certificates can be obtained from the homogeneous
model when complementary solutions or improving rays do not exist. This allows us to perform
primal or dual regularization and resolve the homogeneous model, repeating until a complementary
solution or improving ray is obtained. In addition, complementary solutions and improving rays
will always be obtained when they exist, even if facial reduction certificates exist as well. As a
consequence, we can find complementary solutions without having to first identify the minimal
face—i.e., we do not have to regularize until Slater’s condition holds. Towards making these
statements precise, we now study homogeneous models in more detail.

3 Solutions to homogeneous models
In this section, we study the solution set of the homogeneous model:
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Definition 4. For a non-empty, closed, convex cone C ⊆ V, and the problem data A : V → Rm,
b ∈ Rm and c ∈ V of (1), define H(C) as the convex cone of solutions (x, s, y, τ, κ) to the system:

Ax− bτ = 0,
−A∗y − s+ cτ = 0,

〈b, y〉 − 〈c, x〉 − κ = 0,
(x, s, y, τ, κ) ∈ C × C∗ × Rm × R+ × R+.

(5)

Note if C = K, then H(C) equals the solution set of the homogeneous model (2). Allowing C to
differ from K is convenient for stating an algorithm in the next section.

Not every point in H(C) provides information about the primal-dual pair P(C) and D(C);
indeed, H(C) contains the zero vector. We therefore focus on two subsets of H(C) whose points
all provide information. We classify points in these subsets based on τ and κ, leveraging the fact
τκ = 0; that is, for (x, s, y, τ, κ) ∈ H(C),

0 ≤ 〈x, s〉 = 〈x, cτ −A∗y〉 = τ(〈c, x〉 − 〈b, y〉) = −τκ ≤ 0. (6)

In other words, for each subset, we consider the three cases τ > 0, κ > 0 and τ = κ = 0, providing
novel insight into this latter case.

The first subset of interest is the relative interior of H(C). Our main result (Theorem 1) implies
the results of Table 1—specifically, it shows points in the relative interior yield complementary
solutions when τ > 0, improving rays when κ > 0, and optimal facial reduction certificates when
τ = κ = 0. Specialized to SDP, this expands analysis of [8, 7].

We next consider the subsetM∩H(C) whereM is a distinguished type of hyperplane introduced
in Ye et al. [35] and studied in Freund [10]. As with the relative interior, points in this subset yield
complementary solutions when τ > 0 and improving rays when κ > 0. When τ = κ = 0, we obtain
either an improving ray or a facial reduction certificate; in other words, we obtain a certificate
Slater’s condition has failed.

Finally, we show how to find points in both subsets by solving the extended-embedding of Ye
et al. [35]—a strictly feasible conic problem with strictly feasible dual.

3.1 The relative interior

The following theorem classifies (x, s, y, τ, κ) ∈ relint H(C) by the values of τ and κ. A corollary
follows restating key statements in terms of complementary solutions, improving rays and facial
reduction certificates for the primal-dual pair given by P(C) and D(C). The key observation for the
case of τ = κ = 0 is the following: if (x, s, y, 0, 0) ∈ H(C), then, by inspection, so is at least one of
the points (0, s, y, 0, 〈b, y〉) or (x, 0, 0, 0,−〈c, x〉). This will imply 〈c, x〉 = 〈b, y〉 = 0 when τ = κ = 0
holds for points in the relative interior.

Theorem 1. Let C ⊆ V be a non-empty, closed, convex cone and suppose (x, s, y, τ, κ) ∈ relint H(C).
Then, the complementarity condition τκ = 0 holds. In addition,

1. If τ > 0, then 1
τ (Ax) = b and 1

τ (A∗y + s) = c, and 〈b, y〉 = 〈c, x〉.

2. If κ > 0, then Ax = 0, A∗y + s = 0 and 〈b, y〉 > 〈c, x〉.

3. If τ = κ = 0, then τ̂ = κ̂ = 0 and 〈c, x̂〉 = 〈b, ŷ〉 = 0 for all (x̂, ŝ, ŷ, τ̂ , κ̂) ∈ H(C). Further,
letting Fp := C ∩ s⊥, Fd := C∗ ∩ x⊥, Ap := {x ∈ V : Ax = b} and Ad := {c−A∗y : y ∈ Rm},

(a) The hyperplane s⊥ contains Ap;
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(b) The hyperplane x⊥ contains Ad;
(c) The face Fp is proper if and only if Ap ∩ relint C is empty;
(d) The face Fd is proper if and only if Ad ∩ relint C∗ is empty;
(e) At least one of the faces Fp or Fd is proper;
(f) The inclusion Fp ⊆ C ∩ ŝ⊥ holds for all ŝ ∈ C∗ satisfying Ap ⊆ ŝ⊥;
(g) The inclusion Fd ⊆ C∗ ∩ x̂⊥ holds for all x̂ ∈ C satisfying Ad ⊆ x̂⊥.

Proof. We only prove the third statement, noting the first two are well-known and follow easily from
the complementarity condition τκ = 0 implied by (6). To begin, let w := (x, s, y, τ, κ) ∈ relint H(C)
and assume τ = κ = 0. Now pick arbitrary ŵ := (x̂, ŝ, ŷ, τ̂ , κ̂) ∈ H(C). First note τ̂ = κ̂ = 0;
otherwise, we’d have w − αŵ 6∈ H(C) for every α > 0, contradicting the fact w ∈ relint H(C).
Since κ̂ = 0, it follows 〈c, x̂〉 − 〈b, ŷ〉 = 0, i.e., that 〈c, x̂〉 = 〈b, ŷ〉. We’ll now tighten this to
〈c, x̂〉 = 〈b, ŷ〉 = 0. To begin, let θ̂ := 〈c, x̂〉 = 〈b, ŷ〉. By inspection, at least one point—(0, ŝ, ŷ, 0, θ̂)
or (x̂, 0, 0, 0,−θ̂)—is in H(C). But as just argued, the κ-coordinate of any point in H(C) must be
zero. We conclude θ̂ = 0; hence 〈c, x̂〉 = 〈b, ŷ〉 = 0, as desired. We now use this to show statements
(3a)-(3b).

To see (3a)-(3b), first note that 〈x̂, s〉 = −〈x̂, A∗y〉 = −〈b, y〉 = 0 for all solutions x̂ of Ax = b.
Hence, the solution set {x ∈ V : Ax = b} is contained in the hyperplane s⊥. Likewise, 〈x, ŝ〉 =
〈c, x〉 = 0 for all ŝ ∈ {c−A∗y : y ∈ Rm}; hence, x⊥ contains {c−A∗y : y ∈ Rm}.

We now show (3d). One direction is trivial; if Ad is contained in a proper face of C∗, then
Ad∩ relint C∗ must be empty. For the converse direction, suppose Ad∩ relint C∗ is empty. The main
separation theorem (Theorem 11.3) of [29] states that a hyperplane exists properly separating these
sets. Using Theorem 11.7 of [29], we can additionally assume this hyperplane passes through the
origin since C∗ is a cone. In other words, there exists x̂ ∈ C∗∗ = C satisfying

〈x̂, c−A∗y〉 ≤ 0, ∀y ∈ Rm,
〈x̂, z〉 6= 0 for some z ∈ {c−A∗y : y ∈ Rm} ∪ C∗.

