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Abstract

This paper considers a novel solution method for generating improved
train speed profiles with reduced energy consumption. The solution method
makes use of a time-space graph formulation which can be solved through
Dynamic Programming. Instead of using uniform discretization of time
and space as seen previously in the literature, we rely on an event-based
decomposition that drastically reduces the search space. This approach
is very flexible, making it easy to handle, e.g., speed limits, changes in
altitude, and passage points that need to be crossed within a given time
window. Based on solving an extensive number of real-life problem in-
stances, our benchmarks show that the proposed solution method is able
to satisfy all secondary constraints and still be able to decrease energy con-
sumption by 3.3% on average compared to a commercial solver provided
by our industrial collaborator, Cubris. The computational times are gen-
erally very low, making it possible to recompute the train speed profile in
case of unexpected changes in speed restrictions or timings. This is a great
advantage over static offline lookup tables. Also, the framework is very
flexible, making it possible to handle a number of additional constraints
on robustness, passenger comfort etc. Selected details of the method and
benchmark are only described at a high level for confidentiality reasons.

1 Introduction

Railway operation provides a fast and efficient mode of transportation. Al-
though being very energy efficient compared to most other transportation forms,
the overall energy consumption is large. Three of the largest railway network
operators in Europe together spend up to e 1.75 billion annually on energy [2].
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In Germany, for example, railway traffic consumes 2% of the country’s energy
usage. Thus, operators have strong incentives to reduce energy usage while
maintaining punctuality. Passenger train services are often operated daily in
tight preplanned schedules while a number of long and heavy freight trains are
planned in a more ad hoc basis. Even minor energy reductions in individual
train schedules can lead to significant savings. Studies have shown that poten-
tial savings of 5− 20% are possible by optimizing train speed profiles [16].

Regardless of whether it is a freight or passenger train service, the train trav-
els from a source station to a destination station, possibly making intermediate
stops. Timeslots on tracks are allocated to the train allowing passage through
the rail infrastructure, and strict timing is imposed on arrivals and departures
to enforce customer satisfaction and a high network utilization. A train driver
thus knows in advance when he has to depart from the current station and ar-
rive on the next. Furthermore, passage points in between stipulate individual
time-windows when the train must pass certain areas.

Given a maximum trip time Tmax the speed profile, i.e., how fast the train
is driving throughout the trip, is mainly determined by the train driver. This is
a complex task, so in order to avoid delays the driver often decides to drive as
fast as possible, using unnecessarily much energy. The fastest speed profile may
also in some cases be infeasible due to passage point restrictions, e.g. due to the
interlocking system for track-changes or other conflicts. Examples of different
speed profiles are illustrated in Figure 1. Essentially, a speed profile consists
of up to four different actions: acceleration, braking, cruising and coasting.
Acceleration and braking can be performed with 0–100% effect, but research
has shown that only maximum acceleration and maximum braking can be used
in an optimal journey. Although braking can, in some cases, regenerate energy
we will not consider this aspect. Utilizing the regenerated energy is another
non-trivial problem.

Energy usage corresponds to the fuel or electricity consumption of the train
and is often measured by the traction effort of the train over some trip. A
train driver directly controls the consumption by regulating the speed throttle.
In order to save energy the train driver can operate the train at lower speeds,
thus loosing less energy to natural resistances, or perform coasting. There is a
clear trade-off between trip duration and energy consumption, in general, faster
traversal requires more energy per kilometer. Analytical formulas can project
the effect of increasing or reducing speed, however combining a complete profile
is not trivial. Multiple additional constraints further complicate the problem,
e.g., changing speed restrictions, passage point time requirements and changes
in altitude. We will refer to this optimization problem as the Train Speed Profile
Problem (TSPP).

In this paper we propose a novel Dynamic Programming (DP) methodology
for optimizing the TSPP in real-time that is suitable for an on-board Driver
Advisory System (DAS). The method is in a sense elegant and does not rely
on advanced software packages or mathematical solvers. In addition to gradient
forces and speed-restrictions we show how the method can handle passage points.
Passage points are frequently occurring constraints that requires the train to
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Figure 1: The plot shows simple examples of feasible speed profiles. Speed-limits
are marked with dashed lines. The bold path illustrates an aggressive strategy
following the speed-limits as closely as possible by using full acceleration and
braking, thus arriving as soon as possible. Alternative and more energy efficient
profiles can be achieved, at the expense of a longer trip time, by lower cruise
speed or by performing coasting as shown. The available travel time, Tmax,
limits the number of feasible profiles.

pass certain points (e.g. signals or intersections) in specific time windows. This
type of constraints were proposed by our industrial collaboration partners as
their problem instances include such restrictions. For instance, the important
train separation problem [6], ensuring that two trains have sufficient distance
between them to avoid collision, can be modeled by use of passage points. Two
trains traveling along the same track are commonly separated by signals. Each
train has to pass the signal within a specified time windows. The passage point
may be crossed with any legal velocity, making the constraint harder to handle
than full stops.

The solution method is based on a space-velocity graph representation of
partial speed profiles that are computed using equations for train motion. Com-
pared to previous dynamic programming approaches we do not uniformly dis-
cretize space nor time. An advantage of the underlying graph representation
is the ability to extend the number of possible choices without changing the
solver. The approach is not guaranteed to be optimal, unless all necessary par-
tial speed profiles are generated, but, intelligently selecting the partial profiles,
this method is able to find very high quality solutions. The choices represented
in the underlying graph are optimized using a label setting algorithm that min-
imizes energy usage subject to a time resource constraint. Note, that given
an initial (possible high quality) solution, the construction of the graph can be
improved by considering similar but alternative driving choices. Thus, if the
method is used in an iterative loop, where the output solution is the input of
the next iteration, then the method can be used to converge towards a locally
optimal solution.

We benchmark our solution approach on multiple real-life instances from dif-
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ferent train operators. The instances include multiple actual speed-restrictions,
passage points and altitude profiles. We show that the computational times are
sufficiently small for producing continuous real-time speed-advice. The results
are compared to a fast solution method, denoted C-solver, used by several train
operators and kindly provided by our industrial partner. For the purpose of this
study, we compare both approaches in a static environment between two train
stops.

In this work some important assumptions are made. Firstly, we assume
that the train is able to hold speed (maintaining a constant velocity), e.g.,
using cruise control. Feasible solutions (speed profiles) will therefore contain
segments with a constant velocity. Even if this is not an option, we assume that
a post-processing step can be performed that approximates a constant speed by
switching between acceleration and coasting. We note that the trains used in
our experimental study are able to hold speed. Secondly, we assume that there
exist no steep track slopes. Without such the train has sufficient engine power
to accelerate or hold speed at any point. In addition the train has sufficient
braking capabilities to decelerate or hold speed at any point. In effect, the train
can never be stuck, e.g., if operating at too low or high velocities respectively.
We note however, that the given framework can, without affecting the time
complexity of the algorithm, be extended to include steep hills. Our case studies
contain no such steep track slopes; such is the case in many established railway
infrastructures. Thirdly, we assume that only a discrete set of cruising speeds
can be used, since it is impractical to give speed advice of non-rounded numbers
to a train driver. This is a practical constraint given by our industry partner.
However, with a larger resolution the method can approximate a continuous
set of cruising speeds. The assumption also limits the solution space as only a
discrete set of cruising speeds can be selected.

