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Viscous flow in a soft valve
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Fluid-structure interactions are ubiquitous in nature and technology. However, the sys-
tems are often so complex that numerical simulations or ad hoc assumptions must be
used to gain insight into the details of the complex interactions between the fluid and
solid mechanics. In this paper, we present experiments and theory on viscous flow in a
simple bioinspired soft valve which illustrate essential features of interactions between
hydrodynamic and elastic forces at low Reynolds numbers. The setup comprises a sphere
connected to a spring located inside a tapering cylindrical channel. The spring is aligned
with the central axis of the channel and a pressure drop is applied across the sphere,
thus forcing the liquid through the narrow gap between the sphere and the channel
walls. The sphere’s equilibrium position is determined by a balance between spring
and hydrodynamic forces. Since the gap thickness changes with the sphere’s position,
the system has a pressure-dependent hydraulic resistance. This leads to a non-linear
relation between applied pressure and flow rate: flow initially increases with pressure,
but decreases when the pressure exceeds a certain critical value as the gap closes.
To rationalize these observations, we propose a mathematical model that reduced the
complexity of the flow to a two-dimensional lubrication approximation. A closed-form
expression for the pressure-drop/flow rate is obtained which reveals that the flow rate
Q depends on the pressure drop ∆p, sphere radius a, gap thickness h0, and viscosity

η as Q ∼ η−1a1/2h
5/2
0 (∆pc −∆p)5/2∆p, where the critical pressure ∆pc scales with

the spring constant k and sphere radius a as ∆pc ∼ ka−2. These predictions compared
favorably to the results of our experiments with no free parameters.

Key words: fluid-structure interactions, lubrication theory, low-Reynolds-number flow
valve, biofluiddynamics

1. Introduction

Fluid flow in flexible geometries occurs in many biological, medical, and industrial
environments (Duprat & Stone 2015). Systems that couple the elasticity of a solid body
with the motion of a fluid often have intersting properties; for instance, interactions
between fluid-mechanical and elastic forces can lead to nonlinear pressure-drop/flow-rate
relations (Grotberg & Jensen 2004; Heil & Hazel 2015) and the generation of instabilities
(Heil & Hazel 2011), even in relatively simple channel geometries.

Soft channels and valves play important roles in biological fluid systems: from flexible
veins that carry nutrients in animals (Heil & Hazel 2011) to valves which maintain

† Email address for correspondence: khjensen@fysik.dtu.dk, mzwienie@ucdavis.edu
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Figure 1. Schematics of the soft vale system and the experimental setup. (a) Schematic of the
spring-actuated soft valve. A sphere of radius a is suspended from a spring (spring constant
k) inside a tapering channel. The sphere’s position is determined by force equilibrium between
hydrodynamic and force and spring forces. (b) Photograph of the setup showing the steel sphere,
extension spring and pipette tip. (c) Schematic of the pressure-drop/flow-rate measurement
system. The pressure-drop is controlled by the liquid column height l(t), and the flow rate
Q = π(D/2)2dl/dt and pressure drop ∆p = ρgl(t) is determined by image analysis (see
additional details in text).

unidirectional flow through the human heart (Sotiropoulos et al. 2016). Soft valves
are also relevant to fluid transport in plants, for instance, in torus-margo pit pores,
microscopic channels that permit water flow between neighboring xylem tracheid conduits
in plants (Choat et al. 2008; Jensen et al. 2016). The pore structure prevents air
embolisms from spreading inside the plant by blocking the pore with a circular disc if a
large pressure difference develops between adjacent tracheids. The disc is held in place
by soft cellulose fibers which can deform elastically. This soft geometry may modify flow
even in the absence of air embolisms, however, previous studies have assumed either a
static geometry (Lancashire & Ennos 2002; Schulte 2012) or inviscid flows (Chapman
et al. 1977), and the effect of fluid-structure interactions at low Reynolds numbers on
this system is not currently well understood.

Systems that couple the elasticity of a solid body with the motion of a fluid link two sets
of dynamics that, even when treated separately, can be quite complicated. The properties
of biological channels and valves have been studied extensively, however, the geometry is
often so complex that numerical simulations or ad hoc assumptions must be used to gain
insight into the details of the complex interactions between the fluid and solid mechanics
(Bellhouse & Talbot 1969; McCulloh et al. 2003; Kim & Bush 2012; Park et al. 2014;
Yang et al. 2014; Gart et al. 2015; Jensen et al. 2016). Studies on models systems inspired
by nature provide a promising alternative to in-vivo experiments or full-scale numerical
simulations. For instance, experiments on microfluidic devices have demonstrated that
fluid-induced deformation of elastic sheets and fibres in channels can influence the flow
at low Reynolds numbers (Wexler et al. 2013; Ledesma-Alonso et al. 2014), and similar
results have been obtained using external mechanical actuation (Holmes et al. 2013).

