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Inhomogeneous Markov Models for Describing
Driving Patterns

Emil B. Iversen, Jan K. Møller, Juan M. Morales, Member, IEEE, and Henrik Madsen

Abstract—It has been predicted that electric vehicles will
play a crucial role in incorporating a large renewable com-
ponent in the energy sector. If electric vehicles are integrated
in a naive way, they may exacerbate issues related to peak
demand and transmission capacity limits while not reducing
polluting emissions. Optimizing the charging of electric vehicles
is paramount for their successful integration. This paper presents
a model to describe the driving patterns of electric vehicles, in
order to provide primary input information to any mathematical
programming model for optimal charging. Specifically, an inho-
mogeneous Markov model that captures the diurnal variation in
the use of a vehicle is presented. The model is defined by the
time-varying probabilities of starting and ending a trip and is
justified due to the uncertainty associated with the use of the
vehicle. The model is fitted to data collected from the actual
utilization of a vehicle. Inhomogeneous Markov models imply a
large number of parameters. The number of parameters in the
proposed model is reduced using B-splines.

Index Terms—B-splines, Driving patterns, Electric vehicles,
Inhomogeneous Markov chain, Hidden Markov model

I. INTRODUCTION

Electric vehicles (EVs) have no emissions and are a sus-
tainable alternative to conventional vehicles, provided that
the energy used for charging is generated by renewable
sources. Electricity generation from renewable energy sources,
such as wind, solar and wave energy depends on weather
conditions and is inherently uncertain. In the absence of a
large-scale infrastructure for energy storage, electricity has
to be consumed as it is produced. EVs may help overcome
this by charging when energy from renewable sources is
abundant and by supplying power into the electrical grid
at times of high demand. With electricity from renewable
sources, EVs represent a sustainable zero-emissions alternative
to conventional fossil-fuel-based vehicles.

On the contrary, if the fleet of EVs are charged in a
naive way, it may increase the peak electricity demand. As a
consequence, the extra energy needs will be covered by peak-
supply units, nullifying the decrease in emissions gained from
switching to EVs. At the same time the transmission grid is
strained. As the the fleet of EVs must necessarily be charged
as individual vehicles, an understanding of the availability
and user needs at an individual level becomes fundamental.
The impact of EVs on the power grid has been considered
in several studies ([1], [2]). Without scheduling algorithms,
EVs have the potential to cause imbalances between power
demand and supply. In [3], [4], however, these effects can
be mitigated by scheduling and the amount of vehicles that
can be introduced without infrastructure investments can be
significantly increased and curtailing consumption may in-

crease social welfare. In [5] different charging schemes are
considered.

In order to adequately characterize the smart grid, the
aggregate power demand and flexibility should be described.
To achieve this the aggregate demand and flexibility of dif-
ferent demand side components should be modeled, such as
the fleet of electric vehicles and their associated charging.
In order to accurately model an electric vehicle fleet the
understanding of single vehicle behavior is required as every
single vehicle does not have the same characteristics. Thus
describing user behavior is one of fundamental building blocks
in the development of the smart grid ([6], [7], [8]). This is
particularly the case when considering things as autonomous
demand side management or indirect control ([9], [10]).

As EVs primary purpose is transportation, not energy stor-
age, it is essential to charge each vehicle to have enough
energy to cover desired trips. Thus a model for capturing
the utilization of a single vehicle is essential for the efficient
operation of each vehicle and the EV fleet in general.

In the technical literature, albeit observed vehicle usage has
been considered ([11], [12]), the stochastic modeling of the use
of a single vehicle has received little attention ([13]). Rather,
the scientific community has focused on both the analysis of
the impact of charging EVs and when to charge EVs ([14]).
Large-scale integration of EVs into the power grid has been
studied in several papers, ([15], [16], [17], [18], [19]). Peak
load, charging strategies, network losses, costs and market
equilibrium strategies have been considered.

