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Higher-order spectral modelling of the diffraction force around a
vertical circular cylinder

H. Bredmose and S. J. Andersen
DTU Wind Energy, Denmark, hbre@dtu.dk

1 INTRODUCTION
The present paper is a continuation of the paper by the same authors at the workshop of 2016 (Bred-
mose & Andersen, 2016). While the 2016 paper outlined the concept for the proposed higher-order
spectral force model, the present paper details the validation of its linear and nonlinear implementa-
tion.

Figure 1: Definition sketch for diffraction calculation around vertical circular cylinder.

2 MODEL CONCEPT
The purpose of the higher-order spectral force model is to bridge the gap between 1) the MacCamy
& Fuchs (1954) diffraction theory that is only linearly valid and 2) the combination of fully nonlinear
wave kinematics with the Morison or Rainey (1995) force models which is restricted to slender struc-
tures. The goal is thus a force model that incorporates full diffraction and (almost) full nonlinearity.
Taking inspiration from Ducrozet et al. (2014), the model is further formulated for the diffracted wave
field only, assuming that the incident wave field is known. This allows application of pre-computed in-
cident wave fields from fully nonlinear models, for example the OceanWave3D solver (Engsig-Karup
et al., 2009), with possible application to offshore wind turbine monopile foundations (Bredmose et
al., 2016; Schløer et al., 2016). A definition sketch is show in figure 1. We denote the depth h and the
cylinder radius r0.

The central element of the model is the decomposition of the free surface and velocity potential
(η, φ) into an incident field (I), a linear diffraction field (D1) and the nonlinear diffracted field (D2)(
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Cylindrical (r, θ, z) coordinates are adopted, where θ = 0 is the main wave direction and the z-axis
points upwards from the still water level at the cylinder centre. The fields are further expanded in



cylindrical Bessel functions
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where kpj/rmax is the j’th root of the first kind Bessel function of order p; H(1)
p is the first kind order

p Hankel function; J ′pj ≡ ∂rJp(kpjr)|r=r0 and H ′pj ≡ ∂rH
1
p (kpjr)|r=r0 . The J-terms represent the

incident wave field (I) and the Hankel functions, which are outward propagating waves represent the
(D1) field, similar to the MacCamy & Fuchs (1954) solution for monochromatic linear waves. The
coefficients of the Hankel functions are chosen such that ηr = φr = 0 at r = r0. Upon transformation
of the incident wave field to the Fourier-Bessel space, the above expansion thus allows construction
of the (D1) field.

The (D2) field is the remaining unknown field and is solved through the fully nonlinear free surface
conditions
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where φ̃ denotes evaluation at the free surface. We note that both the incident field (I) and the total
field (ID1D2) is a solution to these equations, at the incident free surface ηI and total free surface
ηID1D2 respectively. We may therefore isolate the time derivatives of the (D2) field by(
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whereRHS is a short-hand notation for the right hand side of (4)–(5). The full nonlinearity of the free
surface conditions are handled through the Higher-Order Spectral method (HOS), where the velocity
potential is Taylor expanded from the still water level and ordered with respect to powers of the wave
steepness ε
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)n
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The expansion gives rise to a recursive method where the vertical velocity at the free surface can
be computed by successive approximation of the velocity potential at still water level, φ0, see e.g.
West et al. (1987); Dommermuth & Yue (1987). The vertical velocity at the free surface can next be
computed by re-application of this expansion, after operation of the ∂z operator on the φ0 field. This
can be done in the spectral domain through the known z-variation of (2)–(3).

Now, with knowledge of the incident wave field (I), addition of the diffracted (D1) field and
knowledge of the instantaneous (D2) field, (6) enables time-integration for the nonlinear diffraction
field (η, φ)D2. Once solved, the force on the cylinder is obtained by direct pressure integration

F = −ρ
∫ 2π

θ=0

∫ η

z=−h

[
−φt − 1

2

(
φ2
r + (φθ/r)

2 + φ2
z

)]
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where (φt, φr, φθ, φz) at the cylinder wall are computed from the spectral expansion (2)–(3).



Figure 2: Left: Check of spectral ∂z operator for various wave lengths. Right: Check of MacCamy-Fuchs force coefficient
for linear wave forcing.

3 VALIDATION OF THE LINEAR SOLVER
The linear solver is first validated by a check of the spectral ∂z operator associated with (2)–(3). A
domain of radius r ∈ [3; 100] m and depth h = 25 m is considered. The r-direction is resolved
with 32 points and 24 Bessel functions at each order p. For the θ direction, we utilize the symmetry
around the inline wave direction and resolve θ ∈ [0;π] also with 32 points. Figure 2(left) shows
φ0I,z, i.e. the vertical derivative of the incident wave potential at z = 0 for the three wave numbers
k = 2π (0.5, 1, 10)/rmax, obtained by the spectral solver. The results are shown at θ = 7π/64 and
compared to the known analytical expansion of MacCamy & Fuchs (1954). The circles show the
spectral results for the actual points of calculation, while the analytical solution is shown as a finer
resolved curve. A good match is seen, with the largest deviations occuring towards the outer boundary.

Another test is provided by computation of the linear force through (8). Here, the incident wave
field is given to the solver, which next adds the diffracted wave field and computes the force by
integration up to z = 0. The analytical solution is known from MacCamy-Fuchs theory to be
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where A(kr0) = [J ′1(kr0)
2 + Y ′1(kr0)

2]
−1/2, Y1 is the first order Bessel function of second kind and

δ(kr0) is a phase shift. Figure 2(b) shows the value of A(kr0) as obtained by the spectral method,
compared to the analytical solution. A perfect match is seen for the various values of kr0.

4 VALIDATION OF THE NONLINEAR SOLVER
The nonlinear part of the model has been validated by computation of the vertical velocity at the free
surface wI for an incident wave, also in the cylindrical domain. The free surface elevation and free
surface potential for a fully nonlinear stream function wave (Fenton, 1988) was given as input to the
HOS scheme, implemented to third order in the cylindrical coordinates. The result for wI is compared
to the target solution of the stream function theory in figure 3(left) for θ = π/64. Wave steepnesses
of kH/2 = (1, 2, 4, 6, 8, 10)π/100 were applied. A general good match is seen, with some visible
numerical oscillations for the largest steepnesses. The right panel depicts a relative error measure for
wI , compared to slopes of 1st, 2nd and 3rd order accuracy. Beyond a threshold of about 0.002, the
relative error is seen to be of third order. The absolute error is thus of fourth order in wave steepness,
agreeing with the third-order implementation of the HOS scheme.

5 NEXT STEPS
After validation of the linear solver and the HOS implementation in the cylindrical domain, current
work focuses on the calculation of the nonlinear D2 field through (6) and the resulting force time



Figure 3: Left: Vertical velocity at free surface by cylindrical third-order HOS scheme, compared to stream function wave
solution for varying kA. Right: Convergence of solution for vertical velocity for varying wave steepness kA.

series. A challenge here is the short wave length of the diffracted waves relative to the incident wave
length scale. Results from this will be presented at the workshop. Besides providing an accurate force
model for steep waves, the solver is expected to provide insight into the nature of the higher-order
force components of first regular and next irregular waves for monopile-type structures.

The work was partly carried out in the DIMSELO project, which is a Knowledge-building Project
for Industry funded by the Norwegian Research Council (NRC) under the ENERGIX program. The
project is also funded by its industry partners Statoil and Statkraft. The projects research partners are
IFE, NTNU and DTU.
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