In this paper, we present experiments and theory on a simple spring-actuated valve
system inspired by biology. It captures many of the non-linear interactions that character-
izes flow in soft geometries where the hydraulic resistance varies with applied pressure.
The valve is suitable for regulation of small-scale fluid flows and relevant to several
biofluiddynamic problems. Moreover, the simple geometry allows us to derive a closed
form solution, based on lubrication theory, which is compared to experimental data.
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2. Experiment

We consider the effect of couplings between flow and elasticity on the idealized soft
valve shown in Fig. 1(a): a sphere connected to an extension spring located inside a
tapering cylindrical pipe. The spring is aligned with the central axis of the channel and
a pressure drop ∆p is applied across the sphere. The sphere’s equilibrium position is
determined by a balance between elastic and hydrodynamic forces. This leads to a non-
linear relation between applied pressure ∆p and flow rate Q = ∆p/R(∆p), where R(∆p)
is the pressure-dependent hydraulic resistance.

2.1. Experimental methods

The valve was fabricated using a steel sphere of radius a = 5 mm (KVJ Aktieselskab,
45RB5) which was glued onto an extension spring (spring constant k = 0.16 N/mm, RS
Components 821-273), see Fig. 1(b). The spring and sphere was anchored to a M4 bolt
that allowed us to control the vertical position of the sphere along the central axis of a
3 mL pipette tip of opening angle γ = 0.024 rad (alpha laboratories, LW8930). Finally,
both ends of the the pipette was connected to silicone tubing (inner diameter D = 12
mm).

We used the hydrostatic pressure difference provided by a vertical liquid column of
height l(t) in the silicone tubing to drive flow across the valve, thus sweeping a broad
range of pressure drops ∆p in each experiment (Fig. 1(c)). The liquid column height
l(t) was tracked over time using image analysis of photographs captured using a digital
camera (Canon, EOS 5D MARK III, 35mm Sigma lens F1.4 DG HSM Art) as described
in Appendix A. The pressure drop ∆p = ρgl(t) and flow rate Q = π(D/2)2dl/dt
was subsequently determined, where ρ is the liquid density and g is the gravitational
acceleration (Fig. 1(c)). In the experiments, we varied the initial ball position in the
range zd ∼ 2.5 − 4.5 mm (corresponding to initial gap thicknesses of h0 = zd sin γ ∼
60− 110µm), and the liquid viscosity from DI water (1 cSt) to Silicon oil (100 cSt).

2.2. Observations

Our experiments reveal that the flow rate increases linearly with pressure when the
pressure drop is relatively small, because the position of the sphere is not influenced by
the flow (Fig. 2). However, as pressure increases, hydrodynamic forces push the sphere
towards the channel wall, thus reducing the gap size h0 (Fig. 1(a)). This leads to an
increase in the resistance to flow. After reaching a maximum in flow Qmax, at the pressure
∆pmax, the flow rate starts to decrease with increasing pressure and slowly approaches
Q = 0 at the critical pressure drop ∆pc. The absolute magnitude of the flow can be
tuned by varying the initial ball position zd (and hence thickness of the gap between the
sphere and tapering channel walls) or by changing the viscosity η of the fluid. We observe
that both the peak flow rate Qmax and optimum pressure ∆pmax increases with zd. By
contrast, only the flow rate Q appears to be affected significantly by variations in η.

The focus of our paper is predicting the flow rate as a function of the system param-
eters. In most our experiments, the Reynolds number Re = (ρQ)/(2πηa), is less than
∼ 10−3, and hence viscous effects dominate the flow. We take advantage of this by using
steady-state lubrication theory in the following analysis. However, we note that when the
Reynolds number is increased to ∼ 103 (corresponding to an initial vertical displacement
of zd = 5 mm), periodic disturbances in the flow rate and sphere position can be observed
(see appendix A and supplementary movie. 2). The observed pattern have features that
resemble self-excited oscillations (see e.g. Luo & Pedley (1996)), but we shall leave its
detailed consideration for future investigations.



