

Technical University of Denmark

Low RF-field strength cross polarization combined with photo-induced non-persistent radicals for clinically applicable dDNP

Møllesøe Vinther, Joachim; Capozzi, Andrea; Albannay, Mohammed; Ardenkjær-Larsen, Jan Henrik

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Møllesøe Vinther, J., Capozzi, A., Albannay, M., & Ardenkjær-Larsen, J. H. (2017). Low RF-field strength cross polarization combined with photo-induced non-persistent radicals for clinically applicable dDNP. Poster session presented at EUROMAR 2017, Warsaw, Poland.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DTU Electrical Engineering Department of Electrical Engineering

Low RF-field strength cross polarization combined with photo-induced non-persistent radicals for clinically applicable dDNP

Work in progress

Joachim M. Vinther¹, Andrea Capozzi¹, Mohammed M. Albannay¹, Jan Henrik Ardenkjær-Larsen^{1,2} ¹Center for Hyperpolarization in Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark. ²GE Healthcare, Brøndby, Denmark.

Cross Polarisation for SPINIab-like polarisers using non-persistent radicals is demonstrated.

The efficiency of the transfer from protons to carbon is modest at the currently achievable low B₁ fields of 4-5 kHz still yielding ¹³C polarisation levels up to 15 %. Based on the presented results, we foresee polarisation levels superior to direct ¹³C DNP in our next generation of double-tuned probes incorporating local tune and match.

Abstract

We demonstrate the possibility of ¹H Dynamic Nuclear Polarization followed by cross polarization to carbon (DNP-CP) using a modified low cost benchtop console (Kea2) equipped with an external amplifier (Tomco) and a SPINIab-like dissolution DNP polarizer *i.e.* using the same fluid path and allowing for hyperpolarisation of a full human dose. Cross polarisation (CP) using Laboratory Frame De- and Remagnetisation¹ (LAFDR) was found superior to alternative sequences at the limited B₁ fields employed. Faster build-up rates compared to ¹³C DNP are demonstrated using TEMPOL (4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) and DNP-CP ¹³C polarisations up to 15 % are achieved using non-persistent UV-induced radicals.

Experimental results

DNP-CP using **TEMPOL** as radical

DNP-CP using UV-induced radicals with broadened linewidth due to hyperfine coupling

1:1 [2-¹³C]pyruvic acid, H_2O ; 5 min UV-irradiation ~ 40mM

4.5 M [13 C]urea in 5:4:1 d5-glycerol, D₂O, H₂O & 40 mM TEMPOL

Introduction

Dissolution Dynamic Nuclear Polarization (dDNP) is used to enhance the MR signals in imaging by factors of 10,000² paving the road for metabolic MR studies. However, the polarization build-up on ¹³C typically takes tens of minutes to hours, significantly lowering the versatility and throughput. Recently, studies have shown the possibility of speeding up the process by polarizing ¹H, which has a faster build-up, followed by polarization transfer to *e.g.* ¹³C.³ However, strong B₁ fields and small sample volumes are used, which makes the technique incompatible with clinical dDNP-MRI. Moreover, for clinical use, and in general to eliminate the relaxation effect, the radical essential for DNP needs to be removed during dissolution. Use of pyruvic acid (PA) nonpersistent photo-induced radicals for dDNP has been demonstrated to solve this issue⁴ and recently polarization build-up on protons with τ_{DNP} ~690 s and 70 % polarization has been presented⁵.

DNP-CP using UV-induced radicals

1:1 1-13C-pyruvic acid, H₂O; 5 min UV-irradiation ~ 40mM

Results

The efficiency of DNP-CP depends on the build-up rate and final polarisation achieved on protons as well as the transfer efficiency of the CP sequence.

- 1. For $B_1 \leq 5$ kHz LAFDR (fig. **B**) was found to outperform other CP sequences (data not shown).
- 2. On the TEMPOL containing sample, DNP-CP using optimised LAFDR outperforms ¹³C DNP for build-up times < 1 hour, and 20% ¹³C polarisation was achieved in only 20 min (fig. **C**).
- 3. Using [1-¹³C]PA as the substrate for non-persisting radicals gives a too narrow EPR-line for efficient ¹H DNP resulting in poor DNP-CP performance (fig. **D**).
- 4. Introduction of hyperfine coupling to the unpaired electron by ¹³C labelling in position 2 increases the EPR linewidth yielding fast ¹H DNP build-up, but a polarisation of only 18 %, and therefore still inefficient DNP-CP (fig. E).

Build-up (min)

Conclusion and Outlook

We have demonstrated DNP-CP on a clinical-compatible SPINIab-like polariser using a low-cost benchtop console equipped with an external amplifier. Moreover, the technique has been combined with non-persistent UV-induced radicals. At the current state, with $B_1 \le 5$ kHz, direct ¹³C DNP still outperforms the DNP-CP. However, the goal is to implement local tuning of the probe to achieve sufficient B₁ fields to increase the transfer efficiency. We expect that sufficiently strong B_1 fields are achievable for this setup to outperform direct ¹³C DNP both with respect to build-up rates and polarisation levels.

References

1 Lee, J.-S. and Khithrin, A.K. Adiabatic cross-polarization via intermediate dipolar-

DNP

CP by Laboratory Frame De- and Remagnetisation (LAFDR)

5. Deuterating the methyl group of PA increases the ¹H DNP polarisation to 62 % and maintains the efficiency of CP. This yields a final ¹³C polarisation of 15% after CP (fig. **F**).

Acknowledgements

This project has received funding from Innovation Fund Denmark and from Danish National Research Foundation (DNRF124).

ordered state. J. Magn. Reson. 177,152–154, 2005; Batel, M. et al. Crosspolarization for dissolution dynamic nuclear polarization. Phys.Chem.Chem.Phys. 16, 21407, 2014.

- 2 Ardenkjaer-Larsen, J. H. et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 100, 10158–10163, 2003.
- 3 Batel, M. et al.. Dissolution dynamic nuclear polarization efficiency enhanced by Hartmann–Hahn cross polarization. Chem. Phys. Lett. 554:72-76, 2012. Bornett, A. et al. Boosting Dissolution Dynamic Nuclear Polarization by Cross Polarization. J. Phys. Chem. Lett. 4, 111–114, 2013.
- 4 Eichhorn, T. R. et al., Hyperpolarization without persistent radicals for in vivo realtime metabolic imaging. PNAS,110:18064–18069, 2003.
- 5 Capozzi, A. et al., Preparation of Radical-Free Hyperpolarized Water using Photoinduced non-persistent Radicals on a "SpinLab-like" dissolution-DNP Polarizer. Abstract from 58th Experimental Nuclear Magnetic Resonance Conference, Asilomar, United States, 2017.

Danmarks Grundforskningsfond Danish National **Research Foundation**