Inhomogeneous Markov chains have previously been used
in conjection with EVs. A number of authors employ this
approach to simulate the utilization of a population of EVs to
model the total electricity demand of the fleet of EVs ([20],
[21], [22], [23], [24]). Due to practical and methodological
issues, these works prove too coarse with respect to capturing
the use of a single vehicle. They are based on the assumption
that the same underlying stochastic process generates the
driving patterns of all the vehicles in the population. While
this approximation may be accurate enough for applications
where the aggregate behavior of the EV fleet is needed, it
is not detailed enough for applications where the modeling
of the driving patterns of a specific vehicle is required. The
stochastic dynamics of the utilization of a particular vehicle
can be very different from the dynamics of the population.
Furthermore, modeling the driving behavior of a single vehicle
poses nontrivial challenges related to limited data, validity
of the Markov assumption, and time resolution, all of which
are addressed in this paper. However, Markov models have
been used to simulate the utilization of a single vehicle while
driving, focusing on trip duration, consumption, speed and
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type-of-use ([25]) and on road network dynamics particularly
for electric vehicle applications ([26]).

This paper bridges the gap between these two approaches.
It presents a genuine single vehicle model that can be easily
exploited, for example, by decision-making tools for charging
an EV([27]). It provides advances in modeling driving patterns
and does not rely on typical, average or stylized use of
a vehicle. The model is fitted to a specific vehicle based
on observed data from the utilization of that vehicle. An
inhomogeneous Markov model is applied to capture the diurnal
variation of the driving pattern. These types of models have
a large number of parameters to be estimated. A generalized
linear model is then applied to substantially reduce this num-
ber, under the constraint of limited data and the need for a
high temporal resolution. We use hidden Markov models to
adequately capture the duration of the trips. Furthermore, the
model satisfies the Markov property, which is an important
aspect for decision making as the planning problem can be
solved using only present knowledge thus not relying on
future knowledge. The proposed model thus provides several
benefits over homogeneous Markov chain models, inhomoge-
neous Markov models without parameter reductions and non-
parametric approaches. Further, it does not rely on assumptions
regarding the use of the vehicle, and consequently a versatile
model is obtained. Applying the model within a stochastic
optimization framework will allow for capturing issues related
to charging, availability, and costs of using an EV ([27]).

The literature on electric vehicles and their integration into
the smart grid is now vast. For an in-depth review the reader
is referred to one of the recent survey papers investigating this
topic ([28], [29], [30]).

The paper is organized as follows: Section 2 gives a brief
introduction to inhomogeneous Markov chains. In Section 3
the number of parameters in the model is reduced by applying
B-splines to a generalized linear model. Section 4 provides
a numerical example of the model. Section 5 concludes and
provides directions for future research.

II. AN INHOMOGENEOUS MARKOV CHAIN

A state-space approach is proposed to describe the use of a
vehicle. This approach models the vehicle as being in one of
several distinct states. In its simplest form the model has two
states, which capture whether the vehicle is either driving or
not driving. A more extensive model may include information
about where the vehicle is parked, where it is driving, or
what type of trip the vehicle is on. In this section we start
from a general state-space approach and finish with a detailed
description of the two-state model.

A. Discrete Time

Consider a sequence X of random variables Xt, t ∈
{0, 1, 2, . . .}, which take on values in the countable set S,
referred to as the state space. A Markov chain is a random
process where future states, conditioned on the present state,
do not depend on the past states. We use the definition and
notation from [31].

A Markov chain is uniquely characterized by the transition
probabilities from state j to state k, i.e.

pjk(t) = P (Xt+1 = k|Xt = j) . (1)

If the transition probabilities do not depend on t, it is called
a homogeneous Markov chain. If the transition probabilities
depend on t, it is known as an inhomogeneous Markov chain.

In order to estimate parameters in an inhomogeneous
Markov chain an assumption of periodicity is needed. The case
for longer periods is that they may better capture the nature
of the use of the vehicle. A model with weekly periodicity
would allow for capturing different behavior on different
weekdays. However, using longer periods reduces the effective
data available (by reducing the number of effective periods in
the data set). Further, it increases the number of parameters in
the model. We choose a period length of one day. However,
the procedure outlined is not specific to this choice and can
be repeated with other period lengths.

