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Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

S. A. Schäffer,* B. T. R. Christensen, M. R. Henriksen,† and J. W. Thomsen
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

(Received 22 April 2017; published 24 July 2017)

Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser
oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics
in such a system and demonstrate limitations as well as robustness of the approach. We investigate the phase
response of an ensemble of cold 88Sr atoms inside an optical cavity for use as an error signal in laser frequency
stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking
range. The limitation is caused by the cavity transfer function relating input field to output field. The cavity
dynamics is shown to have only little influence on the prospects for laser stabilization, making the system robust
towards cavity fluctuations and ideal for the improvement of future narrow linewidth lasers.

DOI: 10.1103/PhysRevA.96.013847

I. INTRODUCTION

Optical atomic clocks have undergone an immense develop-
ment, and are continuously improving, with increased stability
and accuracy every year [1–4]. The ability to reach exceedingly
high accuracies within a reasonable time is made possible by
the correspondingly huge effort to bring down the frequency
noise in ultrastable laser sources [5–8].

The full potential of the high Q factor atomic transitions
used in many optical atomic clocks can be reached only
through improvements in the stability of the interrogation
laser. Traditionally such interrogation lasers are stabilized
to highly isolated optical reference cavities. This stabi-
lization method is mainly limited by thermal fluctuations
in the optical coating, mirror substrate, and cavity spacer
[8–11], demanding considerable experimental effort in order
to construct cryogenically cooled monocrystalline cavities
and crystalline mirror coatings [5,8]. Several new approaches
are being pursued in the so-called bad-cavity regime [12],
in order to significantly suppress thermally induced length
fluctuations. They use a combination of narrow linewidth
δν atoms and optical cavities. These atomic systems have
strongly forbidden transitions at optical frequencies ν, re-
sulting in high Q factors, Q = ν

δν
. By exploiting the high

Q factor of the atomic transitions and using cavities with
comparatively low Q factors the systems are far less sen-
sitive to thermal fluctuations of the cavity components,
and the experimental requirements are simplified. In these
approaches active as well as passive atomic systems have
been suggested [13–18]. The active atomic systems are optical
equivalents of the maser, relying on cooperative quantum
phenomena such as superradiance or superfluorescence of
atoms inside the cavity mode. Several pioneering experiments
have already demonstrated lasing under such conditions
[19–23]. In the passive approach the atom-cavity system is
used as a reference for laser stabilization where the narrow
linewidth atomic transitions are interrogated inside an optical
cavity. One proof-of-principle approach to this is based on
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using the noise-immune cavity-enhanced optical heterodyne
molecular spectroscopy (NICE-OHMS) technique [24,25] for
generating sub-Doppler dispersion signals [26]. This has
shown promising results for laser stabilization that could
be able to compete with traditional cavity-only stabilization
techniques [27–29].

By employing an optical cavity the coupling between
atoms and optical field is improved by a factor of the cavity
finesse, which significantly increases the total phase shift
experienced by the optical field. As the total phase shift is
increased, however, this limits the frequency range of linear
behavior and thus the dynamical range of a servo locking
the laser frequency. Additionally, the cavity servo response
time might limit the signal quality if the condition of constant
laser-to-cavity resonance must be strictly met.

In this paper we show experimentally that the large total
phase shift of the system not only improves the resonance slope
but also distorts the dispersion signal off atomic resonance.
This becomes relevant for the interest of servo optimization
in such a system [30] as it can limit the dynamical range
of a servo lock. We show that this distortion originates from
the transfer function of the cavity itself, and thus cannot be
circumvented. We have realized a system with a theoretically
attainable shot-noise limited (SNL) laser linewidth of �ν ≈
40 mHz, possibly allowing laser performance at the level of
the state-of-the-art reported values [5–8]. We use the system to
map out the dynamical range and investigate the consequences
of an imperfect cavity servo, which causes a mismatch of the
cavity resonance with respect to the laser frequency. Due to the
bad-cavity regime much looser bounds on the cavity resonance
are allowed, as expected. This opens the possibility of using
cavities with quasistationary lengths, and simultaneously
underlines the insensitivity to cavity fluctuations.

II. EXPERIMENTAL SYSTEM

The experimental system investigated here consists of an
ensemble of cold 88Sr atoms cooled to a temperature of
T ≈ 5 mK. The atoms are trapped in a magneto-optical trap
(MOT) at the center of a TEM00 Gaussian mode of an optical
cavity (see Fig. 1). The cavity has a finesse of F = 1240 and a
linewidth of κ = 2π × 630 kHz at λ = 689 nm. A laser beam
probing the narrow (5s2) 1S0 → (5s5p) 3P1 transition of 88Sr
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FIG. 1. Experimental system. The probe laser has a single carrier
frequency as well as sidebands detuned an integer number of the
cavity free spectral range. The light is coupled into the cavity by
adjusting the cavity length to ensure resonance between the atom-
cavity system and the probing laser at all times. This resonance is
ensured by a Pound-Drever-Hall lock from the reflected light using
the beamsplitter (BS), photodetector (PD), and locking circuit acting
on the piezoelectric element (PZT) on one of the cavity mirrors.
The sidebands do not interact with the atoms inside the cavity and
act as references in the subsequent heterodyne measurement of the
transmission signal on the fast avalanche photodetector (APD). The
cooling transition for the MOT and the probe transitions are shown.
During measurements the cooling light (blue) is turned off.

is coupled into the cavity mode, and the cavity resonance is
locked to the probe laser frequency at all times.

