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R&D of 3M Technologies towards the Realization of Exabit/s

Optical Communications

Toshio MORIOKA™ "%, Fellow, Yoshinari AWAJI'", Member, Yuichi MATSUSHIMA ',

SUMMARY  Research efforts initiated by the EXAT Initiative are de-
scribed to realize Exabit/s optical communications, utilizing the 3M tech-
nologies, i.e. multi-core fiber, multi-mode control and multi-level modula-
tion.

key words: optical communications, space-division multiplexing, multi-
core fiber, few-mode fiber, mode-division multiplexing

1. Introduction

Over the last thirty years, the optical communication tech-
nologies on which the present communication networks are
based have enabled an increase in transmission capacity per
fiber by more than four orders of magnitude driven by ma-
jor technological innovations such as ultrafast time-division
multiplexing (TDM) electrical circuits, wavelength-division
multiplexing (WDM)/Erbium-doped fiber amplifiers (ED-
FAs) and digital coherent technology as shown in Fig. 1, re-
alizing the capacity increase from 400 Mbit/s to 8 Thit/s per
fiber. If we assume that the data traffic continues to increase
by 40-50% per year, a capacity increase by four to five orders
of magnitude is expected for the next thirty years although
the present optical communication systems based on single-
mode fibers (SMFs) have a fundamental capacity limit of
100 Thit/s per fiber. Therefore, it was obvious in mid 2000s
that we need to start developing novel optical transmission
lines (fibers) and transmission technologies to support well
over Pbit/s capacity per fiber and Ebit/s throughput in the
core networks to realize Tbit/s access speed per user [1]-[6].

This article reviews innovative research efforts to meet
this challenge initiated by a Japanese research initiative,
EXAT (EXtremely Advanced Transmission) Initiative, the
first of its kind in the world, which started as early as in
2008 and has lead the world research since then, making
major technological milestones [2]. Firstly, physical lim-
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Fig.1 Evolution of transmission capacity per fiber.

its of the present optical communication systems are briefly
identified. Secondly, the EXAT Initiative and the 3M tech-
nologies it proposes are described. Thirdly, recent progress
in SDM technologies is briefly reviewed focusing on novel
multi-core fibers (MCFs) which originated in Japan, and
transmission demonstration using them. Lastly, future per-
spectives towards more capacity and commercialization are
described.

2. Physical Limits of Present Optical Communication
Systems

Transmission capacity per fiber is a good measure of optical
network capacity and has been rapidly approaching its limit
of 100 Tbit/s as depicted in Fig. 1 where there are three major
physical limiting factors, which are optical nonlinear effects
in optical fibers, bandwidths of optical amplifiers, and fiber
fuse phenomenon where the fiber core melt-down occurs and
propagates towards the optical source, destroying the whole
systems.

As shown in Fig.2, the total transmission capacity is
defined by a product of spectral efficiency (SE) and a sig-
nal bandwidth. The SE is in fact limited by a theoretical
limit called “Shannon limit” curve (shown in the left inset of
the figure) which is further limited by the signal distortion
caused by various optical nonlinear effects, resulting in a
theoretical maximum peak. These nonlinear phenomena in-
clude self-phase modulation (SPM), cross-phase modulation
(XPM), four-wave mixing (FWM) etc. generated in optical
fibers, which cause the maximum transmission capacity of
the present single-mode fiber to be around 100 Tbit/s. The

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers
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Fig.2  Total capacity and its limiting factors.

amplifier bandwidths are also limited, to around 40 nm in the
case of rare-earth doped fiber amplifiers and around 100 nm
for Raman amplifiers. Presently, low-loss 1.5 um bands of
C-band (1530 nm-1565 nm) or L-band (1565 nm—1625 nm)
are being used for long haul transmission systems. The total
amplifier bandwidth including S-band (1460 nm—1530 nm)
or including all the other bands in the communication bands,
i.e., O-band, E-band, S-band, U-band, amounts to around
15 THz, or 60 THz, respectively, resulting in the maximum
potential capacity of around 150 Tbit/s, or 600 Tbit/s, if we
assume an SE of 5 bit/s/Hz per polarization. However, the
optical power limitation from the fiber fuse determines the
ultimate capacity. It should be noted that recently devel-
oped distributed Raman amplifier systems requiring pump-
ing powers of several hundred mW up to W pause a big
challenge where their pump powers are approaching the fiber
fuse propagation threshold of around 1.2~1.5W.