1.1 Related Literature

Much research is conducted in the area of determining optimized speed profiles.
Theoretical results were established already a few decades ago [8, 17, 31], and
methods to optimize speed profiles are proposed by many authors in different
settings. In the following we briefly mention some fundamental theoretical work
and the related work on numerical solution methods. We refer to Hansen et
al. [16] for an introduction to train running time estimation and energy-efficient
train operation. Albrecht et al. [3, 4] present a two-part summary and review in
optimal train control theory. A recent review on energy-efficient train operation,
with emphasis on urban rail transit, is given by Yang et al. [36]. They present
an overview of energy optimization of the timetabling, speed profile generation
and the integration of both problems. Another review of both analytical and
numerical approaches for determining optimal speed profiles is presented by
Want et al. [33]. Finally, [32] present a method for train speed optimization
based on Mixed Integer Programming. The model approximates the nonlinear
motion functions by piece-wise affine functions. The reported soluton times are
large, in the magnitude of 10 minutes.
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Heuristic methods for generating speed profile optimization are proposed in
literature with different extensions. However, in contrast to our contribution,
none of these are based on the same underlying structure for a Dynamic Pro-
gramming algorithm that is used in this paper. Our approach is flexible as it is
to a large extent independent of the underlying equations for train motion and
cost structure. Furthermore, the algorithm is able to handle passage points.
Some track segments are shared with multiple trains which requires synchro-
nization of train passage. Each train must therefore transfer from one block
to the next within a specified time-window. Passage points can also be used
to increase robustness. To the best of our knowledge the only paper dealing
with passage points is the paper by Albrecht et al [6] but only in the context of
train separation. However, there is currently no explicit and efficient numerical
computaiton scheme to implement the results in [6].

Fundamental theoretical work is established by Howlett and Pudney [20].
In [18] they show that an optimal driving strategy must have certain properties.
With continuous speed control they show, using the Pontryagin principle, that
the optimal speed profile consists of a power-hold-coast-brake strategy. The sim-
plified optimization problem thus consists of identifying the optimal switching
points. However, with multiple speed restrictions and steep hills this strategy
must contain multiple power-hold-coast-brake sequences. Cheng et al. [10] study
analytical approaches for handling multiple speed limits with continuous speed.

The theoretical work is extended by Howlett et al. [19] to include steep sec-
tions, i.e., track segments where the train is unable to maintain or accelerate
velocity due to a relatively high climb, and vice versa for downhill slopes. They
show how to find the optimal switching points. Passage points are not con-
sidered, but they claim that it is possible to extend the work to include speed
limits. In a later work, Albrecht et al. [5] prove that there is only one optimal
strategy when considering switching points for steep sections. Several solution
methods in literature are based on finding optimal switching points to construct
speed profiles [11, 23, 27].

Successful analytic methods based on real-time computational algorihtms are
described in [3, 4, 5, 19, 23, 27]. These methods derive accurate speed profiles
by numerically solving solutions of equations of motion and calculate optimal
switcing points. A commercial implementation of these methods, Energymiser
is, among otheres, being used in Australasia, England and France.

However, apart from [6], no theoretical work considers passage points, and
how this affects the optimal driving strategy. Further, no solution methods are
found in literature that include passage point restrictions. In contrast to the
departure and arrival point, the velocity at passage points is not fixed. The
problem entails determining when to arrive at the passage point (within a given
time-window) and at which velocity.

Franke et al. [14] propose a DP approach for solving the TSPP. They model
multiple speed restrictions, regenerative braking and gravitational forces on
slopes. In addition, they consider a more realistic modelling of engine effi-
ciency and power losses in the propulsion system. They do, however, not model
passage points. Implementational and benchmarking details of the DP algo-
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rithm are omitted but they show that the approach provides significant gains
over very simple strategies in the one studied test case.

A short study of another DP programming approach is presented by Ko et
al. [24] for solving a variation of the TSPP. They include complicating con-
straints that provide a more realistic model of the electric motive force and
regenerative braking. Time is discretized uniformly in the approach and they
show one benchmark with multiple speed restriction and track slopes. A solution
is found within 22 seconds for the study and they conclude that the approach
is acceptable for practical purposes.

In addition to an Ant Colony Optimization (ACO) and a Genetic Algorithm
(GA) approach Lu et al. [28] also consider a DP approach. The solution space
is heuristically restricted in order to reduce the large state-space and thereby
improving both computational time and memory usage. A lattice grid is adopted
to reduce the feasible region, and choices that deviate too much from an average
speed are pruned. The methods are benchmarked against a single instance using
three different journey times. Multiple speed restrictions and altitude data are
included. The DP approach obtains the best results, but the computational
time requirement is close to one hour.

Another DP approach is proposed and tested by Larranaga et al. [25]. They
consider extensions to the problem using more realistic curves of the tractive
and brake efforts. Short journeys of a metro system are used as a case study.
In the DP method, time, space and velocity are discretized uniformly and the
solution method is able to solve a short trip within one hour of computational
time. All states are computed and recorded which means that the results can be
used as a lookup table which can be used if the actual speed profile deviates from
the optimized one. They conclude that a fine discretization is needed in order
to obtain accurate results. In contrast, we include passage points as additional
constraints and aim for computational times usable in a real-time system. The
DP presented in our work does not discretize space nor time uniformly and
states are only evaluated if they can lead to an optimal solution.

Several heuristic methods for solving the TSPP have been presented in lit-
erature. We briefly mention some of the most important studies here. Jong et
al. [22] present a heuristic based on a logic flow-diagram used to identify promis-
ing solutions. They compare it to a commercial software package using realistic
train journeys provided by the Taiwan Railway Administration. Computational
times and solution quality are competitive. Wong et al. [35] consider the TSPP
without the possibility to cruise at constant speed. They present a few methods
for solving the problem by determining either one or multiple coasting points,
i.e., with or without speed restrictions. One short and one long trip instance
are considered where the solution methods require respectively around 90 and
350 seconds to solve. Chang and Sim [9] present a GA for producing a driving
profile lookup table for an automated train operation controller. Multiple speed
restrictions are included and a more detailed model for regenerative braking is
used. No computational times are reported for the one considered instance. A
GA approach has been considered in many instances in literature [15, 34, 35].

Albrecht [7] argue that train speed optimization should be handled as an
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integrated part of train dispatching. Li et al. [26] present an integrated solution
approach for the timetabling and speed profile problem. Departure times are
considered together with the selected speed profiles for the cyclic timetable of a
single metro train line service in Beijing. The experiments reveal a significant
improvement over existing results when considering the net energy consumption.
The solution approach is heuristic and based on a Genetic Algorithm method-
ology. The train dynamics are simplified as the approach assumes no running
resistances, a constant acceleration and constant deceleration. Real-life data
from the train line services are benchmarked. No CPU run-times are reported.