Before entering the cavity the probe light is phase modu-
lated using a fiber-coupled electro-optical modulator (EOM)
in order to perform heterodyne detection of the transmitted
signal. The modulation frequency is equal to the free spectral
range (FSR) of the cavity, resulting in sidebands at ω0 ± j	

for integer j and 	 = 2π × 781.14 MHz. The sidebands
are far detuned with respect to the (5s2) 1S0 → (5s5p) 3P1

transition which has a linewidth of γnat = 2π × 7.5 kHz, and
the interaction between the sidebands and the atoms can thus
be neglected. This system is interrogated using a heterodyne
measurement between the carrier and sideband frequencies
in order to extract the dispersion signal of the atom-cavity
system, which can be used as an error signal to lock the probe
laser frequency to resonance with the atoms. We operate in the
bad-cavity regime where any cavity fluctuations are suppressed
in the atom-cavity signal by a factor of κ

γnat
, here about 100.

The field transmitted through the cavity is split and simul-
taneously recorded on a low bandwidth (50 MHz) photodiode
and a high bandwidth (1 GHz) avalanche photodetector (APD).
The low bandwidth signal records the total transmission
intensity of the cavity. The high bandwidth signal is filtered
around the modulation frequency 	 and demodulated in order
to record the atom induced phase shift of the sideband relative
to the carrier frequencies.

The measurements are performed in a cyclic operation
as the intense cooling light of the MOT results in an ac
Stark shift of the 3P1 level and washes out coherence of the
probing transition. The cooling light is thus shut off before
each measurement, and the probing light then recorded for an

interrogation period of 100 μs. At this time scale the probing
laser has a linewidth of �l = 2π × 800 Hz, which is much
narrower than the natural linewidth of the probing transition
γnat = 2π × 7.5 kHz. This transition linewidth places us deep
in the bad-cavity regime, where the cavity linewidth is
much broader than the atomic linewidth κ � γ . This means
that the system is much less sensitive to variations in the
cavity resonance frequency which can originate from, e.g.,
temperature fluctuations in the cavity components.

Only a single measurement is performed before reloading
the trap with new atoms, since atom loss due to the finite
temperature of the atoms becomes measurable after 500 μs.
This results in a cyclic operation where the dispersion
is measured only for a single frequency detuning of the
interrogation laser at a time. Varying the loading time of the
MOT allows control over the atom number and typically ranges
from 50 to 800 ms for intracavity numbers of N = 2 × 106 to
4 × 107.

III. THEORY OF MEASUREMENT

We investigate theoretically a system consisting of an
ensemble of N atoms coupled to a single mode of an optical
cavity in order to describe the experimental system presented
in this paper. The NICE-OHMS technique as it is used here
relies on the transmitted signal of the atom-cavity system,
and is a heterodyne measurement between the carrier laser
frequency and its sidebands. The input laser field before the
cavity can then be described by

Ein = E0

∞∑
j=−∞

Jj (y)ei(ωl+j	)t , (1)

where E0 is the amplitude of the electric field and Jj (y) is the
j th-order Bessel function of the first kind, with the modulation
index y. The laser carrier frequency is ωl , whereas 	 is the
modulation frequency applied in the EOM.

The interaction of the light with the atom-cavity system
may be described by using a Born-Markov master equation as
described in the Appendix following [27,29]. The approach is
based on a many-particle Hamiltonian Ĥ and a derived set of
complex Langevin equations that includes the Doppler effect
from the finite velocity of the atoms.

Classically we may relate the input and output fields with
a complex transfer function χ [θ (Ein)]. The field-dependent
complex atomic phase experienced by the light when interact-
ing with the atom-cavity system θ (Ein) is found by means of
the full quantum-mechanical theory of the Appendix. In order
to cast the behavior of our system in terms of measurable
quantities, we assume that the relation between the quantum-
mechanical phase θ (Ein) and the measured output power can
be described by a linear model such that Eout = χ (θ )Ein. We
then insert the theoretical value of θ (Ein) into the transfer
function.