It follows that 〈c, x̂〉 ≤ 〈A∗y, x̂〉 for arbitrary y ∈ Rm, which implies Ax̂ = 0 and 〈c, x̂〉 ≤ 0. But
〈c, x̂〉 = 0, otherwise x̂ is an improving ray for P(C), and (x̂, 0, 0, 0,−〈c, x̂〉) ∈ H(C) with κ > 0.
Hence, the hyperplane x̂⊥ contains {c − A∗y : y ∈ Rm} implying 〈x̂, z〉 6= 0 for some z ∈ C∗ given
proper separation of the sets. That is, x̂ exposes a proper face of C∗. We now use x̂ to show that x
exposes a proper face of C∗ as claimed. Clearly, ŵ := (x̂, 0, 0, 0, 0) ∈ H(C). Since w is in the relative
interior of H(C), it holds that w ± αŵ ∈ H(C), and thus x ± αx̂ ∈ C, for some α > 0. Hence, for
any u ∈ C∗, the inequality 〈u, x± αx̂〉 ≥ 0 holds, which in turn implies 〈u, x̂〉 = 0 when 〈u, x〉 = 0.
In other words, C∗ ∩ x⊥ is contained in a proper face, i.e.,

C∗ ∩ x⊥ ⊆ C∗ ∩ x̂⊥, (7)

and is hence proper.
Applying the argument of the previous paragraph to the set Ap ∩ relint C shows (3c).
Statement (3e) follows if at least one of the sets—{x ∈ V : Ax = b} ∩ relint C or {c−A∗y : y ∈

Rm} ∩ relint C∗—is empty. Suppose this weren’t the case. Then, Slater’s condition is satisfied for
both P(C) and D(C) showing existence of an optimal primal-dual solution with zero duality gap [4,
Section 7.2.2]. Hence, there exists a point in H(C) with τ > 0, contradicting the assumption that
(x, s, y, τ, κ) is in the relative interior of H(C).

The same argument that shows the containment (7) shows (3f) and (3g).
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The following corollary arises simply from definitions. Variants of the first two statements (and
their converses) are well-known for semidefinite optimization [8, Theorem 5.3.2]. Note taking C = K
yields Table 1.
Corollary 1. Let C ⊆ V be a non-empty, closed, convex cone, and suppose (x, s, y, τ, κ) ∈ relint H(C).
The following statements hold for the primal-dual pair P(C) and D(C).

1. If τ > 0, then 1
τ (x, s, y) is a complementary solution for P(C) and D(C).

2. If κ > 0, then x is an improving ray for P(C) and/or (s, y) is an improving ray for D(C).

3. If τ = κ = 0, then x and/or s are facial reduction certificates.

Moreover, converses of the first two statements hold: if P(C) and D(C) have a complementary
solution, then τ > 0; if P(C) and/or D(C) have an improving ray, then κ > 0.
We now strengthen the third statement of Corollary 1, showing facial reduction certificates are
obtained for both problems if they both fail Slater’s condition. We then illustrate the second
statement does not have an analogous strengthening—that is, improving rays are not necessarily
obtained for both problems even if they exist.

Facial reduction certificates for the primal and dual. The third statement of Corollary 1
does not guarantee s and x are both facial reduction certificates when such certificates exist for both
primal and dual problems. Statements (3c)-(3d) of Theorem 1 provide this guarantee. Moreover,
statements (3f)-(3g) imply theses certificates are optimal. Formally:
Corollary 2. Let C ⊆ V be a non-empty, closed, convex cone, and suppose (x, s, y, τ, κ) ∈ relint H(C).
If τ = κ = 0, the following statements hold:
• The set {x ∈ V : Ax = b} ∩ relint C is empty if and only if s is a facial reduction certificate
for P(C).

• The set {c−A∗y : y ∈ Rm}∩ relint C∗ is empty if and only if x is a facial reduction certificate
for D(C).

Moreover, if x (resp. s) is a facial reduction certificate, then x (resp. s) is optimal in the sense of
Definition 3.
This corollary can be compared to Proposition 1 (the basis of the facial reduction algorithm [22]),
which asserted that, for feasible problems, existence of facial reduction certificates is equivalent
to failure of Slater’s condition. Also note optimality of certificates is ensured by the restriction
to relint H(C); note that [31, Procedure 1] and [33, Algorithm 4.1] find optimal certificates using
similar restrictions.

The next example illustrates the first two statements of Corollary 2. Here, the primal-dual pair
has finite but non-zero duality gap. This implies τ = κ = 0 for all points in relint H(C) and that
Slater’s condition fails for both the primal and dual.

Example 1 (Example from [2] with positive duality gap.). Let Qn :=
{
x1 ≥

√∑n
i=2 x

2
i

}
denote

the quadratic (Lorentz) cone. The following primal-dual pair has a positive duality gap of 1:

minimize x3
subject to x1 + x2 + x4 + x5 = 0

−x3 + x4 = 1
x ∈ Q3 ×Q2

maximize y2

subject to
( 0

0
1
0
0

)
−

 y1
y1
−y2
y1+y2
y1

 = s

s ∈ Q3 ×Q2.
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Indeed, if x ∈ Q3 ×Q2, then x1 + x2 ≥ 0 and x4 + x5 ≥ 0; if, in addition, x1 + x2 + x4 + x5 = 0,
then x1 + x2 = 0, implying x3 = 0 if (x1, x2, x3) ∈ Q3. On the other hand, dual feasible points
satisfy s1 = s2, which in turn implies s3 = 0, i.e., y2 = −1. Since both problems are feasible, the
duality gap is 0− (−1) = 1.

Since there is a duality gap of 1, any point in relint H(Q3 ×Q2) satisfies τ = κ = 0, e.g.,

x̂ = (1,−1, 0, 0, 0)T , ŝ = (1, 1, 0, 1, 1)T , ŷ = (−1, 0)T , τ̂ = κ̂ = 0.

We see ŝ and x̂ are facial reduction certificates for the primal and dual, as predicted by Corollary 2.

Improving rays for the primal and dual. Statement two of Corollary 1 does not guarantee
s and x are both improving rays when such rays exists for both primal and dual problems. Unfor-
tunately, this statement cannot be strengthened—in the κ > 0 case, there are instances for which
relative interior points do not yield improving rays for both problems, even if these rays exist.
This is a known shortcoming of the homogeneous self-dual model that occurs even in the linear
programming case (see, e.g., [35]). The following example illustrates this shortcoming:
Example 2. Consider the following primal-dual pair of linear programs

minimize −x1
subject to x1 − x2 = 0

−(x1 − x2) = 1
x ∈ R2

+

maximize y2

subject to
(−1

0
)
−
(

y1−y2
−(y1−y2)

)
= s

s ∈ R2
+,

where both the primal and dual problem are infeasible. Indeed, the point (x̂, ŝ, ŷ, τ̂ , κ̂) ∈ relint H(R2
+)

yields an improving ray x̂ for the primal and an improving ray ŷ for the dual, where

x̂ = (1, 1)T , ŝ = (0, 0)T , ŷ = (1, 1)T , τ̂ = 0, κ̂ = 2.

Nevertheless, the entire family of points:

x̃ = (r, r)T , s̃ = (0, 0)T , ỹ = (t, t)T , τ̃ = 0, κ̃ = r + t, for r > −t ≥ 0,

are also in the relative interior of solutions to the homogeneous model, and only give improving
rays for the primal problem.
Note this example illustrates one cannot in general decide infeasibility of the primal and dual from
a single point in relint H(C) with κ > 0. We will revisit this issue in Section 4.3, as it complicates
a presented solution algorithm for finding optimal values.