Finally, Pacciarelli and Pronzo [29] consider the problem of determining
feasible speed profiles for a number of trains circulating in a given area. The
algorithm makes use of a feed-back system between the speed regulator system
and the conflict resolution system.

1.2 Overview

The structure of this paper is as follows. In Section 2, we present a problem
definition for the train speed profile problem and outline important assumptions.
Then, we present a graph representation of the problem in Section 3 which is
the input to our solver. We show how to construct the problem graph using
partial profiles of acceleration, braking, cruising and coasting. The dynamic
programming solver is then presented in Section 4, where we discuss and present
an outline of the algorithm used to solve the graph problem instances. Finally,
results are presented in Section 5 comparing our algorithm with a state-of-the-
art commercial train advice system. Section 6 presents some better bounds on
the solution. Section 7 shows how various additional constraints easily can be
incorporated in the framework, and our conclusions are summarized in Section 8.

2 Problem Definition

Assume that the considered train, according to a given timetable, has to depart
from one station and arrive at the next station at a specific time. The initial
and final speed is equal to zero. The train is assumed to depart at time 0,
and a maximum total trip time, Tmax ≥ 0, is given. The distance to travel is
determined by the track-layout between the stations and consist of changing
track slopes. Although not necessary, assume that the altitude profile consist
of piece-wise linear slopes. Different speed restrictions may exist on the trip,
i.e., the whole trip is partitionable into a consecutive sequence of segments with
changing speed limits. Assume that no lower bound is imposed on the speed
limit, although it is easy to extend the model to handle this case. If the velocity
of the train exceeds the upper limit, at any point in time, then that profile is
infeasible. A train must brake in advance before reaching a new segment if the
speed limit there is lower than the current velocity.

Assume that the train has continuous speed throttle control, and the ability
to hold a certain velocity once it has been reached. Trains with discrete controls
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are a different line of study, but we note that a hold-speed (i.e. cruising speed)
phase can be approximated in a post-processing step. Assume, in this work, that
no steep hill exists on the trip that makes it impossible to hold a certain velocity.
Note, however, that the solution method we propose can, without affecting the
time complexity of the overall algorithm, be extended to include such. The
characteristics of the train are known, such as the total mass, acceleration power,
service braking capability and resistance parameters. Although not a limiting
constraint, assume that no regenerative braking can occur. Regenerating power
while braking the train has been technically possible for some time, but how to
efficiently use that power is non-trivial when optimizing one train speed profile
in isolation.

Multiple passage points can exists on the trip. A passage point refers to
a specific location (between the arrival and departure station) that must be
passed in a given time window. A speed profile that passes this location earlier
or later than the time window is considered infeasible. No additional speed
restrictions, other than the governing ones, are enforced. It is for example not
required for a train to come to a full stop at the location. Passage points can
be considered constraints that e.g. mimic signal lights where the train can only
pass while the signal is green. Passage points introduce additional complexity
to the traditional TSPP. A solution method is now also forced to consider the
distribution of runtime surplus between consecutive passage points.

Any speed profile that respects the constraints mentioned above is feasible.
The optimal speed profile is defined to be the feasible profile that consumes the
least energy. Other interesting solution characteristics, not considered in the
paper, could be included such as a punctual arrival or the overall robustness of
the profile. Passage time windows, especially the final destination, state that
any speed profile that arrives within a certain threshold of the planned time is
feasible; however, it may be more attractive to arrive more punctually rather
than saving a small amount of energy. Figure 2 shows an example of the TSPP.

We define the fastest speed profile to be the profile that requires minimal
time usage (in our case also ignoring passage point restrictions). This profile is
unique and can be generated by accelerating the train as fast as possible to the
active speed limit (or the maximum train speed), only braking just in time for
lower speed limits.

A solution method for the defined problem can be used as a responsive on-
board DAS, provided that solutions can be found very quickly. Such real-time
systems are extremely useful for coping with variations in the daily schedules
(e.g. cargo/passenger weight or climate) as well as larger disturbances (e.g.
changed passage timings and trip times). For the sake of simplicity of the
presentation, we present the problem of optimizing from a full stop to the next
stop, but with slight modification this assumption can be lifted in the solution
method. The solver can start from any node in space-speed graph. The solver
can likewise end in any vertex by removing any vertex from consideration that
cannot reach it. Hence it easy to find an optimal speed profile from any starting
og ending place.

There are many arguments in favor of a real time on-board algorithm, as
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Figure 2: An example of a problem instance. The figure shows a distance and
velocity plot for a feasible train profile. Governing speed limits are illustrated as
dashed lines, and the altitude profile is shown with a dotted line. The passage
points requires the train to pass through a certain point within a certain time
window. The bold black path depicts the fastest speed profile.

opposed to pre-calculated speed profiles. The most important reason is the in-
herent variation in the process. There are many reasons why the actual journey
is different from the planned journey; examples are temporary speed restric-
tions, emergency speed restrictions, route or material changes, and train defects
(reduced power). Especially, a Traffic Management System, which solves disrup-
tions by retiming and rerouting trains in real time, will make the speed profile
prone to last minute changes. The reason to calculate the advice on-board is
to minimize the length of the control-loop[12]. This is the time from detecting
the deviation (from the time path) and the actual change of the driver action,
i.e., receive a GPS signal, send to central, compare time, recalculate, send back,
update screen, driver reaction time and etc. If this loop is too long, the advice
has already become obsolete and recalculation is necessary. Calculating the ad-
vice on-board and within a second allows the driver the most possible time to
adjust the train speed according to the calculated speed profile.

3 Graph Representation

The proposed solution method is essentially a general framework that consists
of three main ingredients, or modules: formulas to model the train dynamics,
a graph representation, and a solver. One of the main benefits of our approach
is the loose coupling between the adopted model for train dynamics and the
method for solving the resulting graph problem. In the following we explain
the individual components. We adopt state of the art modeling for the train
dynamics, and a DP method as solution framework.
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3.1 The Train Dynamics

Modelling train dynamics such as acceleration curves and resistances is neces-
sary in order to project a speed profile. The accuracy depends on the chosen
assumptions and simplifications. A balance between the achievable computa-
tional time and accuracy is needed. In the following we describe the formulas
used in this paper. The equations for modelling train motion are adopted from
the related literature. The equations and solutions have further been verified
by our collaboration partner using their own deployed software solution.

As mentioned earlier, the optimal speed profile for a single trip consists
of a power-hold-coast-brake strategy [20]. The acceleration (i.e. power) and
braking phases utilize full acceleration capacity and maximal allowed braking.
Intuitively, doing either at partial capacity only results in loss of trip buffer
time. Assume that the motion of the train can be reduced to the motion of
a point mass [20]. Long trains with distributed mass are reducible to a point
mass by modifying the altitude profile accordingly.