Here we are mainly interested in the properties of such a
transfer function. By increasing the finesse of the cavity with
respect to the numbers reported in [28] we enable the system to
move between a low-phase-shift regime and a high-phase-shift
regime. Figure 2 shows typical dispersion scans where the
theoretical model incorporating a cavity transfer function
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FIG. 2. Phase response of the atom-cavity system using the
NICE-OHMS technique. We show the transition from low to high
phase response by changing the number of atoms interacting with the
cavity mode. Here the gray dots indicate recorded data, whereas the
full green curve is a theoretical calculation using the experimental
parameters. As the absolute phase increases, the transfer function
reaches its maximal value and first flattens, then inverts the signal
slope. (a) Cavity atom number of N = 3.8 × 106, and a temperature
of T = 16 mK. Due to the short loading time used the atoms are
slightly warmer here. (b) Cavity atom number of N = 1.4 × 107, and
a temperature of T = 13 mK. Distortion in the dispersion signal is
evident from ±1 to ±4 MHz. (c) Atom number of N = 4 × 107, and
a temperature of T = 13 mK. Here we clearly see a slope inversion
initiating at ±1 MHz. The maximal absolute value of the dispersion
is not constant over the whole scan, as it depends on the absorption
which is itself dependent on the detuning. This also causes the
dispersion to retain a large absolute value for relatively high detuning.

(see [28]) has been plotted using the known experimental
parameters. The dispersion signal serves as an error signal

for all values of the atom number N , but is distorted when
detuned from resonance at higher values of N . This distortion
is not caused by the atomic phase response itself, but rather
by the classical conditions of the transfer function imposed by
the cavity.

A. Dispersion signal

Only a single frequency component of the modulated light,
namely, the carrier component j = 0, interacts with the atoms.
This means that we can simplify the description of our system
by defining a transfer function for each frequency component
j of the light as it passes through the cavity [31]:

χj = T eiφj

1 − Re2iφj
, (2)

where T (R) is the power transmission (reflectivity) of a single
cavity mirror, and φj is the complex phase experienced by the
j th component of the interrogation laser. We assume identical
mirrors with no losses. The real part of the transfer function
corresponds to the transmitted amplitude of the E field in the
system, while the imaginary part corresponds to the dispersion.
Due to energy conservation the absolute-squared value of the
complex transfer function cannot exceed 1, |χ |2 � 1, for a
system with no gain or frequency conversions. This classical
condition thus imposes a maximal value on the dispersion
signal which is independent of the nature of the phase delay
inside the cavity. We can describe the complex phase for any
sideband component as simply the phase shift experienced
by a single-passage interaction with the cavity φj = φ

j
cav for

j �= 0, while the carrier component of the light experiences
the atomic phase as well:

φ0 = φ0
cav + φD + iφA, (3)

where φD and φA are the phase components caused by atomic
dispersion and absorption from a single passage of the cavity.
In the case of a medium with no gain, we have φA � 0. The
cavity phase shift is given by φ

j
cav = φcav + jπ , and the cavity

locking condition of the experiment defines φcav.
The output field can now be expressed by a superposition of

frequency components and corresponding transfer functions:

Eout = E0

∞∑
j=−∞

Jj (y)χje
i(ωl+j	)t , (4)

where E0 contains any overall phase. By recording the
intensity on a photodetector we can filter out the beat
signal between sideband and carrier by demodulating at the
modulation frequency 	. By optimizing the phase of the
demodulation signal to record the imaginary part of the transfer
function and subsequently pass the signal through a 2-MHz
low-pass filter we obtain a dc signal:

S	 ∝ 2i|E0|2J0(y)J1(y)(χ0χ
∗
1 − χ∗

0 χ1), (5)

which is a purely real number. We have only included up to
second-order sidebands, and used χj = (−1)|j |−1χ1 for j �= 0.
Higher-order sidebands are negligible for modulation indices
up to y 	 1.

If we assume that the system is in a steady state the cavity
locking condition dictates that the cavity is on resonance with
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the carrier frequency at all times, corresponding to that used
in [28]. This gives us

φcav + φD = nπ (6)

for integer n. The complex transfer function of the carrier then
becomes solely dependent on the absorption,

χ0 = T e−φA

1 − Re−2φA
, (7)

whereas the sideband transfer functions have the phase
information of the atomic interaction written onto them by
the cavity lock:

φj = φj
cav = φcav + jπ for j �= 0

= nπ − φD + jπ. (8)

Ignoring an overall sign from einπ we get

χj = T ei(jπ−φD )

1 − Re2i(jπ−φD )
for j �= 0. (9)

Since χ0 is purely real we can write the signal as

S	 ∝ J0(y)J1(y)χ0Im(χ1). (10)

We are thus particularly interested in the properties of the
imaginary part of the transfer function if we wish to understand
the behavior of our error signal.

B. Transfer function properties

Having understood the behavior of our system we can
now investigate why we see the folding behavior depicted
in Figs. 2(b) and 2(c). If we ignore the origin of the phases
it is clear that a cavity transfer function such as the one in
Eq. (2) must have a periodicity of 2π as a function of the
phase shift experienced by the light inside the cavity. In the
context of locking a laser to an atom-cavity system we are
mainly interested in the phase slope around atomic resonance
where the absolute phase is zero, but the phase slope can be
very steep.