Considering the use of a vehicle we assume that the
probability of a transition from state j to state k on any
specific weekday is the same. Furthermore, we assume that the
transition probabilities are the same on all weekdays, that is,
from Mondays to Fridays. If the sampling time is in minutes,
this leads to the assumption:

pjk(t) = pjk(t+ 1440), (2)

where 1440 is the number of minutes in a day. In other words
the transition probabilities, defined by (1), are constrained to
be a function of the time s in minutes in the diurnal cycle.
The matrix containing the transition probabilities is given by

P(s) =

⎛
⎜⎜⎜⎝

p11(s) p12(s) . . . p1N (s)
p21(s) p22(s) . . . p2N (s)

...
...

. . .
...

pN1(s) pN2(s) . . . pNN(s)

⎞
⎟⎟⎟⎠ , (3)

where pjj(s) = 1−∑N
i=1,i�=j pji.

With a time resolution in minutes, s ∈ {1, 2, . . . , 1440}. It
follows that the conditional likelihood function, for the model
with N states, is given by ([32]):

L (P(1),P(2), . . . ,P(1440)) =

1440∏
s=1

N∏
j=1

N∏
k=1

pjk(s)
njk(s),

(4)
where njk(s) is the number of observed transitions from state
j at time s to state k at time s+ 1.

From the conditional likelihood function the maximum-
likelihood estimate of pjk(s) can be found as:

p̂jk(s) =
njk(s)∑N
k=1 njk(s)

. (5)

A discrete time Markov model can be formulated based
on the estimates of P(1),P(2), . . . ,P(1440). One apparent
disadvantage of such a discrete time model is the huge number
of parameters, namely N · (N − 1) · 1440, where N · (N − 1)
parameters have to be estimated for each time step. Needless
to say, the number of parameters to be estimated increases as
the number of states increases. Another problem is linked to
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the number of observations, i.e. if
∑N

k=1 njk(s
′) = 0 for some

s′, then p̂jk(s) is undefined.
A reduction in parameters may be obtained if the diurnal

variation is negligible for some transitions, i.e. pjk(s) does
not depend on s for some pair {j, k}. Another way to reduce
the parameters is to increase the time between samples. If the
sampling time is every 10 minutes, the number of parameters
would decrease to N · (N − 1) · 144. This approach is a bit
coarse and the number of parameters is still large. Besides, if
another parameter reduction technique is subsequently applied
to the data, information is lost compared to directly applying
the technique to the data with a sampling time in minutes.

In the model with only two states, namely driving and not
driving, the one-minute transition probability matrix becomes:

P(s) =

(
p11(s) p12(s)
p21(s) p22(s)

)

=

(
1− p12(s) p12(s)
p21(s) 1− p21(s)

)
. (6)

The number of parameters is then 2 · 1440. Assuming that the
duration of the trip does not depend on the time of the day,
i.e. p21(s) = p21, (with 2 being ”driving” and 1 ”not driving”)
the number of parameters is reduced to 1440 + 1. Note that,
as a result of this reduction, the duration of a trip is captured
by a single parameter.

It follows that the conditional likelihood function, for the
model with two states, is given by:

L (P(1),P(2), . . . ,P(1440)) =

1440∏
s=1

2∏
j=1

2∏
k=1

pjk(s)
njk(s),

(7)
and the maximum-likelihood estimate p̂jk(s) is computed
from (5).