In the coasting phase no energy is applied to accelerate the train, thus at a
certain speed only vehicle resistances such as friction, mechanical and air affect
the train speed. We adopt a quadratic formula, that has been used for decades,
for modeling such resistances:

R(v) = A+B · v + C · v2

The coefficients A, B and C are train specific. Better known as the Davis
Equation[13], it states that the resistance is speed-dependent modeled by a
quadratic function. In the coasting phase, this equation can be used to describe
how much kinetic energy is lost over time or distance to resistances. Given a
certain starting or ending speed, it is possible to derive how fast the velocity
changes, or when the train reaches a certain target velocity. In addition to the
gravitational pull, this equation models the coasting phase.

Gravitational pull is determined by the track slope:

Fgrav = m · g · sin(α)

Where m is the train mass, g ≈ 9.8m/s2 is the gravitational acceleration and α
is the angle of inclination.

Thus the following determines the net force during coasting:

Fcoast = R(v) + Fgrav

During the hold phase, speed remains constant. Energy must be applied by
the engine in order to overcome train resistance and gravitational pull. In case
of a downward slope, it may not be necessary to apply any energy at all, and
potentially requires initiating partial braking.

In the braking phase, we assume that the brakes can apply a constant force.
Due to reasons such as safety, equipment tear-and-wear and passenger comfort
a fraction of the full braking capacity is adopted, i.e., service braking force, Fsb.

Fbrake = Fsb +R(v) + Fgrav
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Acceleration over time or distance is approximated using the following equa-
tion:

Facc = min

(
Fengine

v
, Famax

)
+R(v) + Fgrav

Where Fengine is the maximum engine tractive force. A fairly accurate descrip-
tion of the engine acceleration force is Fengine/v, but at low speeds it has proven
to be inaccurate [20] - due to physical factors such as adhesion and overheating.
Famax denotes the maximal acceleration that is possible for the train at low
speeds. Acceleration is naturally also affected by train resistances and gravity.

In this paper, we assume that energy consumption (in terms of fuel or elec-
tricity) is proportional to the mechanical energy consumed. Thus, calculating
the energy usage is a matter of accumulating the work required by all accelera-
tion and cruising phases. If we considered regenerative braking, the deceleration
force would reproduce some of that energy. Although not difficult to include,
this aspect is not pursued in this work.

The forces define the motion of train as function of the position [3, Section
1.2]. In the following section, the formulas above will be used to generate partial
profiles, and it is central to find intersections between these partial profile. This
can be done analytically using the above formulas or estimated numerically.
We use a numeric approach as this can be fast using various search methods
(e.g. Newtons method) and it adds flexibility to the framework since the partial
profiles only need to be differentiable.

We assume the altitude profile is piecewise linear, i.e., the whole trip is
partitioned into segments, each having a constant track slope. A trip is thus split
into segments defined by split points s0, s1 . . . sn. This assumption simplifies
the above formulas and provides reasonable accuracy. Accuracy is adjustable
by adding more split points.

3.2 Speed Profile Graph

The formulas presented in Section 3.1 can trace partial acceleration, braking,
cruising or coasting profiles in a velocity by distance plot. We now present
a graph that is generated based on such partial paths where the intersection
between these partial profiles define the vertices of the graph. An infinite number
of partial paths exist, but we select a subset of these, which are most likely to
appear in an optimized speed profile.

The main principle of the graph representation is for every split point si and
speed uij , to generate forward and backward speed profiles, corresponding to
the four modes(acceleration, braking, cruising, coasting), as briefly outlined in
Figure 3.

Not all forward and backward speed profiles are generated, but only those
which have a large probability for being chosen according to some heuristic rules:
From the initial position project acceleration profiles and whenever the speed
limit is increased do the same. Project braking profiles from the final destination
and from decreasing speed restrictions. From braking curves project coasting
profiles backwards. Finally, cruising profiles are inserted at the predetermined
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Figure 3: Main principle of the graph representation. For every split point si
and speed uij , forward and backward speed profiles are generated corresponding
to the four modes. Where forward and backward speed profiles intersect, new
nodes are inserted. Forward profiles are illustrated for node A = (si, 20) while
backward profiles are illustrated for node B = (sj , 30). Where the forward
and backward speed profiles intersect, new nodes are inserted. All relevant
accelerate, cruise and brake profiles are generated, while coasting profiles are
generated heuristically. Only coasting profiles that will hit the braking curve at
one of the discrete speed steps (0 km/h, 5 km/h, 10 km/h . . .) are considered.

Figure 4: An example of a generated speed profile graph. Speed limits are
depicted using solid black dashed lines, and the altitude profile using brown
dotted lines. The other lines, which are edges in the graph, depict the partial
acceleration(blue), braking (red), cruising (yellow), and coasting (green) profiles.
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discretized set of velocities. Figure 4 shows an example of the resulting graph.
The altitude profile is shown as a dotted line; observe the gravitational pull on
the coasting trajectories. Note, for the sake of simplicity, we add vertices at
the border of each region. Vertices with only one edges, or only one in and out
edge can be removed in a preprocessing step. Performing further preprocessing
reduces the graph, leading to an average reduction of roughly 70%.

A central concept in the graph is the region. A trip is first partitioned into
a list of consecutive regions, where each region defines a stretch with identical
characteristics. This simplifies some of the analytical formulas, but also iden-
tifies key positions. The regions are directly related to the split points defined
earlier as two split points define the borders of each individual region. In ad-
dition to tracks slopes, we extend the set of split points to include the start
and end point of speed restrictions. Note, that the regions are not partitioned
uniformly by distance (or time) in general. A change in track slope or maximum
speed restriction defines a new region.

As mentioned, one important goal is to give drivers rounded speed advice,
e.g. 5, 10, 15 or 20 kilometers per hour. Thus, only a predetermined discrete
set of velocities will be considered as feasible cruising speeds. The driver will
therefore only receive advice to accelerate or brake to one of these selected
rounded velocities. Following fractional speed advice is more impractical to
realize by the drivers, thus rounded velocities are, in this sense, more robust.
Furthermore, rounding exact speed profiles in a post-procedure is also non-
optimal as this will cause the train to arrive at the wrong time if the driver
follows the speed advice exactly as instructed. Such a profile is unstable as
drivers will face difficulties following it.Discretized speeds have also been applied
in early versions of Energymiser technology which used precomputed speed
profiles for a discrete set of hold speeds [3, 4, 5, 19, 23, 27].

With multiple speed limits, it is not trivial to identify the optimal solution
nor the partial paths that it consists of. It is however known that the solution
has certain properties. Acceleration should be performed as quickly and early
as possible in order to save time. Similarly, braking should be performed as
quickly and late as possible in order to save time. Intuitively and informally,
late acceleration or early braking does not save energy, and thus only results in
an increased trip time without energy gains. Acceleration and braking profiles
are therefore inserted at region borders whenever the speed limit changes.

Multiple cruising stages may exist, and identifying the optimal velocity for
each cruising stage is part of the problem. As described, a selected discrete set
of velocities are allowed, thus we include these as partial profiles. Starting from
velocity 0 one partial cruising profile is inserted for every x velocity, where x is
the adopted step, determined by the operator. We note that the speed limit is
respected while generating these profiles.