Very close to atomic resonance, the transfer function is
proportional to sin(φ) ≈ φ for small phase shifts [28] and
we can treat the transfer function as linear in phase. For
a slightly larger frequency detuning, however, the existence
of a maximal value for the transfer function results in some
interesting behavior for a system with large total phase shift.
In Fig. 3 the imaginary part of a phase-dependent transfer
function χj is shown with varying single-passage phase shift
and mirror reflectivity R. We see that the imaginary part of
the transfer function itself behaves in a dispersionlike manner
for a linearly varying phase. In this figure we have assumed
that there are no losses in the cavity mirrors (T + R = 1)
and that there is no absorption in the cavity Im[φ] = 0 which
would not be the case close to an atomic resonance. If the
effect of absorption in the medium is taken into account,
this reduces the maximal value of transfer function |χ |max

further. For Im[φ] = φA > 0 we will thus have |χ |max < 1
asymptotically decreasing towards zero as a function of φA.
As an aside, including absorption also decreases the phase
slope at resonance. This slope will nevertheless still increase
linearly with atom number when the saturation condition is
fulfilled.

FIG. 3. The imaginary part of a transfer function as given in
Eq. (2) as a function of phase φ and single mirror power reflectivity
R. Here we have assumed that the phase φ is purely real, and
that the cavity is symmetrical. Close to zero phase the function is
approximately linear, and the values of the phase and the transfer
function are proportional. As the phase increases, however, a maximal
value for the transfer function is reached, and the transfer function
slope is inverted. The black line indicates the mirror reflectance of
our system (R = 0.998) and the transparent plane indicates χ = 0.

As the reflectivity of the mirrors (R) is increased the light
is stored in the cavity for longer and thus experiences a larger
total phase shift. This increases the phase slope on resonance
proportionally to the finesse F of the cavity and in turn leads
to a decrease in the phase range where the transfer function χ

is linear (see Fig. 3). This insight tells us that the dispersion
signal observed from the atom-cavity transfer function will be
distorted and even change the sign of the slope for detunings
at which the value of the total phase shift is large.

This sets a limit to the maximal dynamical range that we
can expect of a locking mechanism based on this dispersion
signal S	. It results in an inversion of the dispersion slope
for large absolute phase shifts. Here the boundaries on the
transfer function act to fold down the signal in a nonlinear
manner. While the sign of the slope is thus inverted the sign of
the signal itself never changes with respect to that of the phase.
The linear-phase regime decreases in size linearly towards zero
as a function of the mirror reflectivity R in the regime where
the cavity linewidth κ 
 FSR (F � 1). A maximal dynamical
range of φ = π is reached for R � 0.17. For systems with
much larger atom number (and thus larger phase shift) it could
thus be an advantage to go towards lower mirror reflectivity,
and thus deeper into the bad-cavity regime. This would further
reduce the sensitivity to cavity perturbations. For systems
using much broader atomic transitions where the cavity might
naturally have lower finesse [13], these effects would only be
visible for very large samples.

The absolute phase value at which such mirroring occurs
typically increases with larger detuning from the resonance.
This effect is caused by the decrease in atomic absorption for
increased detuning. This causes the phase value necessary for
the slope inversion of the transfer function to increase. Away
from resonance the dispersion is thus highly distorted, with
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respect to the atomic phase, due to the functional form of the
cavity transfer function.

IV. RESULTS AND DISCUSSION

We now look at the phase response of the system when
operating in a regime of high phase shift due to a combination
of large atom numbers N and high reflectance of the cavity
mirrors. At small frequency detuning we see a linear scaling
of the dispersion slope with respect to the phase slope, which
gives us a limit on the ultimate frequency linewidth of a laser
locked to such a system [17,28]. The dynamical range of a laser
frequency lock to the atom-cavity system becomes limited at
high absolute phase shifts. This is caused by the characteristics
of the transfer function the behavior of which will then
dominate over the power broadened transition linewidth γpower.
We quantify this limitation and its implications for laser
frequency locking. We have also investigated the effects of
having a cavity resonance lock with nonoptimal conditions.
The modification of such locking conditions is of interest to
any experimental realization of the frequency lock.

A. Phase slope and projected shot-noise limited linewidth

In the context of locking the frequency of a laser to the
atom-cavity system, we are interested in obtaining an error
signal that we can use as a feedback signal, which must have a
large relative slope and a large signal-to-noise ratio. The first
condition is limited by the physical system, and is given by
the phase slope present at resonance. The second condition is
limited by the noise present in the experimental system, and
is to a high degree limited by technical circumstances that
may be significantly reduced. The technical contributions to
the noise include residual amplitude modulation of the laser
sideband components, atom number fluctuations, and noise in
the detectors. Because of this fundamental difference in the
two conditions, we wish to focus on the limitations set by the
physical system initially, namely, the phase slope at resonance.