B. Continuous Time

The continuous time analog to the discrete time inhomoge-
neous Markov chain is presented below. The continuous time
version provides a parameter reduction over the discrete time
version, if certain structures are present and can be identified.
Specifically, if the number of states is larger than two and it is
impossible to switch directly between certain pairs of states,
the continuous time variant will lead to a parameter reduction.
Hence, if such structures are present, the continuous time
variant is preferred over the discrete time model. To introduce
the continuous time inhomogeneous Markov chain, we define
([31]):

pjk(t, u) = P(X(u) = k|X(t) = j), (8)

where t < u. The model is based on the following assumptions
when Δu → 0:

pjj(u, u+Δu) = 1− qjj(u)Δu+ o(Δu) (9)
pjk(u, u+Δu) = qjk(u)Δu+ o(Δu) ∀j �= k, (10)

also 0 ≤ qjj(u) < ∞ and 0 ≤ qjk(u) < ∞. The qjk(u)’s are
known as the transition intensities. These assumptions lead

to Kolmogorov’s forward differential equation for inhomoge-
neous Markov processes, expressed in matrix notation as:

∂P(t, u)

∂u
= P(t, u)Q(u) (11)

where P(t, u) = {pjk(t, u)}, i.e. P(t, u) is the matrix con-
taining the pjk(t, u)’s. The matrix of transition intensities then
becomes:

Q(u) =

⎛
⎜⎜⎜⎝

−q11(u) q12(u) . . . q1N (u)
q21(u) −q22(u) . . . q2N (u)

...
...

. . .
...

qN1(u) qN2(u) . . . −qNN(u)

⎞
⎟⎟⎟⎠ . (12)

Since
∑N

k=1 pjk(u, u+Δu) = 1, it follows from
(9)-(10) that

∑N
k=1 qjk(u) = 0 ∀ j, i.e. qjj(u) =∑N

k=1,k �=j −qjk(u) ∀ j.
A simple Kolmogorov’s differential equation is obtained if

Q(t) is constant in the period [t, t+ T ]:

P(t, t+ T ) = eQ(t)TP(t, t) = eQ(t)T , (13)

where P(t, t) contains the probability of moving between
the different states between t and t, i.e. in zero time, which
is a matrix with ones on the diagonal and zero everywhere
else. Suppose that T = 1. Then the one minute transition
probabilities are given by:

P(t, t+ 1) = P(t) = eQ(t), (14)

where P(t) is the standard transition probability matrix for a
discrete time Markov chain. If the model has two states, the
matrix of transition intensities becomes:

Q(u) =

(−q11(u) q12(u)
q21(u) −q22(u)

)
=

(−q12(u) q12(u)
q21(u) −q21(u)

)
(15)

As mentioned previously, a continuous time Markov chain
will allow for a parameter reduction if certain structures are
present. Furthermore, identifying such structures will make the
model more theoretically tractable. As a simple illustration of
such a model, consider the case where there are four states,
i.e. N = 4. State 1 corresponds to the vehicle being parked
at home. State 2 corresponds to the vehicle being on a trip
that started from home. State 3 corresponds to the vehicle
being parked somewhere else. State 4 corresponds to the
vehicle starting a trip from somewhere else than at home. The
parameter reduction is thus obtained if it is assumed that the
vehicle cannot switch directly from being parked at home to
being parked somewhere else, that is from states 1 to 3. Also it
would be reasonable to assume that the vehicle does not drive
from home to return to home, without an intermediate stop.
Under these assumptions, the matrix of transition intensities
becomes:

Q(u)=

⎛
⎜⎜⎝
−q12(u) q12(u) 0 0

0 −q23(u) q23(u) 0
0 0 −q34(u) q34(u)

q41(u) 0 q43(u) −(q43(u) + q41(u))

⎞
⎟⎟⎠
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The discrete time transition probability matrix can then be
found by (14). In this case the number of parameters to be
estimated for each time step is reduced from N ·(N−1) = 12
to 5, by formulating the model in continuous time as opposed
to discrete time. The idea behind this specific model is that it
can capture whether the vehicle is parked for different lengths
of time, depending on the location. Also it can capture whether
the vehicle is usually parked at home at night. As the number
of states in the model increases, and supposing that certain
structures can be identified, the parameter reduction gained
by formulating the model in continuous time is increased.

C. Hidden Markov Models

The classical time-varying Markov models only allow for
modelling states that are observed. Thus, in this setup, if the
data at our disposal is only driving and not driving we are
limited to choosing at two-state classical Markov model for
describing the data. Furthermore, another important limiting
characteristic of time-varying Markov models, is that the time
spent in each state is exponentially distributed, albeit with
time-varying intensity. This implies that the time until the next
transition out of the current state does not depend on the time
spent in said state. For models with few states this may be
particularly unrealistic.