A rule set for coasting is more difficult to determine, which is why we rely
on a heuristic approach for choosing when to start coasting. However, from the
optimal strategy we only need to consider coasting before a braking stage. For
every braking curve we therefore adopt a number of partial coasting profiles
that intersect with the braking curve.
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As a heuristic choice we decided to generate one partial coasting profile that
intersects with the braking curve for each of the selected discrete speeds, i.e., at
the end of a coasting phase the driver will be told to brake when he hits one of
the preselected rounded speeds.

We can consider the constructed graph G(V,A) as a directed graph. In-
tersections in the graph define the vertices, V , of the graph. The segments of
partial paths between two vertices define the arcs, A, of the graph. By con-
struction the graph is acyclic as arcs only connect vertices strictly forward in
time. Associated to each vertex v ∈ V is a position and a speed, and to each arc
a ∈ A is a time and energy consumption. An arc represents a driving choice for
a period of time, e.g., accelerating from one position and velocity to another.
We define the source, vs ∈ V , as the initial position at zero velocity, and the
sink, vt ∈ V , as the final destination at zero velocity. We let outEdges(v) ⊆ A
denote all arcs originating from v ∈ V .

Any path from vs to vt represents a driving profile but the path is not
necessarily feasible. Although the actions represent a feasible sequence of choices
they will not necessarily respect the time requirements. If the accumulative time
of the arcs on the path is less than the total time available, then we say it is a
feasible path.

3.2.1 Passage Points

Passage points impose a time interval in which the train should pass the given
point. They can among others be used to model signals, e.g., needed to ensure
correct separation between trains [6]. Passage points are a natural extension to
the proposed graph structure. Firstly, positions of the passage points are now
also splitting points in the graph, resulting in an increase in the total number
of regions. At these points the train is required to pass in the specified time
window. Note, that the final destination is essentially also a passage point. An
example graph including passage points is shown in Figure 5. Compared to the
previous example in Figure 4 additional acceleration curves can be observed.

In this extension, additional acceleration curves are added such that all of the
cruising speeds are reachable before passing the passage point. The additional
acceleration curves are needed in the special case where a large excess of time is
available before the passage point. In order to save energy a low speed should
be selected, however depending on the next region, it might not be feasible to
cross the point with a low velocity.

The passage point extension naturally imposes additional constraints to a
feasible path. In addition to finding a connected path, all passage points must
be reached within specific time windows.

4 Label Setting Algorithm

We use the train speed profile graph in Section 3.2 as a basis for finding op-
timized profiles. Any path from the source to the target vertex represents a
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feasible sequence of actions, however it is not necessarily feasible as the avail-
able time windows may be violated. Therefore, the TSPP problem has to be
solved as a Resource Constrained Shortest Path Problem (RCSPP). This is
a well-studied problem and we refer to Irnich et al. [21] for a more in-depth
description of how to solve this problem.

We propose a label setting algorithm to solve the RCSPP, which essentially
is a DP approach. Label setting algorithms have been applied in literature
to efficiently solve multiple variants of the RCSPP. The considered problem
structure has an optimal substructure property, but instead of computing a
table of all states we are only interested in the optimal solution and therefore
can discard inferior states. In contrast to previous DP approaches, we do not
generate a lookup table for the whole trip but rely on re-computation when the
train deviates from the original plan. We limit this section to a brief description
of the label setting algorithm. Note, that using this methodology we find an
optimal path in the generated RCSPP, but the solution is only sub-optimal for
the TSPP since not all possible transition states are present in the graph.

In the RCSPP, the goal is to minimize the overall energy consumption while
respecting the available trip time, Tmax. The available time can be considered
a resource, which is consumed when traversing the arcs in the graph. A label,
l, is a sequence of connected arcs in the graph, i.e., a partial path. The energy
consumption, cost(l), and time usage, time(l), correspond to the accumulative
energy and time usage of the entailed arcs. The source vertex, vs ∈ V , is the
head of any label l and we let tail(l) denote the tail. Note, that for any arc
a ∈ A, cost(a), time(a) and tail(a) are defined similarly.

The algorithm is essentially a full enumeration of all possible paths, starting
from vs. The first label simply consists of the source node, having zero cost and
no time usage. In a recursive manner, new labels are generated for every possible
extension of current label. In the end, all possible partial paths originating at vs
will be generated. However, enumerating all possible paths is far from practical
for our problem instances. In order to solve the instances efficiently search
branches are pruned and discarded in the process if they prove to be fruitless.
We adopt the use of infeasible labels and dominance to efficiently prune the
states in the enumeration process.

Theorem 1 (Infeasible Label I). Infeasible labels can be pruned. A label l is
infeasible if time(l) > Tmax.

Theorem 2 (Infeasible Label II). Infeasible labels by time bound can be pruned.
A label l is infeasible by time bound if time(l)+δ > Tmax where δ is the minimum
time required to reach vt.

Theorem 3 (Dominated Label). A dominated label can be pruned. Consider
two labels a and b at the same vertex (i.e. having same speed and location).
Label la dominates label lb if cost(la) ≤ cost(lb) and time(la) = time(lb).

Notice, that it may not be an advantage to arrive earlier to a vertex since
one may arrive too early to a passage point. If no passage points are present
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one may use the stronger dominance rule saying that label la dominates label
lb if cost(la) ≤ cost(lb) and time(la) ≤ time(lb).

Algorithm 1

1: procedure LabelSettingAlgorithm(G(V,A), Tmax) . graph and trip
time

2: L← {CreateLabel(vs, 0, 0, ∅)} . stack of unprocessed labels
3: B← ∅ . best solution
4: while |L| ≥ 0 do
5: l← Front(L)
6: L← PopFront(L) . Remove l from unprocessed list
7: v ← tail(l)
8: ApplyDominance(v) . pruning dominated vertices
9: for a ∈ outEdges(v) do . performing extensions

10: v′ ← tail(a)
11: l′ ← CreateLabel(v, cost(l) + cost(a), time(l) + time(b), l)
12: if IsFeasible(l′) then
13: L← PushBack(L, l′)
14: if v′ = vt ∧ cost(l′) < cost(B) then
15: B← l′

16: end if
17: end if
18: end for
19: end while
20: return B
21: end procedure

The general label setting algorithm is summarized in Algorithm 1. Starting
with the source vertex, labels are processed in iteration by making all possible
extensions. Infeasible extensions are pruned from consideration, and dominance
is checked in order to prune fruitless labels.

A list of unprocessed labels is maintained in the algorithm. All labels in the
list are unprocessed, i.e., their extensions have to be considered. Initially, only
one label is in the list. This label is the source vertices (vs), i.e., the start of
any path. In every iteration the frontmost label is extracted (PopFront) from
the list. One new label is generated for every possible extensions (i.e. arc) from
it’s current vertex. The new labels are put on the back of the list. The current
vertex of the new labels corresponds to the destination vertex of the arc, energy
and time are accumulated. Without dominance and feasibility check the list
grows exponentially. If a label is infeasible, there is no reason to continue down
that path, hence it is not considered any further. Similarly, there is no need to
further consider labels that are dominated by an existing label. Inherently, as
the graph is directed and acyclic the algorithm expands the search in a breath-
first manner. We note, that the list is an abstraction that can be replaced with
an appropriate data-structure in order to control the expansion more precisely.
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Finally, the best label (terminating at the sink vertex vt) is returned. The best
label is an invariant that is updated whenever the search comes across a label
(terminating at vt).