In Fig. 4(a) the slope of the atomic induced phase shift
at resonance is plotted as a function of the input power on
a logarithmic scale for N = 2.7 × 107. It was shown in [27]
that the slope at resonance scales linearly with the number of
atoms N in the cavity mode. This is still the case in our regime
of N ≈ 1–5 × 107 and Pin 	 100 nW [32], and we will thus
focus on the strongly nonlinear scaling with laser power here.
This scaling was shown for a cavity finesse of F = 75 in [28].
Here we show results for a system with finesse of F = 1240,
and confirm that the theory scales well with cavity finesse.

The very nonlinear behavior of the phase slope shows a clear
optimum in absolute phase slope for input powers of about
8 nW and a subsequent decrease in the absolute slope towards
zero. While the phase slope is small for low powers due to the
reduced saturation of the atoms, the saturation feature becomes
power broadened for higher powers, once more leading to a
reduction in the slope. The optimal phase slope is thus obtained
for very low input powers; however, as we shall see below, this
is not the optimal value for laser stabilization.

The shaded region in Fig. 4(a) is a theoretical plot including
experimental uncertainties and we indicate a number of
different input powers with green dots. At these powers

FIG. 4. (a) Semilogarithmic plot of the slope of the atomically
induced phase slope at resonance, dφ

dν
, as a function of input

power. The shaded area is the range between theoretical predictions
for experimental parameters at a temperature T = 3.6 ± 1 mK and
N = 2.7 × 107 ± 5 × 105 atoms overlapping with the cavity mode.
This represents the uncertainty in atom number due to shot-to-shot
variations, as well as the uncertainty in temperature mainly caused by
power fluctuations of the cooling laser. For a number of different
input powers we measured the dispersion and found the phase
slope of the theoretical fit. The uncertainty in input power Pin is
less than or equal to the dot size. (b) Projected SNL linewidth
achievable for the system under ideal circumstances. The dots are
calculated values corresponding to the slopes found in panel (a).
The single-sideband-to-carrier power ratio is 0.5. We see a minimal
SNL linewidth of �ν ≈ 40 mHz which is comparable to the current
state-of-the-art results.

we have performed scans of the atom-cavity spectrum and
compared them to the theoretical model, in order to obtain
a noise-free value for the phase slope at resonance. The fact
that we see fluctuations of power, atom number, and technical
noise or drift in the experiment is reflected by the misalignment
between the dots and the theoretical behavior.

Using the phase slope it is possible to calculate the
theoretically obtainable SNL linewidth of a laser locked to
the system. Here we find the minimal achievable linewidth
by assuming that the detector efficiency is unity, and the
lock is perfect. This can be found theoretically by using the
expression [17,32]

�ν = πhν

2ηqePsig
(

dφ

dν

)2

(
1 + Psig

2Pref

)
(11)
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where dφ

dν
is the phase slope at resonance, Psig is the carrier

power, and Pref is the reference power, which in our case is the
power in the first-order sidebands. ηqe is the quantum efficiency
of the detector which we assume here is 1.

In Fig. 4(b) we calculate this SNL linewidth �ν and
plot the curve corresponding to the slope of Fig. 4(a). We
see that the optimum value of input power changes when
we consider the SNL linewidth. For low powers the SNL
linewidth increases dramatically as the shot noise starts to
dominate the signal. This results in a relatively flat region
around the optimum power spanning about an order of
magnitude from Pin 	 10 to 100 nW. The minimal value of
�ν is highly dependent on the ratio between sideband and
carrier power. The optimal ratio of P carrier

2Psideband
= 1 was used

in these experiments. For these parameters we predict a
minimal value of �ν ≈ 40 mHz which is comparable to the
smallest laser linewidths ever reported [5–7]. By increasing
the atom number it is possible to simultaneously decrease
the projected linewidth of the locked laser, and increase the
optimal operation power Pin.

B. Dynamical range

In Fig. 2 the recorded signal S	 is shown for three different
regimes where the maximal atomic phase shift is below, at, or
above that corresponding to the maximal value of the transfer
function. This shows the transition from a regime where the
dispersion is largely unperturbed and represents the phase
response of the atoms well, to a regime where the response
is significantly modified by the cavity transfer function.

At small phase shifts we see a linear increase of the
size of the signal proportional to the phase. At larger phase
shifts, however, the functional form of the cavity transfer
function results in a mirroring effect of the dispersion signal
for detunings above γpower where the phase shift is maximal.
This has no influence on the slope around resonance, and will
thus not affect the performance of an ideal frequency lock.
It could, however, still limit the performance of a real servo
system where the response time is not infinitely fast.