To address these two important restrictions in a context of
limited we introduce a hidden Markov model, which allows
us to estimate states that are not directly observed in the data.
In such a way that the actual time spent in each observed state
is properly captured. A hidden Markov model is obtained by
introducing a new state to the original Markov model. The
new state is, however, indistinguishable from one or more
of the observed states in the original model. This allows
for non-exponentially distributed waiting times in each of the
observed states, while the Markov assumption is satisfied for
the extended model with the hidden states. Specifically the
time spent in each observed state is a mixture of exponential
distributions. It should be stressed that the same results could
be obtained using an ordinary Markov model where the hidden
states are actually observed in the data. In short, hidden states
are meant to fill the lack of state information. A thorough
introduction to hidden Markov models can be found in [33],
which also includes R-scripts for parameter estimation.

III. PARAMETER REDUCTION VIA B-SPLINES

As the number of parameters to be estimated is huge,
techniques to reduce this number are needed. One such a
technique consists of applying B-splines to approximate the
diurnal variation. For a thorough introduction to B-splines
as well as other methods for parameter reduction such as
smoothing splines and kernels, see [34].

A. B-Splines

To construct a B-spline, first define the knot sequence τ
such that

τ1 ≤ τ2 ≤ · · · ≤ τM . (16)

Let this sequence of knots be defined on the interval where we
wish to evaluate our spline. In this particular case the knots
should be placed somewhere in the interval [0, 1440], that is,
over the day.

Denote by Bi,m(x) the ith B-spline basis function of order
m for the knot sequence τ , where m < M . The basis functions
are defined recursively as follows:

Bi,1(x) =

{
1 if τi ≤ x < τi+1

0 otherwise (17)

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x)

+
τi − x

τi+m − τi+1
Bi,m−1(x) (18)

for i = 1, . . . ,M −m. These basis functions are polynomials
of order m− 1 taking values on the interval [τ1, τM ].

A B-spline curve of degree m is a piecewise polynomial
curve defined as follows:

Sm(x) =

M−m∑
i=1

CiBi,m(x), (19)

where Ci, i = {1, . . . ,M −m}, form the control polygon.
The Bi,m(x) are the B-spline basis functions of order m
defined over the knot vector.

As we aim at modeling the diurnal variation in the driving
pattern, it is reasonable that the basis splines are periodic. This
can be achieved by introducing 2m new knots to the existing
knots. The new knots are defined as follows:

τ1−h = τM−h − (τM − τ1) for h ∈ {1, . . . ,m} (20)
τM+h = τh + (τM − τ1) for h ∈ {1, . . . ,m} . (21)

More specifically, let the vector containing the new knots be
represented by τ ′ = {τ1−m, . . . , τM+m}. For each B-spline
basis function, m+1 knots are required, though they may be
overlapping. The B-spline basis functions are uniquely defined
by the position of the knots. In particular, if the knots are
shifted by some constant α, the basis functions will be the
same as the original, except that they are shifted by α. If the
new knot vector is defined as τ ′, the basis function defined by
the knots {τM , . . . , τM+m} will be the same as that defined
for the knots {τ1−m, . . . , τ1}, except that it is shifted by the
interval length τM − τ1. In this way we can define a basis
function that is harmonic in the sense that it is recurrent over
different days.