Processing the labels in a left-to-right order (breath-first) comes at an ad-
vantage when considering dominance as it will prune the most labels early in the
search. This is an advantage as it avoids considering many labels that will be
dominated later on. We note, however, that this strategy will not find feasible
solutions early on. This comes at a disadvantage as such are valid upper bounds
that can also be used to prune labels during the search.

4.1 Passage Points Extension

An extension is needed in order to deal with the passage point constraints since
the described algorithm does not require labels to pass these locations in the
pre-specified time windows.

In Algorithm 1, instead of assigning the accumulated time, tl′ , on line 11
we assign to the generated label, l′, a time consumption of max(tl′ , tp) where tp
corresponds to the earliest arrival time at passage point p. If no passage point
exists at the considered vertex then tp = 0, meaning that max(tl′ , tp) = tl′ . This
modification of the algorithm keeps the structure of the problem intact, and we
can use the same pruning rules. In addition, the time bound infeasibility rule
is strengthened as it can be applied for the latest arrival at all passage points,
not just the final destination and Tmax.

The extension has one important drawback. The produced solution may be
infeasible as the modification allows a label to move forward in time without
changing the position or velocity. This is naturally not possible for a train,
unless it is standing still (zero velocity). We propose two different ways to ac-
commodate this issue. Firstly, assigning a cost penalty on violations, according
to the size of the violated duration would discourage solutions that arrive too
early. Alternatively, a post-process can repair the infeasibility by adjusting the
profile accordingly, such that it arrives later in time but at the earliest time
possible at the correct speed. In the experiments we have adopted the latter.

5 Computational Results

In this section we benchmark the proposed solution method using real-life in-
stances from various countries. A summary of the considered instances in shown
in Table 1. The instances are divided into three different classes, each repre-
senting distinct trips. The first class (A) consists of intercity trips provided by
a confidential railway operator. The last two classes (B and C) are intercity
trips provided by the principal train operating company in Denmark (DSB).
All instances include multiple speed limits and in many cases also multiple pas-
sage points. The altitude profile is not negligible, hence many piecewise linear
slopes are used to approximate the track slopes. The arrival time at the final
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destination is given for each instance, where the input data allows the train to
be delayed a few seconds.

The benchmarks are performed using a Intel (R) CoreTM i5-3320M CPU @
2.60GHz processor with 8 gigabytes of main memory. The results are shown in
Table 2 where the solution method described in this paper (LSA) is compared
to a solver (C-solver) provided by Cubris[1]. LSA and C-solver method solve
the same problem using the same objective, however, a few differences exist.
First, C-solver does not rely on linearized track slopes. Secondly, additional
soft constraints, such as minimizing the number of driver actions, are taken into
account in C-solver . The parameter settings of C-solver have, however, been
adjusted to make the comparison as fair as possible. For the sake of comparison,
the energy consumption is normalized into watt-hours per ton-kilometer (wh/tk),
which we will denote as the cost. We measure the results of LSA and C-solver
relative to the cost of the fastest profile (FP). The FP is the speed profile that
uses the minimum travel time possible for a journey. This profile follows the
speed restrictions as closely as possible, which helps the train to stay ahead
of time (rather than behind the schedule). This speed profile represents the
choice made by an energy-inattentive driver. The cost of the FP highlights the
potential savings of the benchmarked methods.

In general, the results show that the LSA produces high quality solutions
within 0–2 seconds. We note that some of the input data can be preprocessed
further, thus reducing computational time. A large portion of the time is spent
in the label setting algorithm, but time spent preparing the input data and
generating the underlying graph is not negligible. An average improvement of
0.3, 1.2 and 0.4 wh/tk in cost (1.5%, 2.6% and 0.8% in savings) is observed for
respectively A, B and C instances compared to the C-solver . Compared to
the energy usage of C-solver , the relative improvement per kilometer is 3.6%,
4.7% and 1.5% respectively. The average improvement for all trips, including
all classes, is 3.3%.

Compared to the A instances, relatively high computational times are ob-
served for the B and C instances. This is a natural consequence of the increased
distance, the number of regions and the graph size, resulting in a larger number
of considered labels.

The LSA consistently arrives as late as possible, which in turn gives more
room for cost reductions. In contrast to the C-solver method where the arrival
varies around on the planned time, and even arrives before time in some cases
(up to 2 seconds).

The C-solver finds solutions extremely fast, all measured computational
times are less than 100 milliseconds. Significant gains are achieved compared
to the FP , but the superior results of the LSA suggest that the C-solver some-
times makes some poor choices. We note that some discrepancy might appear
in the results, since the LSA gets a linearized altitude profile as input, while the
C-solver works on a continuous altitude profile.

Comparing the costs of the two algorithms, a few outliers need some expla-
nation. In A07 and C06 the LSA surprisingly finds significantly worse solutions.
After inspection of the results, we discovered that this is due to a combination of
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Speed Passage Altitude Track Trip
Instance Distance Limits Points Difference Slopes Time

A00 6.3 7 1 9 5 390
A01 32.9 9 5 28 13 1 020
A02 37.7 4 3 54 17 1 110
A03 29.8 7 2 48 10 930
A04 28.0 8 2 62 8 1 080
A05 19.8 12 3 43 8 780
A06 14.7 5 1 52 3 570
A07 10.9 2 1 30 4 420
A08 9.8 7 1 51 3 390
A09 7.5 3 1 11 5 300
A10 14.2 3 1 35 4 510
A11 21.3 6 3 84 3 750
A12 16.5 8 2 119 4 660
A13 22.3 7 1 105 6 720
A14 1.1 4 1 20 2 180

B00 50.3 19 10 55 27 1 575
B01 28.9 3 4 20 15 795
B02 23.5 4 2 102 10 765
B03 15.5 4 2 37 4 495
B04 14.8 6 1 19 3 465
B05 14.6 3 2 9 6 495
B06 32.8 6 4 22 11 915
B07 11.9 5 3 14 6 435
B08 18.8 9 4 26 10 765

C00 19.6 9 4 26 10 735
C01 11.9 4 3 14 6 405
C02 32.8 9 4 22 11 945
C03 14.6 5 2 9 6 465
C04 14.7 6 1 20 3 465
C05 15.5 4 2 35 4 495
C06 23.5 4 2 102 9 705
C07 28.9 3 4 19 16 795
C08 50.4 16 10 63 27 1 395

Table 1: An overview of the benchmarked real-life data instances. The columns
show instance identifiers, trip distance (km), number of changing speed limits,
number of passage points, maximum change in altitude (m), the number of
linearized track slopes, and finally the trip time (s).
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FP LSA C-solver