We define the dynamical range of a lock to the dispersion
signal as the range around resonance within which the
dispersion slope has constant sign. This range is dictated
by the full width at half maximum of the power broadened
transition linewidth. This corresponds to the width of the Lamb
dip in the case of simple saturated absorption spectroscopy.
The width, however, is modified by the slope of the Doppler-
broadened Gaussian dispersion feature. This dispersion causes
line pulling and thus decreases the dynamical range further.
Lower temperatures will cause more pronounced line pulling
than higher temperature as the Doppler-broadened dispersion
slope increases. While this effect actually causes a decrease in
resonance slope it turns out that the fractional increase in the
number of saturated (cold) atoms Nsat outweighs this effect and
the resonance slope is thus effectively increased for decreasing
temperatures T .

Finally the signal is modified by the cavity transfer function.
Below the threshold in maximal phase deviation set by this
transfer function this is simply a phase-dependent scaling of
constant sign and will thus not modify the dynamical range.
Above this threshold, which becomes relevant in high N

FIG. 5. (a) Dynamical range of the dispersion signal as a function
of the intracavity atom number N × 10−7. The dynamical range is
the range around resonance where the sign of the dispersion slope
is constant. The black dash-dotted line indicates the width of the
dispersion if it was uniquely determined by the natural linewidth of the
transition γnat. Three examples of the saturation dispersion are shown
in panel (b) and indicated by the dots on dashed lines in panel (a).
The three examples correspond to atom numbers of N = 2.4 × 107

(light green), N = 4.1 × 107 (medium green), and N = 5.9 × 107

(dark green), respectively. The recorded scans in Fig. 2 do not exceed
N = 2 × 107 and are thus not limited by this effect. In panel (b) the
vertical axis, Im[χ0χ

∗
1 − χ∗

0 χ1], is the unitless signal transfer function
proportional to Eq. (5), and is thus linear proportional to the recorded
signal.

systems such as the one reported here, we see a decrease of the
dynamical range due to the slope-sign inversion dictated by the
transfer function. A higher atom number N increases the total
phase, and thus pushes the system further beyond the threshold
set by the transfer function boundaries. Figure 5 shows the
dependency on cavity atom number of the dynamical range
for an in-coupling power of Pin = 100 nW and a temperature
of T = 2.5 mK. This shows the initial dynamical range of
�dyn 	 180 kHz below threshold and a drop to a few tens of
kHz above the threshold. For typical atom numbers in our
system we rarely exceed this threshold. For very high atom
numbers, however, the range decreases asymptotically towards
zero.

The dynamical range of a frequency locking scheme will be
limited by the power broadened transition linewidth γpower in
all cases of Fig. 2. For higher atom numbers N , then, we will
see another inversion within the narrow saturation dispersion
[see Fig. 5(b)]. Such an inversion will bring us into a regime
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where the dynamical range is limited by the properties of the
transfer function χ rather than the power broadened transition
linewidth γpower. Notice that this is only true if we require the
sign on the slope to be constant. The sign of the signal itself
will never change, and thus some degree of locking can still
be possible for a flexible servo system.

The dynamical range is of interest in particular regarding
stability requirements for the interrogation laser. A standard
requirement for the interrogation laser is that the interrogation
laser linewidth should be smaller than the transition linewidth
of the sample in order to resolve the line. If our initial interro-
gation laser linewidth is of the order of the natural linewidth
(γnat = 2π × 7.5 kHz) this is well within the dynamical range
below threshold. For very high atom numbers N � 1.1 × 108,
however, the dynamical range decreases below the natural
transition linewidth of the atoms. It is thus important that
the interrogation laser is prestabilized to well within this
dynamical range, before the atom-cavity error signal can be
optimally utilized.

The aspect of the dynamical range considered here indicates
that there is some optimal atom number depending on how
efficient the servo can be made. While the slope around
resonance increases linearly with the number of atoms N , and
the dynamical range decreases severely above N ≈ 2.5 × 107,
an intermediate error signal could be preferable. Such a signal,
like the intermediate (medium green) signal of Fig. 5(b),
provides the largest area under the error curve of the three
shown. The preferred signal will depend on the particular
experimental servo parameters.

C. Locking condition effects

Since our experimental realization is based on a cyclic
operation, the cavity lock causes the length of the cavity to
change dynamically throughout the experimental cycle. If the
cavity dynamics is slower than required to obtain perfect
locking, we see a small correction compared to the ideal
locking signal of Eq. (10). This causes large deviations in
the dc transmission signal but has a relatively small effect on
the phase response. When the cavity lock responsiveness is too
slow the condition of constant resonance between the cavity
and the laser carrier frequency will no longer be fulfilled. The
atomic dispersion information will no longer be fully written
onto the sideband frequencies but remains, in part or fully, on
the carrier frequency. This means that χ0 is no longer purely
real, and the dispersion term of the atomic phase shift affects
the transmission. For high atomic phase shifts, then, the trans-
mission of the carrier component will be significantly reduced
as the resonance condition is no longer necessarily fulfilled.