3.2 The intersection with distinguished hyperplanes

The next subset of H(C) of interest is its intersection with a distinguished type of hyperplane. Such
a hyperplane M is defined by µ > 0 and a fixed point (x̂, ŝ, τ̂ , κ̂) ∈ relint(C × C∗ × R+ × R+) via

M := {(x, s, y, τ, κ) : 〈ŝ, x〉+ 〈x̂, s〉+ τ̂κ+ κ̂τ = µ}.

For a particular µ, membership in M is an implicit constraint of the extended-embedding of [35].
Also, as shown in [10], it can be interpreted as a norm constraint on (x, s, τ, κ) ∈ C ×C∗×R+×R+
when C is a proper cone, i.e., a cone that is full-dimensional, pointed, convex, and closed.

As we now show, from (x, s, y, τ, κ) ∈ H(C)∩M , one always obtains one of the following objects:
a complementary solution or a certificate that the primal or dual has failed Slater’s condition. As
with relint H(C), complementary solutions are obtained when τ > 0 and improving rays when
κ > 0. The case of τ = κ = 0, however, is now more delicate: we either obtain a facial reduction
certificate or an improving ray. Facial reduction certificates are also not necessarily optimal.
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Theorem 2. Let C ⊆ V be a non-empty closed, convex cone. For a scalar µ > 0 and point
(x̂, ŝ, τ̂ , κ̂) in the relative interior of C × C∗ × R+ × R+ consider the hyperplane

M := {(x, s, y, τ, κ) : 〈ŝ, x〉+ 〈x̂, s〉+ τ̂κ+ κ̂τ = µ}.

For (x, s, y, τ, κ) ∈M ∩H(C), the complementarity condition τκ = 0 holds. In addition,

1. If τ > 0, then 1
τ (x, s, y) is a complementary solution of P(C) and D(C).

2. If κ > 0, then x is an improving ray for P(C) and/or (s, y) is an improving ray for D(C).

3. If τ = κ = 0, at least one of the following statements is true:

(a) x is an improving ray for P(C)
(b) (s, y) is an improving ray for D(C)
(c) x is a facial reduction certificate for D(C), i.e., C∗ ∩ x⊥ ⊆ C∗ holds strictly and the

hyperplane x⊥ contains Ad := {c−A∗y : y ∈ Rm}.
(d) s is a facial reduction certificate for P(C), i.e., C ∩ s⊥ ⊆ C holds strictly and the hyper-

plane s⊥ contains Ap := {x ∈ V : Ax = b}.

Proof. The first two statements are trivial from the complementarity condition τκ = 0. For the
third statement, we note from κ = 0 that 〈b, y〉 = 〈c, x〉 and consider the three cases: 〈b, y〉 =
〈c, x〉 > 0, 〈b, y〉 = 〈c, x〉 < 0 and 〈c, x〉 = 〈b, y〉 = 0. In the first case, its trivial to check that
(s, y) is an improving ray and in the second that x is an improving ray. In the third case, where
〈c, x〉 = 〈b, y〉 = 0, it follows x⊥ and s⊥ contain Ad and Ap, respectively; see the proof for statements
(3a)-(3b) of Theorem 1. In addition, at least one exposes a proper face since τ = κ = 0 implies
〈ŝ, x〉+ 〈x̂, s〉 = µ > 0; that is, the face exposed by x⊥ doesn’t contain ŝ if 〈ŝ, x〉 > 0 and the face
exposed by s⊥ doesn’t contain x̂ if 〈x̂, s〉 > 0.

We conclude with descriptions of relint(M∩H(C)). We’ll use this description in the next section
to find points in relint H(C).

Theorem 3. Let C ⊆ V be a non-empty closed, convex cone. For a scalar µ > 0 and point
(x̂, ŝ, τ̂ , κ̂) in the relative interior of C × C∗ × R+ × R+ consider the hyperplane

M := {(x, s, y, τ, κ) : 〈ŝ, x〉+ 〈x̂, s〉+ τ̂κ+ κ̂τ = µ}.

The following statements hold:

1. relint
(
M ∩H(C)

)
= M ∩ relint H(C)

2. The conic hull of M ∩ relint H(C) equals relint H(C).

Proof. We first show the second statement. The inclusion ⊆ is trivial: since M ∩ relint
(
H(C)

)
is a

subset of relint H(C), its conic hull is contained in relint H(C) since relint H(C) is a cone. For the
reverse, let (x, s, y, τ, κ) ∈ relint H(C). By Corollary 1, τ > 0, κ > 0, s /∈ C⊥ or x /∈ (C∗)⊥. Hence,
the sum 〈x̂, s〉 + 〈x, ŝ〉 + τ̂κ + τ κ̂ equals some positive number, say, α. It follows λ(x, s, y, τ, κ) ∈
M ∩ relint H(C) for the strictly positive number λ = µ

α by the fact relint H(C) is a cone.
The second statement implies M ∩ relint H(C) is non-empty; hence, the first statement follows

from Corollary 6.5.1 of [29].
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Remark 1. Note the special structure ofM is crucial to statements (3c) and (3d) of Theorem 2. If,
for instance, we replacedM with an arbitrary hyperplane, the inclusions C∩s⊥ ⊆ C and C∗∩x⊥ ⊆ C∗
wouldn’t necessarily hold strictly. It is also crucial to Theorem 3: an arbitrary hyperplane doesn’t
necessarily intersect the relative interior of H(C).

3.3 Finding solutions via extended-embeddings

We now discuss how to find points in relint H(C) and M ∩H(C), where M is a hyperplane of the
distinguished type considered in Section 3.2. For convenience, we fix (x̂, ŝ, τ̂ , κ̂) ∈ relint(C × C∗ ×
R+ × R+) and define M as a function of µ:

M(µ) := {(x, s, y, τ, κ) : 〈ŝ, x〉+ 〈x̂, s〉+ τ̂κ+ κ̂τ = µ}. (8)

As shown in Ye et al. [35], points in M(〈x̂, ŝ〉 + τ̂ κ̂) ∩H(C) are obtained by solving an extended-
embedding. Hence, points inM(µ)∩H(C) for arbitrary µ > 0 can be obtained by rescaling solutions.
We’ll review this result and then build on it, showing points in relint H(C) are obtained from relative
interior solutions to the extended-embedding (which is not obvious).

Picking ŷ ∈ Rm and letting α = 〈ŝ, x̂〉+ τ̂ κ̂, the extended-embedding takes the following form

minimize αθ
subject to Ax− bτ = rpθ

−A∗y − s+ cτ = rdθ
〈b, y〉 − 〈c, x〉 − κ = rgθ

〈rp, y〉+ 〈rd, x〉+ rgτ = −α,

(9)

where (x, s, y, τ, κ, θ) ∈ C × C∗ × Rm × R+ × R+ × R is the decision variable and rp, rd, and rg are
additional parameters defined by (x̂, ŝ, ŷ, τ̂ , κ̂) via

rp = Ax̂− bτ̂ , rd = −A∗ŷ − ŝ+ cτ̂ , rg = 〈b, ŷ〉 − 〈c, x̂〉 − κ̂.