Case Reg. Vertices Edges Labels Cost Time Sav Arr. Time Sav Arr. ∆

A00 9 246 259 160 22.6 20 31.3% -4.8 19 29.5% 1.6 1.8%
A01 26 1 122 1 606 1 490 31.9 118 16.8% -6.7 10 13.7% 1.3 3.1%
A02 21 906 1 245 3 012 29.8 77 19.0% -6.5 25 18.6% 1.8 0.4%
A03 17 664 866 1 237 22.6 68 17.5% -6.3 13 17.5% -1.0 -0.0%
A04 15 431 490 1 650 24.6 58 43.7% 5.1 3 39.3% 0.5 4.4%
A05 19 714 875 4 184 33.8 97 32.0% -2.2 20 27.5% 1.0 4.5%
A07 5 350 488 405 27.1 15 34.9% -3.8 84 35.6% 1.1 -0.7%
A08 3 357 511 409 33.6 15 37.1% -5.2 36 44.3% -0.2 -7.3%
A09 7 382 517 47 33.9 41 2.8% -6.7 0 0.0% -4.0 2.8%
A10 5 259 295 233 37.3 18 37.4% -4.7 33 38.3% 0.3 -0.9%
A11 4 356 485 594 34.0 32 29.9% -4.6 31 30.0% 0.0 -0.2%
A12 7 629 1 049 695 20.1 57 32.3% -1.3 17 32.2% -1.9 0.1%
A13 10 392 491 1 106 39.4 40 17.9% -5.4 23 16.9% -0.6 1.0%
A14 11 572 736 378 18.0 41 50.8% -2.8 84 49.3% 1.5 1.5%
A16 3 43 40 54 12.6 6 83.8% 45.1 7 71.8% -0.7 12.0%

Avg 32.5% 31.0% 1.5%

B00 61 5 756 8 900 112 756 46.2 1 248 50.6% -4.5 23 38.9% 0.3 11.7%
B01 22 3 124 5 169 55 264 43.2 499 36.3% -5.2 23 35.5% 0.9 0.8%
B02 14 2 156 3 310 60 223 44.0 426 46.1% -5.3 86 41.4% 1.1 4.7%
B03 7 1 579 2 562 11 110 56.4 130 44.2% -5.4 38 42.6% 1.8 1.6%
B04 7 1 040 1 508 4 181 52.3 49 42.8% -4.0 27 42.4% 0.4 0.4%
B05 9 1 985 3 241 22 633 51.0 183 55.3% -5.6 42 53.2% -0.8 2.1%
B06 21 3 492 5 999 84 476 42.9 635 37.8% -4.7 41 36.6% -1.1 1.2%
B07 13 1 930 3 067 12 277 52.8 143 60.3% -5.0 46 59.9% -1.5 0.4%
B08 23 2 039 2 873 42 344 47.5 314 71.0% -5.0 64 70.3% 1.7 0.7%

Avg 49.4% 46.7% 2.6%

C00 23 2 053 3 100 22 360 49.3 208 53.1% -4.8 54 52.3% -1.0 0.9%
C01 12 2 023 3 303 10 577 59.6 201 50.2% -5.2 37 49.5% -0.8 0.7%
C02 24 2 738 4 159 25 868 45.5 342 41.1% -4.5 24 37.4% -0.7 3.7%
C03 12 1 921 3 028 13 074 52.4 163 47.3% -5.3 33 45.2% 1.7 2.0%
C04 7 1 088 1 608 2 854 50.3 51 44.3% -4.6 30 43.3% 1.7 1.0%
C05 7 2 014 3 504 26 599 46.3 220 55.3% -6.4 29 53.4% 1.3 1.9%
C06 13 1 643 2 404 6 311 44.9 160 35.0% -5.6 22 39.5% -1.5 -4.5%
C07 25 2 857 4 434 35 412 44.1 395 34.6% -5.3 41 33.7% 0.9 0.9%
C08 57 5 842 9 356 93 436 38.1 1 143 35.7% -5.7 36 35.2% 1.5 0.6%

Avg 44.1% 43.3% 0.8%

Table 2: An overview of the benchmark results. The first columns show the in-
stance identifier, number of regions, vertices and edges in the underlying graph.
The forth column shows the number of generated labels, and the fifth shows
the energy cost for the fastest profile (FP). For each method we report runtime
(ms), savings (relative to FP) and the remaining trip time (s). The final column
shows the difference in savings.
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Figure 5: An illustration of an optimized speed profile in the graph presented
in Section 3.2. The profile, depicted as a dashed black line, follows a series of
accelerate-cruise-coast-brake stages. Multiple acceleration and braking curves
are present due to speed restrictions. Many acceleration curves are inserted
before passage points (vertical dotted lines) to avoid (potential) infeasibility.

large segments in the altitude profile and the discrete set of cruising speeds. This
considerably restricts the choices of speed for LSA. Splitting the long segments
in the altitude profile into smaller parts will reduce this problem.

A relative high difference is observed in a few cases: A05, A16, B00, B02 and
C02. After inspecting these cases more carefully we conclude that the solutions
are correct. The differences are a result of greedy heuristic choices when facing
speed limits and passage points.

An example of a found optimized speed profile using LSA is illustrated in
Figure 5. In the example the passage points are not very binding, however it
can be observed how the solution method distributes surplus time by letting the
train coast in three different segments. A second example is shown in Figure 6.
In this example it is observed that the passage point is now more binding.
An excess of surplus time is available before the first passage point, however, in
order to avoid infeasibility after this point a high speed is required in the sequel.

Comparing Figure 5 and 6, it is seen that if the passage points are not
binding, the algorithm strives towards a constant speed during the whole trip
(except when speed limits are imposed). If some passage points are binding, the
optimal speed profile may encompass low speed up to the passage point, and a
much higher speed in the last part.

We demonstrated that increasing the number of partial coasting profiles in
the underlying graph of the LSA method can improve the solutions slightly in
many cases, and significantly in few cases. The latter can be solved by refining
the algorithm to identify such corner cases - note that these instances are still
solved very quickly. The experiments suggest that the LSA method is able
to find very good solutions quickly. Inserting additional coasting profiles is
questionable, as the discretization reaches a limit where a driver is unable to
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Figure 6: An illustration of an optimized speed profile in the graph presented
in Section 3.2. The profile, depicted as a dashed black line, follows a series of
accelerate-cruise-coast-brake stages. Multiple acceleration and braking curves
are present due to speed restrictions. Many acceleration curves are inserted
before passage points (vertical dotted lines) to avoid (potential) infeasibility.

react accordingly.

6 Better bounds

The LSA solution method is heuristic as only a subset of the partial profiles are
generated in the speed profile graph. However, we expect to find high quality
solutions since all necessary partial profiles for acceleration, braking and cruising
exist for obtaining an optimal solution. Only the possible coasting opportunities
are constructed from a discrete set of points where the train can start coasting.

We therefore conduct an additional experiment with a considerably increased
number of coasting opportunities. We have added coasting profiles that will hit
the braking curve at every discrete speed step (0 km/h, 1 km/h, 2 km/h . . .).
One cannot expect the driver to navigate with a larger precision so the found
solutions provide a lower bound for how good the algorithm can perform.