The locking condition determines some initial phase φinit

written onto the cavity phase

φcav = nπ − φinit. (12)

Here we investigate three different cases. For the case of a
fast cavity lock that can follow the system dynamics we have
φinit = φD as shown in Eq. (6). A second idealized case is
where the cavity lock is independent of the atoms inside the
cavity φinit = 0. This means that the length of the cavity simply
follows the vacuum wavelength of the interrogation laser
L = nλvac

2 . The third, and the more realistic, case is where we

have some perturbed phase due to the experimental conditions.
In our case, the fact that the locking dynamics are relatively
slow results in an initial phase given by the atoms under the
influence of the cooling light φinit = φMOT. The phase shifts of
the field components then become

φ0 = nπ + φD + iφA − φinit, (13)

φj = (n + j )π − φinit for j �= 0, (14)

for some integer n.
Since the first case has already been described above, we

look at the second case of an atom-independent cavity lock.
Here the cavity length ensures resonance with the laser beam
assuming that there is only vacuum in the cavity. In this case
the sidebands (j �= 0) are always resonant, but the carrier
frequency (j = 0) will be affected only by the atomic phase.
In the limit of a very broad cavity linewidth κ this situation is
equivalent to having no active lock on the cavity length. The
behavior under this condition thus gives us some insight into
the case of a system operating in the deep bad-cavity limit with
stationary mirrors but resonant with the atomic transition.

In the third case, relevant to our current system, a slow lock
means that we lock to the atoms in the MOT while the cooling
light is still on. The carrier frequency thus experiences some
phase shift from the ac Stark shifted atoms (φMOT), and this
phase is written on the cavity length. Since the cavity cannot
respond sufficiently fast to the subsequent conditions where the
MOT light is turned off, this modifies the phase of all χj with
φMOT. The phase information from the nonperturbed atoms is
now only on the carrier component. This heavily modifies the
dc transmission, and also causes the antisymmetric behavior
of the signal to be lifted as φMOT is not symmetric with respect
to φD. The carrier phase becomes

φ0 = nπ − φMOT + φD + iφA (15)

for integer n, and the sideband phases retain the phase written
on the lock φj �=0 = (n + j )π − φMOT. In this case χ0 is no
longer a purely real quantity, and this modifies the signal.
We have implemented this to first order by manually adding
the measured phase shift φMOT of the system to the transfer
functions of the carrier and sideband frequencies. A full
description must include the modified atom-light interaction
in the cavity caused by this effective cavity detuning during
the probing time.

In Fig. 6 we show an example of a NICE-OHMS signal
giving the dispersive response of the system. The NICE-
OHMS signal has the expected features for a system with
a large number of atoms in the cavity N = 2.5 × 107 where
sharp features occur due to the limitations set by the transfer
function. Three theoretical curves are plotted, which shows the
theoretical behavior of the system assuming a fast cavity lock
(black), a cavity locked independently of atoms (dashed blue),
and a cavity locked to the ac Stark shifted atoms in the MOT
(light red). While these different approaches only cause slight
variations close to resonance, they are necessary to include in
order to explain the signal for larger detunings. As expected,
the features are slightly sharper in the case of a fast cavity lock.

The consequences of a nonoptimal cavity locking condition
on a laser lock is also considered here. Figure 7 shows
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FIG. 6. NICE-OHMS dispersion signal with asymmetry due to
an ac Stark shift asymmetric with respect to the probe transition.
Gray dots indicate data points, whereas the curves are theoretical
plots using experimental system parameters. The black curve is
plotted assuming a fast lock compared to the measurement dynamics,
φinit = φD, which is the optimal case of the atom-cavity system locked
to the carrier frequency of the laser. The dashed blue curve represents
the case where the cavity is locked to resonance with the laser
independently of the atoms, φinit = 0. This primarily changes the
absolute size of the phase. The light red curve includes a first-order
correction for the ac Stark shifted atomic phase present in the cavity
when the MOT beams are on φinit = φMOT. This has large effects far
away from resonance, but only little effect close to resonance. The
parameters used are cavity atom number N = 2.5 × 107, temperature
T = 2.8 mK, and an input power of Pin = 115 nW. The light blue area
marks the detuning range plotted in Fig. 5(b).

FIG. 7. Semilogarithmic plot of the transfer function slope at
resonance as a function of input power. The curves are theoretical
slopes of the transfer function of the system. The dashed blue curve
indicates the expected behavior if the cavity was locked to resonance
with the laser independently of the atoms. The black curve is the
expected behavior if the cavity lock is ideal, and the full cavity-atom
resonance is tuned to the laser frequency. We see a decrease in slope
for nonoptimal cavity locking at all values of the input power Pin, as
well as a distortion of the functional form which changes the position
of the optimal slope.