As shown in [35], the point (x̂, ŝ, ŷ, τ̂ , κ̂, 1) is strictly feasible; further, the optimal value is zero and
it is attained, implying θ = 0 at optimality. This latter property is easy to see from duality. Pre-
cisely, the dual problem is to maximize −αθ̄ over dual variables (x̄, s̄, ȳ, τ̄ , κ̄, θ̄) satisfying identical
constraints. Hence, an optimal solution, which exists by strict feasibility of (9) and its dual, can be
viewed as a dual optimal solution. We conclude αθ = −αθ at optimality since there is no duality
gap (by strict feasibility). This shows θ = 0 since α > 0.

Note if θ = 0, then the first three constraints of (9) reduce to the defining equations of H(C);
i.e., a point (x, s, y, τ, κ, θ) with θ = 0 satisfies these constraints if and only if (x, s, y, τ, κ) ∈ H(C).
For points in H(C), the remaining constraint is also equivalent to membership in M(α):

−α = 〈rp, y〉+ 〈rd, x〉+ rgτ

= 〈Ax̂− bτ̂ , y〉+ 〈−A∗ŷ − ŝ+ cτ̂ , x〉+ (〈b, ŷ〉 − 〈c, x̂〉 − κ̂)τ
= 〈−x̂,−A∗y + cτ〉 − 〈ŝ, x〉 − 〈ŷ, Ax− bτ〉 − τ̂(〈b, y〉 − 〈c, x〉)− κ̂τ
= −〈x̂, s〉 − 〈ŝ, x〉 − τ̂κ− κ̂τ.

It follows a feasible point (x, s, y, τ, κ, θ) is optimal if and only if θ = 0 and (x, s, y, τ, κ) ∈M(α) ∩
H(C)—a result originally due to [35]. We restate this as the first statement of the following theorem.
The second statement—which to our knowledge is new—describes the relative interior of the optimal
solution set of (9) in terms of relint H(C).
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Theorem 4. Let Ω×{0} ⊆ C ×C∗×Rm×R+×R+×R denote the set of optimal solutions of (9)
and M(µ) the hyperplane (8). For µ = α, the following statements hold:

1. Ω = M(µ) ∩H(C).

2. relint Ω = M(µ) ∩ relint H(C); in particular, the conic hull of relint Ω equals relint H(C).

Proof. The first statement is from [35]. The second follows immediately from the first statement
and Theorem 2.

Remark 2. Note the second statement is not a trivial consequence of the first; that is, for convex
sets C1 and C2, the relative interior of C1 ∩ C2 does not in general equal relint C1 ∩ relint C2, even if
one of these sets is affine.

In conclusion, we obtain points in M(α) ∩ H(C) and relint H(C) from points in Ω × {0} and
relint Ω × {0}, respectively. We also note when C is a symmetric cone (and the range of A equals
Rm), the central path of the extended-embedding exists and converges to a point in relint Ω× {0}
by strict feasibility and results of [13, 27]. Hence, for the cases of semidefinite, linear, and second-
order cone optimization, we can approximate points in relint Ω × {0}—and therefore points in
relint H(C)—using interior-point methods. We’ll investigate convergence behavior—focusing on
cases where τ = κ = 0 for all (x, s, y, τ, κ) ∈ H(C) in Section 5. We next develop a solution
algorithm assuming oracle access to H(C).

4 An algorithm based on homogeneous models
As we’ve shown, we always obtain complementary solutions, improving rays, or facial reduction
certificates from two subsets of H(C)—the relative interior of H(C) and, for a distinguished type of
hyperplane M , the set M ∩H(C). We’ve also seen facial reduction certificates are obtained from
relint H(C) precisely when they are needed—i.e., when complementary solutions or improving rays
don’t exist (Corollary 1). These facts suggest an iterative procedure that finds a point in relint H(C),
regularizes the primal or dual if necessary, and repeats until an improving ray or complementary
solution is obtained. In this section we develop such a procedure.

To design a useful procedure, one must make an upfront decision: should regularization leave
the primal or the dual optimal value unchanged? (Recall from Section 2.5 we cannot guarantee
both are unchanged.) In this section, we choose the former, stating an algorithm that finds a
cone C such that P(C) and P(K) have equal optimal values and a point (x, s, y, τ, κ) ∈ relint H(C)
satisfying τ > 0 or κ > 0. We then interpret (x, s, y, τ, κ) in terms of P(K), showing an optimal
solution is obtained when τ > 0 and a certificate of infeasibility when κ > 0 and 〈b, y〉 > 0. In
the remaining case where, κ > 0 and 〈b, y〉 ≤ 0, the primal problem P(K) is either unbounded or
infeasible. A trivial extension (given in Section 4.3) resolves this ambiguity. The procedure appears
in Algorithm 1.

4.1 Basic properties

As indicated, Algorithm 1 solves a sequence of homogeneous models, terminating when τ > 0 or
κ > 0. If τ = κ = 0, primal regularization is performed if s /∈ C⊥ and dual regularization is
performed otherwise. Note when τ = κ = 0, the condition s /∈ C⊥ holds if and only if P(C) fails
Slater’s condition—a consequence of Theorem 1-(3c). Hence, if necessary, this algorithm performs
primal regularization until P(C) satisfies Slater’s condition, then switches to dual regularization—
never switching back. Precise statements of this property and others follow.
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Algorithm 1: Given K, returns (x, s, y, τ, κ) ∈ relint H(C) satisfying τ > 0 or κ > 0 where
P(C) and P(K) have equal optimal values.
C ← K
repeat

Find (x, s, y, τ, κ) in the relative interior of H(C)
if τ > 0 or κ > 0 then

return (x, s, y, τ, κ)
else

if s /∈ C⊥ then
Regularize primal: C ← C ∩ s⊥

else
Regularize dual: C ← (C∗ ∩ x⊥)∗

end
end

until algorithm returns;

Theorem 5. Let Ap := {x ∈ V : Ax = b}, and let θp ∈ R ∪ {±∞} denote the optimal value of
P(K), i.e.,

θp := inf {〈c, x〉 : x ∈ Ap ∩ K} .

Algorithm 1 has the following basic properties:

1. Algorithm 1 terminates in finitely-many iterations. Further, it terminates after one iteration,
with C = K, if and only if a complementary solution, primal improving ray or dual improving
exists for the primal-dual pair P(K) and D(K).

2. At each iteration, the optimal values of the primal problem P(K) and the regularized problem
P(C) are equal, i.e.,

θp = inf {〈c, x〉 : x ∈ Ap ∩ C} .

3. Suppose the dual regularization step C ← (C∗ ∩x⊥)∗ executes, and let C′ and C′′ denote C just
before and after execution. The following statements hold:

(a) The primal problems P(C′) and P(C′′) satisfy Slater’s condition, that is, Ap ∩ relint C′
and Ap ∩ relint C′′ are both non-empty. Further, Ap ∩ relint C′ ⊆ Ap ∩ relint C′′.

(b) The primal regularization step C ← C ∩ s⊥ is not executed at any following iteration.

4. The dual regularization step C ← (C∗ ∩ x⊥)∗ executes if and only if one of the following
statements hold:

(a) The optimal value of P(K) is finite and unattained;
(b) The optimal value of P(K) is unbounded below (θp = −∞) and the set of improving rays
{x ∈ K : Ax = 0, 〈c, x〉 < 0} is empty.