3. EXAT Initiative and 3M Technologies
3.1 EXAT Initiative

A collaborative study group called “EXAT (EXtremely
Advanced Transmission) Initiative” was organized in Jan-
uary 2008 by NICT (the National Institute of Information and
Communications Technology, Japan), gathering 25 members
from industries, academia, and national institutes in order to
develop break-through technologies to substantially increase
the transmission capacity to well over Pbit/s per fiber. In
the Initiative, we focused on identifying ultimate physical
limitations, i.e., the amount of optical power (capacity) that
can be transmitted safely in optical fibers, the bandwidth
for optical amplification, and the capacity of optical sub-
marine cables systems limited by the electrical power con-
sumed by the optical amplifier repeaters. Most specifically,
we proposed the use of the last degree of freedom, “space”
for multiplexing and the need to develop new optical fibers
(MCFs [7], few-mode fibers (FMFs)) and new multiplexing
schemes, namely, space-division multiplexing (SDM) and
mode-division multiplexing (MDM) [8] as shown in Fig. 1.

Figure 3 summarizes how EXAT has developed and
evolved for the last nine years since 2008 as well as major
research activities around the world [9]-[40]. It should be
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noted that outside Japan, research has been more focused
on FMFs, and most MCFs including FM-MCFs have been
designed and fabricated in Japan. After its first period in
2008, it organized EXAT 2008, the first international sym-
posium of its kind in Tokyo in November, 2008, reporting
their work on new optical fibers and SDM technologies with
clear messages that there is a rapidly approaching limit of
the optical communication systems and that we need to de-
velop sustaining new technologies. The second term EXAT
Initiative in 2009 discussed specific technological issues to
tackle towards the creation of national projects. Each term
produced a report and a book entitled “Innovations in Opti-
cal Fiber Communications Technologies” were published in
2012 based on the reports [14]. The NICT EXAT Initiative
was then inherited by IEICE EXAT study group which was
established in 2010 and has continued its vigorous activities,
organizing 14 international workshops, symposia, including
EXAT 2008, EXAT 2013 and EXAT 2015.

The other important achievement by the EXAT initia-
tive is that it led to the creation of a series of Japanese national
projects to further develop the ideas proposed by EXAT. Fig-
ure 4 depicts three projects which are i-FREE (Innovative
Optical Fiber Technologies: 2010-2012), i-ACTION (Inno-
vative Optical Communication Infrastructure: 2011-2015)
and i-FREE? (Innovative Optical Fiber & Communication
Technology for Exa-bit Era with SDM: 2013-2018). In
2016, another new project “R&D of Space-Division Multi-
plexing Photonic Node” (2016-2020) started. Furthermore,
an EU-Japan coordinated R&D project on “Scalable And
Flexible optical Architecture for Reconfigurable Infrastruc-
ture (SAFARI)”(2013-2017) has been created linking the
Japanese EXAT community and the European related part-
ners, commissioned by the Ministry of Internal Affairs and
Communications (MIC) of Japan and EC Horizon 2020.
The Japanese national projects have been leading this most
advanced research field on SDM technologies in the world
especially MCF technologies, setting several world records
such as 1 Pbit/s transmission (2012) [23], 1 Ebit/s-km trans-
mission (2013) [26], [27], and 2 Pbit/s (2015) [19], [29].

3.2 Three-M (3M) Technologies

In the EXAT initiative of the first term (2008), we explored
new fibers making use of “space” dimension, which have
potentials of substantially increasing the transmission capac-
ity, and investigated two types of fibers, namely, multi-core
fibers (MCFs) and few-mode fibers (FMFs) or multi-mode
fibers (MMFs) depending on the number of modes they can
carry as shown in Fig.5. In MCFs, cores can be arranged
so that the propagation mode in each core is either coupled
with those in other cores (coupled) or not (un-coupled). In
FMFs/MMFs, different modes in a core normally couple
over some distances and therefore, multiple-input, multiple-
output (MIMO) is usually required.