4 K. Park et al.

0 2000 4000 6000 8000
p [N/m2]

0

0.5

1

1.5
Q

 [m
3 /s]

10-6

Water, zd = 3.6 mm
Water, zd = 2.9 mm
Water, zd = 2.7 mm
Water, zd = 2.6 mm

(a)

0 2000 4000 6000 8000 10000
p [N/m2]

0

0.5

1

1.5

2

2.5

3

3.5

Q
 [m

3 /s
]

10-7

10 cSt, zd = 4.5 mm
20 cSt, zd = 4.5 mm
100 cSt, zd = 4.4 mm

(b)

Figure 2. Pressure-drop/flow rate relation for viscous flow in a soft valve. (a) Flow rate Q
plotted as a function of applied pressure ∆p for DI water flow with viscosity η = 1 cSt,
spring constant k = 0.16 N/mm, and sphere radius a = 5 mm. Results for initial ball position
zd = 2.6, 2.7, 2.9, and 3.6 mm are shown as green, red, blue and black symbols, respectively.
(b) Flow rate Q plotted as a function of applied pressure ∆p for silicone oil with initial ball
position zd ∼ 4.5 mm, spring constant k = 0.16 N/mm, and sphere radius a = 5 mm. Results
for viscosities η = 10, 20, and 100 cSt are shown as green, red, and blue symbols, respectively.

3. Theory

To rationalize the experimental observations (Fig. 2), we seek to characterize the
pressure-drop/flow rate relation as a function of the system parameters

Q =
∆p

R
. (3.1)

The pressure-dependent hydraulic resistance R(∆p) is a function of the vertical position
z of the sphere, which in turn is determined by the force-balance on the sphere due to
spring- and hydrodynamics forces along the z-axis (Fig. 1(a)):

Fspring + Fhyd = 0. (3.2)

We proceed in two steps to compute the pressure-dependent resistance R in Eq. (3.1):
First, we use lubrication theory to determine the flow field in the narrow gap between
the sphere and the tapering channel walls for a fixed vertical position of the sphere
and pressure drop ∆p. This leads to a position-dependent hydraulic resistance R(z).
Our analysis of the static problem follows Smistrup & Stone (2007), who considered a
magenetically acuated ball valve. Then, we use the force-balance equation (3.2) to solve
for the equilibrium position zeq(∆p) which leads to an expression for R(∆p).

The valve system comprises a sphere connected to a spring in a tapering cylindrical
channel with opening angle γ (Fig. 1(a)). In the experiments, the sphere radius is a =
5× 10−3 m while the typical size of the gap between the sphere and the channel walls is
h0 6 10−4 m. We therefore consider the limit where the gap is narrow (h0 � a), and let
βa denote the vertical displacement of the sphere above the point of contact where h0 = 0
and β = 0. The gap thickness can then be expressed in terms of β and the sphere radius
a, and opening angle γ as h0 = aβ sin(γ). Because the gap is narrow, the coordinate
system can locally be considered as Cartesian, with x- and y-axes indicated in Fig. 1(a).
Note that the z-axis in the diagram does not belong to this coordinate system.
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3.1. Lubrication theory

The flow is governed by the Navier-Stokes and continuity equations

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ η∇2u (3.3)

∇ · u = 0 (3.4)

where ρ denotes the density, η the viscosity, p the pressure, and u the velocity field. In
the steady low-Reynolds-number limit, the Navier-Stokes and continuity equations for
the flow in the gap reduces to

η

(
∂2ux
∂x2

+
∂2ux
∂y2

)
=
∂p

∂x
(3.5a)

η

(
∂2uy
∂x2

+
∂2uy
∂y2

)
=
∂p

∂y
(3.5b)

∂ux
∂x

+
∂uy
∂y

= 0 (3.5c)

We non-dimensionalize using the variables

X =
x

a
, Y =

y

h0
, UX =

ux
q0/h0

, UY =
uy
q0/a

, P =
p

ηq0a/h30
(3.6)

where q0 is a constant flow rate per unit width. Equations (3.5a)-(3.5c) then become(
h0
a

)2
∂2UX
∂X2

+
∂2UX
∂Y 2

=
∂P

∂X
(3.7a)(

h0
a

)4
∂2UY
∂X2

+

(
h0
a

)2
∂2UY
∂Y 2

=
∂P

∂Y
(3.7b)

∂UX
∂X

+
∂UY
∂Y

= 0 (3.7c)

Taking the narrow-gap-limit (h0/a � 1), the dimensional lubrication equations are
obtained

η
∂2ux
∂y2

=
∂p

∂x
(3.8a)

0 =
∂p

∂y
(3.8b)

∂ux
∂x

+
∂uy
∂y

= 0 (3.8c)