5. At termination, Ap ∩ K ⊆ Ap ∩ C, and with strict inclusion only if (4a) or (4b) holds.

Proof. In arguments below, we call C ← C ∩ s⊥ the primal regularization step, and C ← (C∗ ∩ x⊥)∗
the dual regularization step. When one of these steps executes, we let C′ and C′′ denote the cone C
before and after execution, respectively.
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Statement 4. We will show P(C′) satisfies (4a) or (4b) when a dual regularization step executes.
Using this, we then show P(K) also satisfies (4a) or (4b). We use the following facts from Theorem 1:
when the dual regularization step executes, all points in H(C′) satisfy τ = κ = 0; and, when the
dual regularization step executes, no facial reduction certificate exists for P(C′) (since s ∈ C′⊥).

To begin, we first show P(C′) is feasible, and hence has finite optimal value or is unbounded
below. Suppose P(C′) is infeasible. If {x ∈ V : Ax = b} is empty, then there exists ŷ for which
〈b, ŷ〉 = 1 and A∗ŷ = 0. Hence (0, 0, ŷ, 0, 〈b, ŷ〉) is a point in H(C′) with κ > 0, which is a
contradiction. On the other hand, if {x ∈ V : Ax = b} is non-empty, there exists a hyperplane
properly seperating Ap := {x ∈ V : Ax = b} from the relative interior of C′. That is, there exists
ŝ ∈ C′∗ for which

〈ŝ, x〉 ≤ 0, ∀x ∈ x0 + nullA,
〈ŝ, z〉 6= 0 for some z ∈ (x0 + nullA) ∪ C′,

where x0 ∈ Ap and Ap = x0 + nullA. This implies ŝ ∈ (nullA)⊥ = rangeA∗. Hence, ŝ = −A∗ŷ
for some ŷ, where, evidently, 〈ŝ, x〉 = −〈b, ŷ〉 ≤ 0 for all x ∈ Ap. If 〈b, ŷ〉 = 0, then 〈ŝ, z〉 6= 0
for some z ∈ C′ by proper separation of the sets. Hence, ŝ is a facial reduction certificate which,
as mentioned above, cannot exist. On the other hand, if 〈b, ŷ〉 > 0, then (0,−A∗ŷ, ŷ, 0, 〈b, ŷ〉) is a
point in H(C′) with κ > 0, which is a contradiction. Hence, P(C′) must be feasible and either has
finite optimal value or an optimal value that is unbounded below.

We have established that P(C′) is feasible and that no facial reduction certificate for P(C′)
exists. Hence, by Proposition 1, P(C′) is strictly feasible. Now suppose that P(C′) has a finite
optimal value. Then, by Slater’s condition, the dual D(C′) of P(C′) has equal optimal value that
is attained. Hence, if P(C′) attains its optimal value, P(C′) has a complementary solution (x, s, y)
where (x, s, y, 1, 0) is a point in H(C′) with τ > 0; a contradiction. Suppose next the optimal value
equals −∞. If an improving ray x̂ray exists, then (x̂ray, 0, 0, 0,−〈c, x̂〉ray) is a point in H(C′) with
κ > 0; a contradiction. Hence, P(C′) satisfies (4a) or (4b).

We now show P(K) also satisfies (4a) or (4b). Consider the first time the dual regularization
step executes. Since the feasible sets of P(C′) and P(K) are equal, it trivially follows that P(K)
satisfies (4a) if P(C′) does. If P(C′) satisfies (4b), then P(K) is clearly unbounded. Suppose then
P(K) has an improving ray xray. Then, for any feasible point x0 and facial reduction certificate s
used by the primal regularization step,

0 = 〈s, x0 + xray〉 = 〈s, x〉ray.

Hence, xray ∈ C′ and is therefore an improving ray for P(C′), a contradiction.
For the converse direction, we will argue τ = κ = 0 holds at each iteration unless the dual

regularization step executes. Since the primal regularization step can execute only finitely many
times (since K is finite-dimensional), the converse direction therefore follows. To begin, suppose
the optimal value of P(K) is finite and unattained, i.e., suppose (4a) holds. Then τ = κ = 0 for all
(x, s, y, τ, κ) ∈ relint H(K); otherwise, either an improving ray would exist, contradicting finiteness,
or a complementary solution would exist, contradicting unattainment. Since the feasible sets of
P(C′) and P(K) are equal unless the dual regularization step executes, repeating this argument
shows τ = κ = 0 unless the dual regularization step executes. A similar argument shows the claim
assuming (4b).

Statement 3a. Strict feasibility of P(C′) was established in the proof of statement 4. This
implies P(C′′) is strictly feasible as shown by

Ap ∩ relint C′ ⊆ Ap ∩ relint(C′ + span x) = Ap ∩ relint(C′∗ ∩ x⊥)∗ = Ap ∩ relint C′′.
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Statement 3b. By (3a), if dual regularization is performed, then P(C′) satisfies Slater’s condition,
and continues to satisfy Slater’s condition at each ensuing iteration. Hence, a facial reduction
certificate s cannot exist at any ensuing iteration by Proposition 1.

Statement 1. Since K is finite dimensional, it trivially follows, using (3b), that both regulariza-
tion steps can execute only finitely many times. Hence, the algorithm must terminate. Corollary 1
implies termination in one iteration when complementary solutions or improving rays exist for P(K)
and D(K).

Statement 2. The optimal values of P(C′) and P(C′′) are equal when the primal regularization
step executes. Similarly, the optimal values of D(C′) and D(C′′) are equal when the dual regular-
ization step executes. Moreover, (3a) and Slater’s condition imply the optimal values of P(C′) and
D(C′) are equal when the dual regularization step executes. Combining these facts with (3b) shows
the optimal value of P(K) equals the optimal value of P(C) at every iteration.

Statement 5. When the primal regularization step executes, P(C′) and P(C′′) have equal feasible
sets since s is a facial reduction certificate for P(C′). When the dual regularization step executes,
the feasible set Ap ∩ C′ of P(C′) and the feasible set Ap ∩ C′′ of P(C′′) satisfy

Ap ∩ C′ ⊆ Ap ∩ C′ + span x = Ap ∩ (C′∗ ∩ x⊥)∗ = Ap ∩ C′′.

Combining these facts with (3b) shows Ap ∩K ⊆ Ap ∩ C. Since dual regularization is performed if
and only if (4a) or (4b) hold, the claim follows.

An illustration of the basic steps is given next on an infeasible problem with no improving ray.

Example 3 (Weak infeasibility). Consider the following primal-dual pair, where Q2+k
r = {(r, x) ∈

R2
+ × Rk : 2r1r2 ≥ xTx} denotes a rotated Lorentz cone:

minimize 0
subject to x1 = 0

x3 = 1
x4 = 1
x ∈ Q3

r × R+

maximize y2 + y3

subject to
( 0

0
0
0

)
−
( y1

0
y2
y3

)
= s

s ∈ Q3
r × R+.

(10)

Let K = Q3
r × R+. The primal problem is infeasible, but the dual problem has no improving ray.

The first iteration. At the first iteration, Algorithm 1 finds a point in relint H(K) satisfying
τ = κ = 0, e.g., (x̂, ŝ, ŷ, τ̂ , κ̂), where

x̂ = (0, 1, 0, 0), ŝ = (1, 0, 0, 0), ŷ = (−1, 0, 0), τ̂ = κ̂ = 0.