Based on these new fibers, EXAT Initiative identified
three major fundamental technologies, namely, “Mutil-core
Fiber”, “Multi-mode Control” and “Multi-level Modula-
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Fig.3 Development of the EXAT Initiative since 2008.
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2 2 — E Fiber” and “Multi-mode Control”” as more than 30 core fibers
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- T When multiple independent modes in an FMF or MMF

are used as an independent channel, the scheme is partic-
ularly called MDM while in a broader sense, SDM refers
to transmission schemes based on MCFs or FMFs/MMFs.

(5] FMFs /MMFs
P Modez 7\ Mode 3 — More recently, even few-mode, multi-core fibers (FM-
. \ Y A R MCFs) have been demonstrated as a combination of the two
: ¥ — : fibers to further increase the transmission capacity [28], [31].
/ T The major new components for SDM are SDM multiplex-

ers (SDM-MUXs) to couple light from different cores or
different modes into SDM fibers, SDM fibers, SDM opti-
cal amplifiers to amplify SDM signals, SDM demultiplexers
(SDM-DEMUXS5), optical connectors/splicing as illustrated
tion”, which we call “3M technologies” [2], [41] as depicted in Fig.7. Major important characteristics of the passive
in Fig. 6. It should be noted that EXAT proposed the con- components are naturally low insertion loss, low core/mode

Fig.5 Schematics of multi-core fibers (MCFs) and few-mode fibers
(FMFs) or multi-mode fibers (MMFs).
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dependent loss, low crosstalk among modes/cores and wide
bandwidth to support WDM/SDM signals. Optical ampli-
fiers designed for SDM transmission are also a challenge
where low core/mode/wavelength dependent, wide band-
width amplification characteristics with high gain and low
noise figures (NFs) are desirable.

4. Recent Progress in SDM Technologies
4.1 SDM Fiber and SDM Amplifier Technologies

Figure 8 categorizes various SDM fibers [9]-[13], [18], [20],
[21], [31], [42]-[49]. So far, FMFs, single-mode (SM)-
MCFs (uncoupled, coupled) and FM-MCFs have mainly
been fabricated and tested in transmission experiments. The
main issue with FMFs is how the differential mode delay
(DMD) can be reduced to minimize the MIMO complex-
ity whereas that with SM-MCFs is how we can reduce the
inter-core crosstalk while increasing the number of cores for
higher capacity transmission.

Figure 9 summarizes recently fabricated high-count
SM-MCFs. The core layouts can be hexagonal close-packed
structure (HCPS), one-ring structure (ORS), dual-ring struc-
ture (DRS), and square-lattice structure (SLS). The first one
Pbit/s experiment was made with a 12 core MCF with ORS
[23]. The largest number of cores reported so far is 32 [42]
and the fiber has been tested in a > 1600 km transmission ex-
periment [30]. The 22-core MCF has also been successfully
used in 2.15 Pbit/s transmission [9]. The cladding diameters
should be limited to around 250 ym or less from the con-
straints of mechanical reliability comparable to that of the
existing telecommunication network where a feasible proof
level of 1~2% is assumed with a bending radius of 15 mm
[31], [46], [49].

Figure 10 also summarizes recently fabricated FM-
MCFs for dense-SDM (DSDM) with a spatial multiplicity
(channels) of more than 30 where it is defined by a product of
number of cores and the number of modes. FM-MCFs with
more than 100 spatial channels have already been fabricated
and one of them has been used in 2.05 Pbit/s transmission
[29]. A 6-mode, 19-core FM-MCEF (far right) has been fab-
ricated with a cladding diameter of less than 2504 m and low
DMD of 330 ps/km [31], [49].

SDM amplifiers play an important role in long-haul
SDM transmission systems [32], [51]-[54]. Figure 11 sum-
marizes multi-core amplifiers where there are two different
pumping schemes, namely, a core-pumping scheme and a
cladding pumping scheme. The advantages of the latter are
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that low-cost, high-power multi-mode pump sources can be
used and that the number of pump sources can be substan-
tially reduced, providing a much lower cost/bit and energy/bit
solution than the core-pumping scheme. Recently, a cladding
pumped 32-core EYDFA has been fabricated and used as an
inline amplifier in a 32-core 111.6km MCF transmission
experiment [32].

4.2 Recent Transmission Demonstration

Table 1 summarizes SDM transmission experiments with
four different groups of SM-MCFs, coupled-core MCFs,
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Fig.11  Multi-core (MC) amplifiers: courtesy of M. Yamada.