From equation (3.8b) it is seen that the pressure does not depend on y, and hence ux
can be found from equation (3.8a), by using no-slip boundary conditions at y = 0 and
y = h(x), as

ux(x, y) =
1

2η

∂p

∂x
(y2 − yh(x)). (3.9)

The gap h(x) between the sphere and the channel walls is locally approximated by a
parabola

h(x) = h0

[
1 +

x2

2h0a
+O

(
x4

h0a3

)]
. (3.10)
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The total flow rate, Q, is found by integrating the flow field (Eq. (3.9)) in the gap around
sphere:

Q = 2πa cos(γ)

h(x)∫
0

ux(x, y) dy = −∂p
∂x

πa cos(γ)h3(x)

6η
, (3.11)

where the factor 2πa cos(γ) comes from integrating along the circular gap of radius
a cos(γ). Since the flow rate must be independent of x, the pressure drop across the
sphere is

∆p =

∫ −∞
∞

∂p

∂x
dx =

6ηQ

πa cos(γ)

∫ ∞
−∞

1

h3(x)
dx (3.12a)

=
9ηQ

2
√

2 cos(γ)(ah50)1/2
(3.12b)

=
9ηQ

2
√

2 a3 cos γ(β sin γ)5/2
, (3.12c)

where we have used that the gap size can be written as h0 = βa sin(γ) in the final step.
Note that the hydraulic resistance R = ∆p/Q scales with the gap viscosity, thickness

and sphere radius as R ∼ ηa−1/2h−5/20 .

3.2. Force balance

To derive the flow-rate/pressure drop relation for the system, we proceed to determine
the equilibrium position zd,eq of the sphere from the force balance Eq. (3.2), see Fig.
1(a). This leads to an expression for the equilibrium relative displacement βeq = zeq/a
which then used in Eq. (3.12c) to determine the resistance.

To model the extension spring we assume a linear spring force of

Fspring = −k∆z, (3.13)

where k is the spring constant and ∆z is the vertical displacement from the equilibrium
position. Let z0 be the equilibrium length when no pressure is applied and let zmax be the
maximum extension of the spring, obtained when the sphere touches the inclined wall.
For a sphere located a distance zd = βa above the contact point, the spring extension is
∆z = zmax− z0−βa and hence the spring force is given by Fspring = −k(zmax− z0−βa).

The hydrodynamic force on the sphere is given by

Fhyd,i =

∫
∂Ω

[−pδij + η(∂iuj + ∂jui)]nj da (3.14)

where we use the index notation and ∂Ω denotes the surface of the sphere. In the
lubrication limit, we expect that the pressure-term dominates the vertical force on the
sphere. The main pressure gradient occurs in a narrow region near the gap, and the
pressure-force can thus be approximated by assuming constant pressures above (p0+∆p)
and below (p0) the sphere:

F
(p)
hyd ' 2πa2(p0 +∆p)

∫ π/2+γ

0

cos(θ) sin(θ)dθ + 2πa2p0

∫ π

π/2+γ

cos(θ) sin(θ)dθ

= πa2 cos(γ)2∆p (3.15)

where θ is the angle measured from the vertical. To obtain the viscous force, we note
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that in the lubrication approximation ∂/∂x� ∂/∂y, so the dominant term is

F
(visc)
hyd ' 2πa cos(γ)η

∫ ∞
−∞

∂ux
∂y

∣∣∣∣
y=h(x)

cos(γ) dx =
4π

3
cos2(γ) sin(γ)βa2∆p (3.16)

where the prefactor 2πa cos γ comes from integration around the contact line, and the
factor cos γ in the integral from the force projection along the z-axis. Comparing the
magnitude of the pressure (Eq. (3.15)) and viscous (Eq. (3.16)) forces, we find

F
(visc)
hyd

F
(p)
hyd

=
4

3

h0
a
. (3.17)

In our case, where h0 � a, the pressure force is seen to dominate the hydrodynamic force
on the sphere.