All piecewise polynomial splines of order m defined over
the knot vector τ can be constructed from the basis functions
defined in (17)-(18). Hence using B-splines does not limit
the choice of polynomial splines in any way. Nonetheless,
an advantage of using B-splines is that the desired spline
can be written as a linear combination of predefined basis
functions. This proves useful as a generalized linear model can
be applied to estimate the transition probabilities. Traditionally
cubic B-splines are used, i.e. m = 4, which is also the case
here. A motivation for using cubic B-splines is that the spline
produced will be of order 4 and furthermore, if τi �= τj for
all i �= j, it will be C2 everywhere. A function which is C2 is
indistinguishable from a C∞ to the human eye. For a further
discussion on why to choose cubic splines, see [34].
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B. A Generalized Linear Model

To reduce the number of parameters in the model, a B-
spline can be fitted to the time-varying transition probabilities
pjk(s). There are, however, some issues with this approach.
Firstly, there is no guarantee that the fitted B-spline is always
in the interval [0, 1], which is a problem as we are modeling
probabilities. Secondly, if

∑N
k=1 njk(s) = 0 for some s, the

estimate for pjk(s) given by (5) is undefined. A more refined
approach is to use a generalized linear model instead. In the
following, such an approach is outlined.

Each day, at a specific minute, a transition from state j to
state k either occurs or does not occur. Thus for every s on
the diurnal cycle we can consider the number of transitions
to be binomially distributed, i.e. njk(s) ∼ B(zj(s), pjk(s)),
where the number of Bernoulli trials at s, given by zj(s) =∑N

k=1 njk(s), are known and the probabilities of success,
pjk(s), are unknown. The data can now be analyzed using
a logistic regression. Using the logit transformation, given by:

logit(p) = log

(
p

1− p

)
, (22)

the log odds of the unknown binomial probabilities, ηjk(s),
can be modeled as linear functions of the basis functions
Bi,m(s), such that:

ηjk(s) = log

(
pjk(s)

1− pjk(s)

)
= Cjk,1 ·B1,m(s) + . . .+ Cjk,M · BM,m(s).(23)

The linear prediction of ηjk(s) is therefore given by

η̂jk(s) = Ĉjk,1 ·B1,m(s) + . . .+ Ĉjk,M ·BM,m(s), (24)

where the estimates, Ĉjk,1, . . . , Ĉjk,M , are found by the
iteratively reweighted least squares method.

We can now estimate the the probability of a transition from
state j to state k at time s by using the inverse of the logit
function, which yields:

p̂jk(s) =
exp (η̂jk(s))

1 + exp (η̂jk(s))
, ∀j, k. (25)

The procedure of applying a generalized linear model is
implemented in the statistical software package R as the
function glm(·). For a general treatment of this problem see
[35].

C. Choosing the Knots

Choosing the amount and position of the knots in the knot
vector τ is important to obtain a good fit for the model. A naive
method for placing the knots is to distribute them uniformly
over the day. A uniform positioning, however, does not take
into account the peakedness of the estimate of pjk(s). An
algorithm for placing the knots is given in [36].

The proposed algorithm for placing the knots runs as
follows:

1) Decide first on the total number of knots, M .
2) Decide next on an initial number of knots, Minit < M ,

to be dispersed uniformly in the interval, with one at
each endpoint. Denote these knots by τinit.

3) Fit the model and calculate the likelihood for each knot
interval.

4) Find the two adjacent knots with the lowest likelihood of
the model in this interval. Denote these knots {τj, τj+1}.

5) Place a new knot, τ�, in the middle of the interval
(τj , τj+1).

6) Go to step 3 if the new number of knots M� < M . If
M� = M then stop.

Once an algorithm for distributing the knots is in place,
the number of knots to choose, M , has to be decided. If the
number of knots is too low, the model can be improved by
placing additional knots. If the amount of knots is too high, the
model is overparameterized. We recommend therefore testing
different models recursively up to some large M , and choosing
the number of knots where there does not seem to be any
significant improvement beyond this point.

IV. NUMERICAL EXAMPLE

In this section the model is fitted to a sample of data
collected from the utilization of a single vehicle. The data set
solely contains information on whether the vehicle is driving
or not driving. To this avail, we introduce hidden driving
states to accurately model the duration of the trips. We let the
first state denote the vehicle being parked and the others be
various driving states. In the estimation procedure we calculate
first the off-diagonal elements of P(s) and then compute
the diagonal elements by p̂ii(s) = 1 − ∑N

j=1,j �=i p̂ij(s). Let
now p̂1·(s) =

∑N
j=1,j �=i p̂ij(s). As we cannot distinguish

between the different hidden states, we first determine p̂1·(s)
and then we estimate the probabilities driving the transition
into the different hidden states, p̂1j(s) for j ∈ {2, . . . , N}, as
a fixed proportion of p̂1·(s). Also p1·(s) is the most interesting
parameter, as it is the probability of starting a trip within the
next minute, conditional on the vehicle not driving at time s.