Table1  Transmission experiments using SDM fibers: updated based on
[55].
SDM Fiber I . . Efficiencies Aggregate
.. Amplification Distance Capacity BW spectral
Fibertype  C2dding - scheme (km) (Tb/s)  (THz) ~ Mwwial Mol efficiency
DIA (um) (1/mm?)  (b/s/Hz) (bls/Hz)
7-core 150 - 16.8 109 9.7 396.1 16 112
7-core 186.5 - 76.8 112 8.0 256.2 2.0 14.0
7-core 196 MC-EDFA 7326 1407 5.0 232.0 4.0 28.0
7-core 195 MCF-ROPA 204 1207 225 2344 7.6 53.6
7-core n/a MC-EDFA 2520 511 5.1 n/a 15 10.6
12-core 225 - 52 1014 111 3018 7.6 91.4
12-core 230 MOEDFAand 455 5 400 102 2888 67 806
Raman
12-core 230 MCEDFAand 550 5 5 04 2888 61 736
Raman
12-core nfa SM-EDFAs 14530 1051 27 - 32 38.4
19-core 200 - 10.1 305 100 6048 16 30.5
22-core 260 - 31 2150 100 4144 98 2156
32-core 243 MC-EDFA 16448 504 25 63 2015
3 coupled-core 125  SM-EDFAs 4200 12 025 2445 13 4.03
6 coupled-core 125 SM-EDFAs 1705 18 1.0 488.9 3.0 18.0
12-core x 3-mode 229 - 404 6197 025 8741 688 2479
12-core x 3-mode 230 FM-EDFAs 527 2358 025 8665 262 943
7-core x 3-mode 192 - 1 200 25 7253 338 80.0
36-core x 3-mode 306 - 55 - - 1468.6 - -
19-core x 6-mode 318 - 9.8 303 009 14354 303 3450
19-core x 6-mode 318 - 9.8 2050 45 14354 40 4560
3-mode 125 FM-EDFA 119 576 48 2445 4.0 120
500 2717 37
3-mode 125 FM-EDFA 1000 30 oa 2445 25 76
3-mode 125 Raman 1050 18 2.0 2445 3.0 9.0
6-mode 125 SM-EDFAs 177 246 08 488.9 53 32,0
6-mode 125 SM-EDFAs 708 6.1 04 488.9 27 16.0
6-mode 125 - 74.17 346 43 488.9 13 8.1
6-mode 125 FM-EDFA 179 72 4.0 488.9 3.0 18.0
125 232 08
10-mode 125 - P T a0 814.9 29 29.0
15-mode 125 - 228 172 04 12223 29 436

FM-MCFs, and FMFs/MMFs from the top to the bottom,
respectively. The highest capacity is 2.15 Pbit/s (22-core
SM-MCEF, 31km) [19] and 2.05 Pbit/s (19 core x 6 mode
FM-MCEF, 9.8 km) [29] as described earlier while the high-
est spatial multiplicity is over 100 (108 (36 core x 3 mode),
114 (19 core x 6 mode)). The largest capacity-distance prod-
uct has already achieved more than one Ebit/s-km [26], [27],
and has reached 4.59 Ebit/s-km recently [56]. Figures 12, 13,
14 show capacity per fiber, spatial multiplicity, aggregate SE
vs. transmission distance, respectively. It can be seen from
the figures that most long-distance demonstrations have been
done with SM-MCFs. It should be noted that we set a spa-
tial multiplicity of more than 30 as an initial target which is
regarded as the maximum number of cores within a 250 um
cladding diameter with the present technologies. We also
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target a minimum transmission distance of 1000 km which
is required for terrestrial links.
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5. Future Perspective

In terms of “Multi-level Modulation” of the 3M technologies,
64 QAM (6 bit/symbol) is now being developed for commer-
cialization, and more than 1024 QAM (10 bit/symbol) is
being studied [57] where the transmission reach is a major
research issue for future implementation. In terms of “Mutil-
core Fiber” and “Multi-mode Control”, 19-core, 6-mode
(114 spatial channels) [19], [31], [49], 36-core, 3 mode (108
spatial channels) [29] FM-MCFs have been fabricated and a
factor of around 600 increase has already been achieved by
the present 3M technologies. It can be said that by adopting
more advanced forward error correction (FEC) algorithms
and higher “Multi-level Modulation” formats, a factor of
1000 would be achievable where narrower linewidth laser
sources will also be a research issue. The recent progress
in ultrafast repeater technology [58] may enable us to em-
ploy beyond 1024QAM formats with effectively equivalent
transmission distance in the future. The criterion of whether
a set of most advanced 3M technology may or may not be
introduced depends on the market needs of ultra-wideband
network. The continuing global trend of the quick penetra-
tion of broadband network services not only in developed
countries but also in developing countries convinces us of
the deployment of most advanced 3M systems in the long
run.