Since ŝ /∈ K⊥, Algorithm 1 regularizes the primal problem, reformulating it over K ∩ ŝ⊥ = {0} ×
R+ × {0} × R+. This yields a new primal-dual pair P(K ∩ ŝ⊥) and D(K ∩ ŝ⊥) :

minimize 0
subject to x1 = 0

x3 = 1
x4 = 1
x ∈ {0} × R+ × {0} × R+

maximize y2 + y3

subject to
( 0

0
0
0

)
−
( y1

0
y2
y3

)
= s

s ∈ R× R+ × R× R+.

The second iteration. At the next iteration, Algorithm 1 finds a point in relint H(K∩ ŝ⊥) satisfying
κ > 0, e.g., (x̃, s̃, ỹ, τ̃ , κ̃), where

x̃ = (0, 0, 0, 0), s̃ = (0, 0,−1, 0), ỹ = (0, 1, 0), τ̃ = 0, κ̃ = 1.
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Since κ > 0 the algorithm terminates. Note (s̃, ỹ) is an improving ray for D(K ∩ ŝ⊥) showing
infeasibility of P(K ∩ ŝ⊥) and hence of P(K) by Theorem 5, statement 5.

Theorem 5 states an iteration of dual regularization will be performed by Algorithm 1 iff the
primal optimal value is finite but unattained or the primal problem is unbounded but has no
improving ray. The next example illustrates this latter scenario.
Example 4 (An unbounded problem with no improving ray). Consider the following primal-dual
pair also over a rotated Lorentz cone:

minimize x3
subject to x1 = 1

x ∈ Q3
r

maximize y

subject to
( 0

0
1

)
−
( y

0
0

)
= s

s ∈ Q3
r .

(11)

The primal is unbounded but has no improving ray: if x and x+d are feasible, then d1 = 0; further,
if d ∈ Q3

r, then d3 = 0.
The first iteration. Algorithm 1 finds a point in relint H(Q3

r) satisfying τ = κ = 0, e.g.,
(x̂, ŝ, ŷ, τ̂ , κ̂), where

x̂ = (0, 1, 0), ŝ = (0, 0, 0), ŷ = 0, τ̂ = κ̂ = 0.
Since ŝ ∈ (Q3

r)⊥ = {0}3, the dual problem is regularized by replacing Q3
r with Q3

r ∩ x̂⊥:

minimize x3
subject to x1 = 1

x ∈ R+ × R2

maximize y

subject to
( 0

0
1

)
−
( y

0
0

)
= s

s ∈ R+ × {0}2.
(12)

The second iteration. A point in H(R+×R2) with κ > 0 is obtained, yielding a primal improving
ray. Since P(R+ × R2) is also feasible, we conclude it, and hence P(Q3

r), is unbounded.

4.2 Interpretation of outputs

Algorithm 1 returns a point (x, s, y, τ, κ) ∈ relint H(C) satisfying τ > 0 or κ > 0, where the optimal
value of the primal problem P(C) equals the optimal value of P(K), the problem of interest. By
Corollary 1, we obtain a complementary solution or an improving ray for P(C) and D(C) from the
output. How, then, does one interpret this output in terms of P(K)? We answer this with the
following corollary of Theorem 5.
Corollary 3. The following statements hold about the output (x, s, y, τ, κ) of Algorithm 1, where
Ap := {x ∈ V : Ax = b} and θp ∈ R ∪ {±∞} denotes the optimal value of P(K), i.e.,

θp = inf{〈c, x〉 : x ∈ Ap ∩ K}.

1. τ > 0 holds if and only if θp is finite. Further, θp is finite and attained if and only if τ > 0
and Algorithm 1 does not execute dual regularization steps.

2. κ > 0 holds if and only if P(K) is infeasible (θp =∞) or unbounded (θp = −∞).

3. If τ > 0, then θp = 1
τ 〈c, x〉 = 1

τ 〈b, y〉. If θp is attained, then 1
τ x is a solution of P(K).

4. If κ > 0 and 〈b, y〉 > 0, then P(K) is infeasible (θp =∞).

Note from this corollary, we can only conclude the optimal value of P(K) is not finite when κ > 0
and 〈b, y〉 ≤ 0; that is, in this situation, P(K) could be infeasible or it could be unbounded. Though
it is tempting to assume 〈b, y〉 > 0 whenever P(K) is infeasible—i.e., that (s, y) is a dual improving
ray—Example 2 of Section 3.1 illustrated this is not necessarily the case. Hence, more must be
done to distinguish unboundedness from infeasibility.
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4.3 A complete algorithm

As just indicated, one cannot determine the optimal value of P(K) from the output (x, s, y, τ, κ) of
Algorithm 1 if κ > 0 and the dual objective satisfies 〈b, y〉 ≤ 0; that is, P(K) could be unbounded or
it could be infeasible. Fortunately, there is a simple remedy: reexecuting Algorithm 1 after setting
the cost vector of P(K) to zero. That is, one can set c = 0 to obtain the following primal-dual pair:

minimize 0
subject to Ax = b

x ∈ K

maximize 〈b, y〉
subject to 0−A∗y = s

s ∈ K∗, y ∈ Rm,
(13)

and then reexecute Algorithm 1. The returned solution (x̂, ŝ, ŷ, τ̂ , κ̂) satisfies κ̂ > 0 if and only if the
primal problem of (13) is infeasible or unbounded (Corollary 3). However, as this problem cannot
be unbounded (since c = 0), it follows κ̂ > 0 if and only if K contains no solution to Ax = b—i.e.,
if and only if the original problem P(K) is infeasible. On the other hand, if κ̂ = 0, then P(K) must
have been unbounded.

Putting everything together, we get a complete algorithm for solving P(K):

Algorithm 2: Finds optimal value of P(K) and point attaining it if one exists.
Execute Algorithm 1 and let (x, s, y, τ, κ) denote the output
if τ > 0 or (κ > 0 and 〈b, y〉 > 0) then

return optimal value θp and point attaining θp (if one exists) using Corollary 3.
else

Re-execute Algorithm 1 with c = 0 and let (x̂, ŝ, ŷ, τ̂ , κ̂) denote the output.

return
{
∞ if κ̂ > 0 and τ̂ = 0; P(K) is infeasible.
−∞ if κ̂ = 0 and τ̂ > 0; P(K) is unbounded.

end

To conclude, we illustrate execution of Algorithm 2 with a simple example.
Example 5. Consider the following primal-dual pair, where Q2+k

r = {(r, x) ∈ R2
+ × Rk | 2r1r2 ≥

xTx} denotes a rotated Lorentz cone:
minimize −x2
subject to x1 = 0

x3 = 1
x4 = 1
x ∈ Q3

r × R+

maximize y2 + y3

subject to
( 0
−1
0
0

)
−
( y1

0
y2
y3

)
= s

s ∈ Q3
r × R+.

(14)

Here, the primal and dual problem are both infeasible, but no dual improving ray exists. Indeed,
all dual rays satisfy s2 = 0 and y3 ≤ 0; since, in addition, s2 = 0 implies y2 = 0, we conclude
y2 + y3 > 0 cannot hold. On the other hand, x = (0, 1, 0, 0) is a primal improving ray.