two theoretical curves corresponding to optimal, fast locking
conditions (black), and atom-independent locking (dashed
blue). In the case of optimal locking the system is close to
a steady state. This can be realized either when the cavity
lock is fast enough to follow the shift caused by turning
off the trapping light, or by using a system operating in a
continuous fashion. For the parameters used here (T = 2.5 mK
and N = 2.7 × 107) we see an optimal phase slope with
the fast lock, for powers of about P

opt
in = 8 nW. The phase

slope is reduced for all values of the input power in the case
of an atom-independent locking. The functional shape also
changes, and the optimal input power is increased to about
P

opt
in = 25 nW. Notice that while the slope is definitely reduced

it is at or below a factor of 2 for powers relevant to laser
locking. The optimal power also becomes more experimentally
accessible, and the two cases are seen to give approximately
identical slopes for powers larger than Pin = 400 nW. This
indicates that the performance of the cavity lock might not be
of detrimental importance to the ultimate performance of the
system within technically relevant parameter regimes.

V. CONCLUSION

We have experimentally investigated an atomic ensemble of
cold 88Sr atoms in an optical cavity in the regime of high atomic
phase shift. The phase response of the system is recorded using
the NICE-OHMS technique, and has promising features for
frequency stabilization.

The system operates in the bad-cavity regime which
suppresses the fluctuations caused by the finite temperature
of the cavity. For the case of a narrow atomic transition, the
bad-cavity regime can still permit a high cavity finesse which
yields a large number of photon round trips. This causes the
accumulated phase to grow beyond the approximately linear
regime of the cavity transfer function, and mirroring effects
of the phase response can occur. These mirroring effects
nonlinearly flip the slope of the dispersion signal around
some maximal value. We experimentally mapped out the
transition from the regime where the dispersion signal is an
approximately linear representation of the atomic phase shift,
to the regime where this representation is highly distorted by
the cavity transfer function properties. We investigated the
limitations this might have on an error signal for frequency
locking of a laser. The mirroring effect causes a limitation of
the dynamical range of a servo lock which must be included in
the optimization of future servo systems operating using this
technique.

We also investigated the ultimate performance of a laser
stabilized to such a system and saw predictions consistent with
earlier work [29]. These predictions rely on investigations of
the phase slope achievable at resonance and do not take into
account the limitations on a servo loop such as the dynamical
range limitations that occur. We saw that the degradation of
the signal slope caused by nonoptimal cavity locking was
not detrimental to the system and amounted to a factor of
2 for realistic experimental parameters. This means that even
a slow cavity lock could produce promising results for laser
stabilization, and opens the possibility of leaving out the cavity
lock entirely as long as the system is deep in the bad-cavity
regime.
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APPENDIX: THEORY

Here we give a very brief overview of the theory used
to model the interaction of the light with the atom-cavity
system. We follow [27,29] and model the system by using
a Born-Markov master equation to describe the evolution of
the system’s density matrix ρ̂. This evolution can be written as

d

dt
ρ̂ = 1

ih̄
[Ĥ ,ρ̂] + L̂[ρ̂]. (A1)

The many-particle Hamiltonian describing the coherent evo-
lution in a rotating interaction picture is given by

Ĥ = h̄�

2

N∑
l=1

σ̂ z
l + h̄η(â† + â)

+ h̄

N∑
l=1

gl(t)(â
†σ̂−

l + σ̂+
l â) (A2)

where � = ωa − ωc is the atom-cavity detuning, σ̂+,−,z are

the Pauli spin matrices, and η =
√

2πκPin
h̄ωc

is the classical drive

amplitude. â and â† denote the annihilation and creation
operators of the cavity mode, respectively. The coupling rate

between atoms and cavity is given by

gl(t) = g0 cos(kzl − δlt)e
−r2

j /w2
0 , (A3)

where g0 is the vacuum Rabi frequency, k is the wave number
of the cavity mode, zl and rl denote the longitudinal and
axial positions of the lth atom, δl = kvl is the Doppler shift
contingent on the atom velocity vl , and finally w0 is the radial
waist size of the cavity mode. Here the probing laser is assumed
on resonance with the cavity at all times, ωl = ωc.

The incoherent evolution is described by the Liouvillian
L̂[ρ̂] and is given by

L̂[ρ̂] = − κ

2
{â†âρ̂ + ρ̂â†â − 2âρ̂â†}

− γnat

2

N∑
l=1

{σ̂+
l σ̂−

l ρ̂ + ρ̂σ̂+
l σ̂−

l − 2σ̂−
l ρ̂σ̂+

l }

+ 1

2T2

N∑
l=1

{
σ̂ z

l ρ̂σ̂ z
l − ρ̂

}
, (A4)

where κ is the cavity decay rate, γnat is the atomic transition
linewidth, and 1

2T2
is the inhomogeneous dephasing of the

atomic dipole. The approach is thus based on a many-particle
Hamiltonian Ĥ and a derived set of complex Langevin
equations that includes the Doppler effect from the finite
velocity of the atoms. The evolution is found by means of
a Floquet analysis and solved for the steady-state case. This
will not be investigated further here; the interested reader is
referred to [27,29].
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