To find the vertical equilibrium position of the sphere, we now combine the spring force
(3.13) and the pressure force (3.15) using the force-balance equation Eq. (3.2), and find

πa2 cos(γ)2∆p− k(zd − aβ) = 0 (3.18)

where we have written the initial height as zd = z0 − zmax. This leads to an expression
for the relative position β at equilibrium:

β =
kzd −∆pπa2 cos(γ)2

ka
. (3.19)

Combining Eqns. (3.19) and (3.12c) leads to a non-linear pressure-dependent flow rate
Q

Q =
2
√

2

9

cos6(γ)a3

η

(
aπ sin(γ)

k

)5/2(
kzd

πa2 cos2(γ)
−∆p

)5/2

∆p. (3.20)

Introducing the low-pressure-limit resistance

R0 =
9

2
√

2 sin(γ)5/2 cos(γ)

η

(az5d)1/2
(3.21)

and the critical pressure drop ∆pc that makes the ball block the channel

∆pc =
kzd

πa2 cos2(γ)
, (3.22)

leads to a convenient expression for the flow rate:

Q =
∆p

R0
(1−∆p/∆pc)5/2 . (3.23)

When ∆p � ∆pc the flow rate scales linearly with pressure drop ∆p, in accord with
experimental observations (Fig. 2). A maximum in the flow rate occurs at the pressure
drop ∆pmax = 2

7∆pc, above which the valve gradually closes and the flow rate Q starts
to decay.

3.3. Comparison between experiment and theory

The lubrication-theory model for the flow rate Q (Eq. (3.20)) captures the essential
qualitative behavior of the experiment data (Fig. 2), and we find good quantitative
agreement between experiments and theory with no free parameters. Moreover, the data
collapsed onto a single line when scaled according to the maximum flow rate Qmax and
corresponding pressure ∆pmax (Fig. 3). The data collapse is seen to be in good accord
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Figure 3. Normalized flow rate Q/Qmax plotted as a function of (a) relative pressure drop

∆p/∆pmax and (b)
(
2
5

)5/2 ( 7
2
− ∆p

∆pmax

)5/2
∆p

∆pmax
, using data from Fig. 2 (a,b). The solid line

shows the theoretical prediction obtained using lubrication theory (Eq. (3.24)).

with the prediction from Eq. (3.23), which yields

Q

Qmax
=

(
∆pc −∆p

∆pc −∆pmax

)5/2
∆p

∆pmax
=

(
2

5

)5/2(
7

2
− ∆p

∆pmax

)5/2
∆p

∆pmax
, (3.24)

where we have used that the maximum pressure is ∆pmax = 2/7∆pc.

4. Discussion and conclusion

In this paper we have presented an experimental and theoretical study of a bioinspired
soft valve. The model system comprised a sphere connected to a spring located inside a
tapering channel. A coupling between elasticity and fluid motion determines the hydraulic
resistance of the valve because the position of the sphere is influenced by the flow
and vice versa. Using a simple setup, we performed experiments to characterize the
pressure-drop/flow rate relationship for the system. Our data revealed a strongly non-
linear behaviour and the existence of an optimal pressure drop for the system where the
flow rate is maximized.

Assuming low-Reynolds-number flow, we proposed a mathematical model that reduced
the complexity of the flow to a two-dimensional lubrication approximation. The model
revealed a relatively complete picture of the geometric and material parameters that
affect flow through the system. The model predictions compared favorably to the results
of our experiments. Our analysis is limited to steady viscous flows, though preliminary
observations suggest onset of self-excited oscillations at higher Reynolds numbers.
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Figure 4. Experimental result of zd = 2.9 mm with water. (a) Time vs liquid column
height graph with a montage of every 10s images. Tracking points (Circles) is well fitted with
experimental images (Horizontal white lines). (b) Pressure drop and flow rate graph from (a).
inset shows the ball position at certain pressure drop.
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Figure 5. (a) Experimental kymograph of a soft valve with water and zd = 2.9 mm.
Image variation shows ball movement during the experiment (see Supplemental movie1). (b)
Kymograph of a soft valve with water and zd = 5.4 mm. During the first 10 seconds the valve
oscillates and then moves softly. Pressure drop decreases from 7500 Pa. The oscillation stops
when the Reynolds number between the gap is less than 2700 (see Supplemental movie2).

Appendix A. Tracing the meniscus

The pressure-drop/flow rate relation was determined experimentally as outline in
Fig.1(c) and Fig. 4. A stack of images showing the meniscus movement was converted
to gray-scale and cropped to show the silicone tube above the soft valve. The 2D-images
I(z, x, t) were converted to a 1D intensity profile I ′(z, t) =

∑
x I(z, x, t) by summing the

values in each horizontal image row. We traced the position of the meniscus by locating
the maximum in the intensity gradient ∼ ∂zI ′(z, t) at the position zmax(t). This yielded
the meniscus position zmax = l(t) which in turn allowed us to determine the flow rate Q.
In order to minimize effects of image noise in determining zmax, we manually indicated
the initial meniscus position and used a tracing window.
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