The results are listed in Table 3. An average improvement of 1.0% is ob-
served, where more than half of the improvement solely stems from 5 instances
(A0, A04, A08, A10, A14). As expected, the required cpu-time and the number
of vertices, edges and labels generated increases. In most cases, the improve-
ment is less than 0.5% indicating that LSA is obtaining solutions very close to
the optimal solution. Only in 5 instances we observe results above 1.5%. By
close inspection it can be seen that there exist corner cases where the generation
of the coasting profiles is too crude in the LSA. A comparison of the solutions
found in A04 is illustrated in Figure 7.
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Case Time Improvement Vertices Edges Labels

A00 23 3.1% 214.63% 213.51% 247.50%
A01 476 0.0% 143.67% 132.50% 1902.75%
A02 142 0.2% 150.66% 149.00% 379.85%
A03 51 0.9% 120.33% 113.63% 249.88%
A04 88 4.1% 152.67% 143.67% 466.55%
A05 170 0.4% 190.34% 196.11% 392.97%
A07 40 1.4% 139.43% 98.36% 773.33%
A08 45 11.3% 264.99% 268.10% 448.17%
A09 20 1.3% 203.47% 194.92% 257.08%
A10 47 6.9% 232.02% 226.39% 590.24%
A11 38 0.2% 81.88% 48.05% 281.29%
A12 58 0.1% 179.85% 168.84% 189.15%
A13 46 0.1% 183.39% 195.11% 595.50%
A14 27 6.3% 190.25% 133.91% 184.37%
A16 4 0.0% 130.23% 77.50% 61.11%

B00 4.463 0.2% 90.36% 82.82% 226.00%
B01 1.992 0.0% 82.23% 76.51% 263.51%
B02 2.000 0.2% 136.36% 111.00% 251.60%
B03 5.107 0.5% 213.93% 212.45% 3315.22%
B04 145 0.2% 226.35% 235.08% 210.36%
B05 8.036 0.3% 165.74% 156.87% 2388.19%
B06 3.560 0.0% 105.07% 101.65% 308.68%
B07 380 0.0% 131.61% 114.84% 229.70%
B08 1.139 0.5% 151.94% 148.42% 188.97%

C00 926 0.2% 156.99% 160.06% 367.53%
C01 408 0.0% 151.85% 146.35% 287.17%
C02 814 1.2% 123.05% 111.97% 272.39%
C03 5.566 0.4% 174.28% 169.15% 3133.80%
C04 130 0.4% 196.42% 197.70% 265.98%
C05 769 1.0% 99.06% 85.16% 250.36%
C06 226 0.3% 184.42% 187.94% 219.39%
C07 1.207 0.1% 122.37% 119.28% 277.94%
C08 48.292 0.2% 74.14% 65.26% 2367.23%

Table 3: Overview of results obtained by increasing the number of coasting
partial profiles. The columns respectively show the instance identifier, runtime
in milliseconds, relative improvement in energy savings and relative increase in
the number of vertices, edges and labels.
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Figure 7: The plot compares two solutions. The thick blue path shows the
solution found using the LSA method. The thick yellow path shows the solution
found using the same method with an increased number of partial coasting
profiles. The solutions are plotted on the original graph. The coasting profile
discretization is too coarse to generate a good solution for the LSA method.

The total cpu-time required in the last experiment clearly violates the tar-
geted real-time requirements, however in most cases the cpu-time is less than
one second. We therefore suggest a hybrid option to achieve an improved hybrid
variant of the LSA method. First, the observed corner-cases can be improved as
discussed. Second, a coarse discretization can be used to obtain an initial high
quality solution. The initial solution can then be used as guidance in a next
iteration, as we now know approximately when the train should start coasting.
Furthermore, an initial solution can help speed up the labeling algorithm by
pruning relevant branches early in the search-process.

7 Further extensions

The developed framework is very flexible and can easily be extended to handle
a number of extra criteria.

First of all, we notice that LSA not only returns the optimal solution, but
actually for the sink vt returns a set of Pareto-optimal labels (cost(l), time(l)),
satisfying time(l) ≤ Tmax. Each of these labels represents a feasible speed
profile, and can be evaluated with respect to various soft constraints (e.g. ro-
bustness, passenger comfort, environmental impact from noise and vibration)
in order to choose the overall best profile.
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It is also easy to handle extra criteria explicitly in the solution approach. For
instance, the drivers would like to have profiles without too many changes in op-
eration (power-hold-coast-brake). For this purpose each label l can be extended
to three parameters (cost(l), time(l), changes(l)) where changes(l) denotes the
number of speed changes. In the label setting algorithm changes(l) is increased
by one each time an edge corresponds to a change in operation. The dominance
rule in Theorem 3 is easily adapted to handle the new parameter.

Finally, robustness of a speed profile can be handled by using the techniques
from [30]: For every arc a ∈ A assume that there is a probability pa for dis-
ruption. For instance an arrival to a passage point at the extreme ends of the
corresponding time window will have a large probability for disruption. Simi-
larly, segments traversed close to the speed limit do not leave much space for
recovery and will have a large probability pa. If a given speed profile consists of
arcs a ∈ P we want to maximize the probability of no disruptions, hence having
a second criteria to optimize

max
∏
a∈P

(1− pa)

Since the log function is monotone this corresponds to maximizing

max log
∏
a∈P

(1− pa) = max
∑
a∈P

log(1− pa) = min
∑
a∈P

− log(1− pa),

so by choosing edge weights wa = − log(1−pa) we can easily handle the robust-
ness aspect by using labels (cost(l), time(l), prob(l)), where prob(l) is the sum
of the weights wa on the trip. As before, an upper limit on the probability of
disruption can be assigned to each trip when selecting the most energy efficient
speed profile.

8 Conclusion

Optimizing train speed profiles is important research as trains are one of the ma-
jor electricity consumers in most countries. Minimizing even a small percentage
leads to significant savings and reduces the environmental impact. A variety of
solution methods exist in literature but further improvements can be made in
terms of computational requirements and increased realism or accuracy.

We proposed a novel DP-based solution method for finding optimized speed
profiles. Although it is not an exact method for finding the optimal solution,
our computation results show that very high quality solutions are indeed found
within 1-2 seconds in the worst case. The computational time savings are signif-
icant compared to previous methods based on DP. A large number of real-life
instances have been considered. A comparison to C-solver, an existing com-
mercial method, shows that the solution quality is high. We conclude that the
proposed solution method is suitable for providing real-time driving assistance.
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The solution framework is elegant and flexible. The underlying graph can be
extended without the use of advanced mathematics. The solver is interchange-
able as the RCSPP can be solved using different methods such as Lagrangian
relaxation, constraint programming or even heuristic methods.

For future research, a number of interesting extensions are worth investigat-
ing. The solution method could be extended to handle steep gradients where
cruising is not possible, and extended to consider trains with discrete speed con-
trol. The potential of the presented methodology is not fully exploited. Even
more aggressive preprocessing methods could improve computational time as
well as tuning of the label setting algorithm. Finally, we believe that proposed
framework is eligible for other types of transportation modes, examples include
trams, trucks, air-planes and vessels.
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