We now illustrate execution of Algorithm 2. Since a primal improving ray exists and no dual
improving ray exists, Algorithm 1 executes one iteration and returns (x, s, y, τ, κ) satisfying κ > 0
and 〈b, y〉 = 0. Since 〈b, y〉 = 0, the feasibility problem is constructed:

minimize 0
subject to x1 = 0

x3 = 1
x4 = 1
x ∈ Q3

r × R+

maximize y2 + y3

subject to
( 0

0
0
0

)
−
( y1

0
y2
y3

)
= s

s ∈ Q3
r × R+,
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which matches the primal-dual pair of Example 3. Algorithm 1 reexecutes on this primal-dual pair
(performing the steps illustrated in Example 3) and returns a point satisfying κ > 0. Since κ > 0,
Algorithm 2 reports the primal of (14) is infeasible.

5 Numerical experiments
We conclude with numerical experiments. Precisely, we evaluate tracking of the central path (of
the extended-embedding) to its limit point, which yields an element of relint H(K) by Theorem 4
and results of [13, 27]. We then verify the classification of (x, s, y, τ, κ) ∈ relint H(K) given by
Corollary 2: if τ = κ = 0 and the primal (resp. dual) fails Slater’s condition, then s (resp. x) is a
facial reduction certificate; we’ll also confirm there certificates are optimal on a subset of examples.
On the negative side, we show regularizing without significantly changing optimal values (a key
step of an Algorithm 1 implementation) can be difficult. We also illustrate tracking the central
path of the extended-embedding is hard for semidefinite programs described in Waki et al. [34]; we
attribute this to high singularity degree and significant failure of strict complementarity. Finally,
an approximate certificate is used to (informally) argue an instance of the DIMACS library [23] has
an unattained optimal value. This illustrates approximate facial reduction certificates can provide
useful insight, even if they cannot be used reliably for regularization.

To perform experiments, we have made trivial modifications to the interface of SeDuMi [30],
which already tracks the central path of the extended-embedding (though without maintaining the
slack variable s). We modify the interface to return a tuple (x, y, τ, κ); the point (x, cτ−A∗y, y, τ, κ)
then lies in relint H(K) to within tolerances achieved by SeDuMi. Each test case considered is a
semidefinite program (SDP), i.e., K equals Sn+, the cone of psd matrices of order n. Finally, in
reported results, ‖ · ‖ denotes the Frobenius norm when the argument is a matrix and the 2-norm
otherwise; λmin(·) denotes the smallest eigenvalue of its argument.

5.1 Approximate facial reduction certificates

Weak infeasibility library The first test cases are SDPs taken from the URL documented in
[14]. For each instance, c is strictly feasible for the dual and the primal is weakly infeasible (i.e.,
infeasible but with no dual improving ray). It follows τ = κ = 0 for (x, s, y, τ, κ) ∈ relint H(K).
Further, Corollary 2 implies s is facial reduction certificate and that x = 0. The tables below
confirm that these implications hold.

set of instances τ κ λmin(s) |〈b, y〉| ‖s‖ ‖x‖
weak_clean_10_10 4.8e−9 2.0e−8 7.3e−11 3.0e−7 5.6 1.9e−7
weak_messy_10_10 7.5e−8 6.7e−8 7.2e−10 1.1e−6 7.6 8.6e−7
weak_clean_20_10 1.3e−9 1.6e−8 1.9e−11 2.6e−7 5.3 1.7e−7
weak_messy_20_10 7.0e−8 4.0e−7 7.9e−10 4.5e−6 8.8 3.6e−6

(a) means
set of instances τ κ λmin(s) |〈b, y〉| ‖s‖ ‖x‖

weak_clean_10_10 4.4e−9 2.0e−8 9.1e−11 2.5e−7 3.7 1.6e−7
weak_messy_10_10 8.0e−8 7.0e−8 7.6e−10 1.3e−6 4.6 1.1e−6
weak_clean_20_10 1.8e−9 1.8e−8 3.1e−11 2.8e−7 4.9 1.9e−7
weak_messy_20_10 8.4e−8 4.5e−7 8.8e−10 3.7e−6 4.8 3.0e−6

(b) standard deviations
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Note in these tables, we report the mean and standard deviation taken over each set of instances,
which each contain 100 SDPs.

Finite but non-zero duality gaps Using Algorithm 12.3 of [6], we generated instances with
duality gap equal to 100. The other inputs to this algorithm are the number of equations m, the
order of the matrices n, the rank r1 of an optimal facial reduction certificate for the dual problem,
and an additional parameter p specifying structure of the constraint matrices. If (x, s, y, τ, κ) ∈
relint H(K), then τ = κ = 0 necessarily holds given the duality gap. Further, by Corollary 2, both
x and s are optimal facial reduction certificates, since both primal and dual problems fail Slater’s
condition. Results below show (approximate) facial reduction certificates are indeed found:

(n,m, p, r1) τ κ λmin(s) |〈b, y〉| ‖s‖ λmin(x) |〈c, x〉| ‖Ax‖ ‖x‖
(10, 10, 5, 5) 1.2e−6 2.3e−6 −8.1e−14 4.4e−6 5.8e2 −8.6e−14 2.2e−6 3.4e−4 1.7e3
(20, 20, 10, 5) 1.2e−6 1.3e−6 −2.6e−14 2.0e−6 7.8e2 −2.2e−13 6.9e−7 4.6e−4 1.3e3
(40, 40, 10, 5) 5.9e−7 5.2e−8 −4.0e−15 1.0e−7 6.3e1 −1.1e−13 4.9e−8 3.5e−4 8.0e2
(40, 40, 10, 10) 8.9e−7 3.1e−7 −7.4e−15 5.0e−7 3.0e2 −9.0e−14 1.9e−7 6.5e−4 1.0e3

Estimating rank as the number of eigenvalues larger than 1e−4 yields the following table, indicating
s and x are (approximate) optimal certificates, i.e., rank s = n− r1 − 1 and rank x = r1:

(n,m, p, r1) rank s rank x
(10, 10, 5, 5) 4 5
(20, 20, 10, 5) 14 5
(40, 40, 10, 5) 34 5
(40, 40, 10, 10) 29 10

Also note strict-complementarity fails modestly for these instances: rank s + rank x = n− 1. Sec-
tion 5.3 will illustrate large numerical error on instances failing this condition more severely.

5.2 Regularization using approximate certificates

Given an approximate point (x, s, y, τ, κ) ∈ relint H(K), an implementation of Algorithm 1 must
decide if τ > 0, κ > 0 or τ = κ = 0 for an actual point in relint H(K). For the case of SDP
(K = Sn+), it also must estimate the kernel of an actual facial reduction certificate; indeed, for
s ∈ K, the face K∩ s⊥ equals the set of psd matrices with range contained in the kernel of s by [3].