A. Data

The example is based on GPS-based data pertaining to a
single vehicle in Denmark in the period spanning the five
months from 31-10-2002 to 29-03-2003, with a total of 150
days. Our aim is to model the use of this vehicle. The data set
only shows whether the vehicle was driving or not driving
at any given time. No other information was provided in
order to protect the privacy of the vehicle owner. The data
set comprises of a total of 799 trips. The time resolution is in
minutes.
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Fig. 1. Trips starting at a certain minute of the day, cumulated for 107
weekdays.

The dataset has been split into two main periods, weekdays
and weekends. Figure 1 illustrates the number of trips starting
at a given minute for the weekdays. Notice that there is a
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significant degree of diurnal variation, with a lot of trips start-
ing around 07:00 and again around 16:00. Also there are no
observations of trips starting between 02:30 and 06:00. Other
patterns are found for weekends, but as the approach is similar,
we focus on trips starting on weekdays. Driving patterns may
also exhibit annual variations, however the limited data sample
does not allow for capturing this.

B. Estimation

Firstly, naive B-splines have been fitted to the data using
the logistic regression and the result is shown in Figure 2.
These B-splines are described as naive in the sense that the
knots defining the basis functions for the B-splines are placed
uniformly over the 1-day interval. The gray lines are the
estimates p̂1·(s) obtained from (5). As the number of basis-
functions increases, it is apparent that the fit improves.
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Fig. 2. From top to bottom: Fitting the estimate p̂1·(s) where the knots are
uniformly distributed in the interval from 00:00 to 23:59 on a weekday, with
number of knots {5, 10, 20, 50}. For reference, the gray bars are the estimates
of p̂1·(s) from (5) with no parameter reduction. The red bars indicate the knot
positions.

The algorithm for placing the knots is implemented uses an
initial amount of knots Minit = 7. The left plot in Figure 3
shows the tests for different number of knots, Mn.
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Fig. 3. Left: Log-likelihood ratio test statistic, given by Dn, from the model
with n knots vs. the model with n − 1 knots. 95% and 99% critical values
are shown for a χ2-distribution with one degree of freedom. Right: The
log-likelihood of the models with different knots. The red dashed line is the
likelihood of the model with estimates based on (5).

Referring to Figure 3, left, the model with a total number
of knots Mn = 21 is chosen, as no significant improvement is
attained beyond this point. In Figure 3, right, the log-likelihood
for models with different numbers of knots is shown. The
red dashed line is the log-likelihood of the model with the
estimates found by (5) and corresponds to a perfect data fit.
It is in some sense a limit for the fitted models.

The models based on B-splines are sub-models of the model
in which a knot is placed at every minute. In this model,
the transition probabilities are estimated independently for
every minute, and in turn the model corresponds to that with
no parameter reduction. The models where the number of
parameters is reduced can be tested against the model with
no parameter reduction. This leads to a test statistic that will
be χ2-distributed with 1440−M degrees of freedom for each
time-varying transition probability. Accordingly the critical
value will be very large (> 1475 for estimating one time-
varying transition probability for M ≤ 50 at 95% significance)
and thus a test for sufficiency is not appropriate.

The top plot in Figure 4 illustrates the estimate of p̂1·(s)
using B-splines with M = 21, where the knots are placed by
the algorithm introduced in Section 3.3. For comparison, the
model with the naive knots and M = 21 is shown on the
bottom plot in Figure 4. By visual inspection, it is observed
that the model in which the knots are placed according to
the algorithm in Section 3.3 better captures the peakedness of
p1·(s).
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Fig. 4. Top: p̂1·(s) based on the B-splines with M = 21 and the knots placed
using the algorithm, plotted as the black line over the estimates p̂1·(s) with
no parameter reduction. Bottom: p̂1·(s) based on the naive B-splines with
M = 21, plotted as the black line. The red bars indicate the knot position.