Although the ultimate goal of Exa bit/s capacity per
fiber seems quite far away, we can think of roughly four
steps towards it. In the first step, we will aim at 10 Pbit/s
capacity using around 30 cores and 6 modes with 180 spatial
channels, which will probably be achieved within a few years.
In the second step, we will aim at 50—60 Pbit/s using around
50 cores and 15 modes with 700-800 spatial channels, while
in the third step, we will aim at 300 Pbit/s using around 50
cores and 15 modes with 700-800 spatial channels, while in
the third step, we will need to fully utilize the whole 60 THz
band (O, E, S, C, L, U) to achieve the capacity. Unfortunately,
no specific measures to go up to 1 Ebit/s in the fourth step
are yet known.

Schemes that enable the deployment of SDM technolo-
gies in future commercial systems need to be considered.
Even though excellent capabilities of SDM technologies have
been demonstrated in the research level, their deployment in
real systems requires further efforts and the following ques-
tions should be answered:

(a) What would be the best application fields?

(b) What scheme would allow smooth migration from ex-
isting systems?

(c) How can the cost of the new systems be evaluated?

(d) What will the standardization scheme be?

(e) When will the new system be commercialized?

(f) Who will be the major players?

These questions are closely related to each other. The
component cost could be substantially reduced by increas-
ing the market size and therefore, worldwide standardization
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would be beneficial although detailed discussion of standard-
ization may be time consuming, thereby hindering early de-
ployment. A business exploiting specific transmission routes
carrying heavy traffic, such as a super-realistic video service
or datacenter-based service might become a frontrunner.

Core network systems consist of many existing optical
networks based on traditional SMFs. Therefore, worldwide
deployment would require standardization. Future large-
scale replacement or newly constructed optical networks
would present opportunities for the deployment of SDM.
Submarine optical cable systems seem to constitute “green
field” development, which means that the first stage of the
system is not standardized. The space factor is a very impor-
tant issue in submarine systems because of the limited space
in which to locate undersea optical cables and repeaters.
SDM essentially offers high space efficiency. The next jump
in the transmission capacity of submarine systems may come
from SDM when the electric power consumption of the opti-
cal amplifier in the repeater nearly may reach the same level
as that of current commercial systems.

Candidate application fields of SDM technologies
would be submarine systems, access networks/mobile net-
works in addition to core networks. Short-reach commu-
nication systems seem to be suitable application fields for
which a rapid increase in traffic can be foreseen. However,
as the cost balance will be a key issue in these fields, very
low components/construction costs will be needed.

The data-com. field, which includes intra-datacenter
signal transmission involving signaling between large num-
bers of racks/boards, is a promising area for SDM applica-
tion. Datacenters are expected to require very large capacity
signal transmission in combination with simple connections
between optical fiber cables, because the space factor is a
major issue. Even now, many fiber cables are connected in
a complicated manner and SDM offers a solution for this
complexity. The integration of the optical components of
SDM would also substantially reduce the number of compo-
nents in a datacenter. The use of SDM fiber transmission over
short distances would obviate the need for optical amplifiers.
Furthermore, data-com. systems seem to be “green field” im-
plementations, where the preferred network should only be
determined by an operator of the particular datacenter. How-
ever, data-com. demands real-time communication and low
electric power consumption, which requires the MIMO chip
in MDM to be carefully designed for actual application.

Thus far, studies of SDM technologies have mainly fo-
cused on point-to-point transmission to achieve a very large
transmission capacity exceeding 1 Pbit/s/fiber. However, the
networking design and architecture of real systems are im-
portant and need necessary consideration. The elastic node
architecture of SDM will open the way to additional benefits
such as high-contention resolution and much higher through-
put by utilizing new dimensions of SDM. Exploration of the
potential of the new field calls for the contribution of many
ideas from various research areas other than optical com-
munication and for researchers from these areas to become
involved in the research field of SDM technologies.
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