Example 6 below shows the computed optimal value can be sensitive to errors in these estimates.
In this example, we estimate τ and κ are actually zero if they’re less than a threshold Tτ,κ and
estimate eigenvalues of s are actually zero if they’re less than a threshold Tλ. Results for different
thresholds Tτ,κ and Tλ follow:

thresholds computed optimal value
Tτ,κ = 5e−5 3.148e−1

Tτ,κ = 5e−9, Tλ = 5e−4 1.0000 (agrees with actual value)
Tτ,κ = 5e−9, Tλ = 5e−6 ∞ (i.e., regularized problem is infeasible)

The mentioned example used to generate this table is now given.
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Example 6. We consider an SDP with optimal value 1 and a finite non-zero duality gap, given by

minimize 〈c, x〉
subject to 〈a1, x〉 = 1

〈a2, x〉 = 0
x ∈ S3

+,

(15)

where the data matrices c, a1 and a2 are defined in terms of an orthogonal matrix q ∈ R3×3 via:

q :=

 7/11 6/11 6/11
6/11 −9/11 2/11
−6/11 −2/11 9/11

 c := q

1 0 0
0 0 0
0 0 0

 qT , a1 := q

1 0 0
0 0 1
0 1 0

 qT , a2 := q

0 0 0
0 1 0
0 0 0

 qT .
The solver SeDuMi finds an approximate point in relint H(S3

+), given by τ = 7.945e−5, κ =
1.028e−5,

s =

 1.995 −2.993 −6.652e−1
−2.993 4.490 9.977e−1

−6.652e−1 9.977e−1 2.217e−1

 , x =

 1.518 5.060e−1 2.277
5.060e−1 1.687e−1 7.590e−1
2.277 7.590e−1 3.416

 .
Picking a threshold Tτ,κ = 5e−5, we estimate τ > 0 and κ = 0 and compute the optimal value:

1
τ
〈c, x〉 = 3.148e−1,

which significantly differs from the actual optimal value of (15).
On the other hand, taking Tτ,κ = 5e−9, we estimate τ = κ = 0 and interpret s and x as facial

reduction certificates. To regularize, we compute an eigenvalue decomposition
∑3
i=1 λiviv

T
i of s:

λ =

 4.416e−5
−1.857e−10

6.707

 , v1 =

 6.364e−1
5.455e−1

−5.455e−1

 v2 =

5.455e−1
1.818e−1
8.182e−1

 v3 =

−5.455e−1
8.182e−1
1.818e−1

 .
We then estimate a basis for the kernel of s by interpreting eigenvalues below a threshold Tλ as
zero. For Tλ = 5e−4, an estimated basis is u = (v1, v2), leading to the regularized SDP:

minimize 〈c, uxuT 〉
subject to 〈a1, uxu

T 〉 = 1
〈a2, uxu

T 〉 = 0
x ∈ S2

+.

Solving with SeDuMi, we compute an optimal value of 1.0000, which agrees with the actual optimal
value of (15). On the other hand, taking Tλ = 5e−6 yields u = (v2) and the SDP

minimize 〈c, uxuT 〉
subject to 〈a1, uxu

T 〉 = 1
〈a2, uxu

T 〉 = 0
x ∈ S1

+.

Solving with SeDuMi, we obtain a dual improving ray; hence, we incorrectly conclude (15) is infea-
sible.
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5.3 Error, singularity degree and strict complementarity

For the instances of Section 5.1, we were able to obtain ‘good’ approximations of facial reduction
certificates. The next set of instances, taken from [34], illustrate this is not always the case. For
the reported instances, the dual optimal value is finite but unattained. Hence, τ = κ = 0 holds for
all points in H(Sn+). As reported in Table 4, significant error in τ is observed on several instances:

Instance τ κ kp n rank x rank s
unboundDim1R2 1.2e−5 6.0e−9 3 7 0 2
unboundDim1R3 4.5e−7 3.4e−9 5 10 0 2
unboundDim1R4 4.3e−7 4.5e−9 7 13 0 2
unboundDim1R5 1.1† 1.8e−9 9 16 0 2
unboundDim1R6 9.8e−1† 2.5e−9 11 19 0 2
unboundDim1R7 7.9e−1† 5.2e−9 13 22 0 2
unboundDim1R8 7.2e−1† 3.6e−9 15 25 0 2
unboundDim1R9 6.9e−1† 3.6e−9 17 28 0 2
unboundDim1R10 6.6e−1† 9.2e−10 19 31 0 2

Table 4: kp denotes singularity degree of the primal; n the order of the semidefinite constraint;
rank x and rank s are actual values for any (x, s, y, τ, κ) ∈ relint H(Sn+). Large error is marked †.

We offer two explanations for this error based on this table. The first is the singularity degree kp
(see Section 2) of the primal problem (reported in [33]) is high. Note when singularity degree is
high, distance to feasibility (forward error) can be large even when residuals (backwards errors) are
small [31]. The other (related) explanation is the extent to which strict complementarity fails—
that is, the extent to which rank x+ rank s is less than n. For (x, s, y, τ, κ) ∈ relint H(Sn+), we see
rank x + rank s = 2 < n for each instance. Indeed, x is the zero matrix by Corollary 2 and strict
feasibility of the dual problem [34, Section 2] and the matrix s has rank two by [33, Section 5.2].

We remark singularity degree can be high and strict complementarity can fail even if P(Sn+)
and D(Sn+) have complementary solutions or improving rays. In other words, the suspected causes
of error can also occur when τ > 0 or κ > 0 holds in the relative interior of H(Sn+).

5.4 Difficult instances from the DIMACS library

Mittelmann [18] makes the following remark about two instances of the DIMACS SDP library [23]:
‘In the case of the hinf12 and hinf13 instances the results obtained by the various codes are
so different, that we cannot be sure whether these problems have in fact ever been solved.’

We’ll compile evidence the dual optimal value of hinf12 is finite and unattained, explaining the
difficulty of solving this instance. To make a more convincing argument, we obtain approximate
points in relint H(K) using both the self-dual solver of SDPT3v4.0 [32] and SeDuMi. Properties of
these points are summarized below:

Instance (solver) τ κ λmin(s) |〈b, y〉| ‖s‖ ‖x‖
hinf12 (SeDuMi) 1.5e−6 2.9e−8 4.1e−9 −1.5e−7 5.5e2 1.2e−6
hinf12 (SDPT3) 4.4e−11 1.4e−15 2.0e−15 −2.0e−15 2.5e1 3.6e−11

These approximate points suggest the following: by Corollary 1, no complementary solution or
improving ray exists (since τ ≈ 0 and κ ≈ 0); by Corollary 2, the primal fails Slater’s condition
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(since ‖s‖ 6= 0); by Corollary 2, the dual satisfies Slater’s condition (since ‖x‖ ≈ 0). Hence, these
approximate points suggest either the primal is weakly infeasible or the dual optimal value is finite
and unattained. But one can verify that e6e

T
6 ∈ S24

+ is primal feasible (where ei is a standard basis
vector of R24). Hence, we suspect the dual optimal value is finite and unattained.

6 Conclusions
We’ve unified the facial reduction algorithm of Borwein andWolkowicz with the self-dual embedding
of Goldman and Tucker, bringing together both techniques to, in principle, solve arbitrary conic
optimization problems. Implementing a suggested algorithm involves only conceptually-simple
modifications to solvers that track the central path of extended-embeddings (such as SeDuMi
[30]), and these modifications only affect solver execution when both complementary solutions and
improving rays do not exist. Nevertheless, numerical experiments illustrate significant practical
barriers: in practice, one obtains only approximate facial reduction certificates; optimal values can
be infinitely-sensitive to inexact regularization; and tracking the central-path can be difficult due
to loss of strict-complementarity. Further work is needed to better understand these barriers. We
also used approximate facial reduction certificates to make an informed conjecture about an SDP
instance from [23]. Clarifying the usefulness of such certificates is another topic for future research;
we note approximate certificates are used in [6] with backwards-stability guarantees.
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