From the estimation of the transition probabilities and the
evaluation of likelihoods we conclude that a Markov model
including five hidden time-homogeneous driving states and
one inhomogeneous non-driving state satisfactorily describes
the use of the vehicle. Indeed, with such a number of states,
we manage to properly capture the trip lengths. In Figure 5 the
empirical trip lengths obtained from the data are plotted along
with the distribution of the trip lengths based on the fitted
model. Notice that the distribution is clearly not exponential.

C. Applications

The applications of the proposed stochastic model for driv-
ing patterns range from simulating different driving scenarios
to calculating the probability of a trip starting within a given
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Fig. 5. Trip lengths, empirical in histogram bars, and estimated density, in
red, based on Monte Carlo simulation from fitted model.

interval. In addition, the model is prerequisite to determine the
optimal charging scheme for an electric vehicle.

1) Probabilities and Simulations: Four driving scenarios
are simulated and shown in Figure 6. Markov states are
indicated in a binary form depending on whether the vehicle
is driving “1” or not “0”.
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Fig. 6. Four distinct realizations of driving patterns using the proposed
stochastic model.

Next we illustrate how to find the probability of a trip
starting within a given interval. This probability is to be con-
sider as probability under the model. That is given the model
assumptions and the parameter estimates are correct. Suppose
that at time s the vehicle is parked. Denote the waiting time
until the next trip starts by Zs. We have that Zs ∼ exp(q1·(s)),
where q1·(s) =

∑N
j=2 q1j(s). The probability of a trip within

the time interval [s, s+ τ ] is thus

P(Zs ≤ τ) = 1− e−
∫

τ
0

q1·(s+t)dt. (26)

Using this equation, for example, the probability of a trip
starting in the interval from 00:00 to 06:00 is P(Z00:00 ≤
06:00) = 1− e−

∫
6·60
0

q1·(t)dt = 0.098.
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Fig. 7. Top: A graph plotting the probability of starting a trip within the
next hour, conditional on not driving at the present time, which is found by
applying (26). Bottom: The probability of the vehicle being in use at any time
of the day, which is estimated using bootstrap.

In the top part of Figure 7, the probability of starting a
trip within the next hour, conditional on not driving at the
beginning of that hour, is depicted. The probability of the
vehicle being in use at any time of the day is found using
bootstrap ([37]) and is shown in the bottom part of Figure 7.

2) Example of Electric Vehicle Charging: In [27] the model
for driving patterns, developed in this paper, is used as an input
into an optimization problem, with the objective of minimizing
charging costs and user inconvenience. They show that the
randomness intrinsic to driving behavior has a substantial
impact on the charging strategy to be implemented. This holds
true both in terms of savings and in terms of satisfying the
driving needs. It is especially the case for vehicle to grid
schemes, where the knowledge of the users driving needs are
essential to ensure a sufficient charge level for the users trip.

V. CONCLUSION AND FUTURE RESEARCH

This paper proposes a suitable model that captures the
diurnal variation in the use of a vehicle. The number of
parameters is significantly reduced by using B-spline basis
functions as explanatory variables in a logistic regression. The
model is versatile and can be applied to describe driving data
from any single vehicle, thus providing a reliable model for
the use of that vehicle.

It would be interesting to apply the model to data that
includes location, to see how this affects the model. The model
could be extended to cover a population of vehicles by using a
mixed-effect model. Another extension to the model could be
to estimate the transition probabilities adaptively in time. This
way structural changes in the driving behaviour of the vehicle
user, such as variation over the year or a change in use as a
result of from the household purchasing an additional vehicle,
could be captured. An obvious next step is to use the model
to implement a charging strategy that minimizes the costs of
driving considering the underlying uncertainty in the use of
the vehicle.
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