Technical University of Denmark

N2O and NO dynamics in AOB-enriched and mixed-culture biomass: experimental observations and model calibration

Domingo-Felez, Carlos; Plósz, Benedek G.; Sin, Gürkan; Smets, Barth F.

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Domingo-Feléz, C., Plósz, B. G., Sin, G., & Smets, B. F. (2017). N2O and NO dynamics in AOB-enriched and mixed-culture biomass: experimental observations and model calibration. Poster session presented at ICoN5: 5th International Conference on Nitrification, Vienna, Austria.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

N2O and NO dynamics in AOB-enriched and mixed-culture biomass: experimental observations and model calibration

DTU Environment

Department of Environmental Engineering

Carlos Domingo-Félez¹, Benedek Gy. Plósz¹, Gürkan Sin², Barth F. Smets¹

¹ Department of Environmental Engineering, ² Department of Chemical Engineering, Technical University of Denmark; E-mail: cadf@env.dtu.dk

Introduction

- Nitrous oxide (N_2O) emissions during nitrogen removal in wastewater treatment operations can compromise the environmental impact of new energy-saving technologies.
- Current process modelling efforts aim to reproduce N₂O experimental data with mathematical equations, structuring our understanding of the system.
- A mathematical model structure that describes N_2O production during biological nitrogen removal^[1] is calibrated for two biomasses representative of wastewater treatment operations: AOB-enriched and mixed culture.
- Extant respirometric assays are used to monitor N_2O , NO and DO dynamics.

Experimental procedure and Model structure

- Obj_1 \rightarrow Quantify N₂O dynamics via extant respirometric assays from two biomasses: AOB-enriched and mixed liquor.
- $Obj_2 \rightarrow Calibrate the NDHA model^[1] to describe N-removing processes$ and N₂O production for wastewater treatment operations.

Aerobic and anoxic spikes - NH_4^+ , NH_2OH , NO_2^- , NO_3^- , N_2O

The NDHA model^[1] comprehensively describes N_2O and NO producing both autotrophic ammonium oxidizing and heterotrophic pathways by bacteria:

N₂O production pathways **NN - Nitrifier nitrification** ND - Nitrifier denit. HD - Heterotrophic denit. **Ab - Abiotic*** Other processes

Metabolism of AOB, NOB, HB, Decay, Hydrolysis, Physicochemical, etc.

Model calibration: AOB-enriched vs. Mixed culture

Top – <u>Aerobic experiments</u>. Dissolved oxygen and N₂O concentrations during NO_{2⁻} (left), NH₂OH (middle) and NH_4^+ (right) pulses (1-4 mgN/L).

Bottom – <u>Anoxic experiments</u>. NH_2OH oxidation at excess NO_2^- (left), effect of NO_2^- and NH_4^+ on N_2O production (middle), effect of NH_2OH and NO_2^- oxidation on N_2O and NO production (right).

Experimental and modelling results for DO and N₂O during NH₄⁺ oxidation at high DO (A), from high to low DO (B, C) and anoxic NH₂OH oxidation (D).^[2]

Mixed culture

@Metlab_DTU

The mixed culture biomass showed higher specific denitrification rates, N₂O consumption and NOB activity compared to the AOB-enriched.

AOB-enriched biomass

DO, NH_4^+ , NO_2^- , NO_3^- dynamics

Parameter		Unit	Value
μ _{ΑΟΒ.ΑΜΟ}	Maximum AMO-mediated reaction rate	d ⁻¹	0.49 ± 0.01
μ _{NOB}	Maximum NOB growth	d ⁻¹	0.67 ± 0.07
k _H	Hydrolysis rate	d ⁻¹	2.01 ± 0.02
K _{AOB.NH3}	NH_3 affinity for AOB	mgN/L	0.12 ± 0.005
K _{AOB.O2.AMO}	O ₂ AMO-mediated affinity constant	mgO ₂ /L	0.23 ± 0.02

NO and N₂O dynamics

0 ⁻³)
-

Mixed culture biomass

DO, NH_4^+ , NO_2^- , NO_3^- dynamics

Parameter		Unit	Value
μαοβ.αμο	Maximum AMO-mediated reaction rate	d ⁻¹	0.49 ± 0.01
μ _{NOB}	Maximum NOB growth	d ⁻¹	1.04 ± 0.05
μ _{HB}	Maximum HB growth rate	d ⁻¹	5.15 ± 0.11
K _{AOB.NH3}	NH_3 affinity for AOB	mgN/L	0.007 ± 0.0012
K _{NOB.HNO2}	HNO ₂ affinity for NOB	µgN/L	0.027 ± 0.006

NO and N₂O dynamics

arameter		Unit	Value
AOB	Reduction factor HAO-mediated reaction rate	(-)	0.0031 ± 0.0001
NOR	Reduction factor for NO reduction	(-)	0.36 ± 0.02
NIR	Anoxic reduction factor for HNO ₂ reduction	(-)	0.22 ± 0.01
H _{opt.nosZ}	Optimum pH for N ₂ O-reduction	(-)	7.9 ± 0.1
I _{nosZ}	Sinusoidal parameter for N ₂ O-reduction	(-)	2.2 ± 0.2
, HB.N2O	N ₂ O affinity constant for HB	mgN/L	0.078 ± 0.020

The calibrated model describes N₂O production from AOB-enriched^[2] and mixed culture biomass; a total of 10 and 17 parameters were accurately estimated respectively. Parameter sets for each biomass (maximum rates, substrate affinities) highlighted differences in microbial community composition:

- \succ The estimated NH₃ affinity differed, probably due to the different NH₄⁺ and pH levels at which the biomasses operated: NH_4^+ _AOB-enriched $\gg NH_4^+$ _Mixedculture $\rightarrow K_{AOB,NH3} = 0.12$ vs. 0.007 mgN/L respectively.
- \succ The fractions of NH₄⁺ oxidized (NN pathway) and NO₂⁻ reduced to N₂O by AOB (ND pathway) also varied between systems $\rightarrow \epsilon_{AOB} = 0.003$ vs. 0.0005 (-).

A pH-dependent function to describe N_2O consumption is proposed (max pH = 8).

The NDHA model structure is in agreement with the newly proposed AOB

Top – Heterotrophic activity. Denitrification and aerobic carbon removal (left). Maximum N₂O consumption rate at different pH (middle). NO and N₂O dynamics after NO₂ spike under electron donor limiting conditions (right). Middle – Aerobic NH_4^+ oxidation. DO consumption (left), NO production (middle), N_2O production (right). Bottom – Model evaluation at varying DO and NO_2^- concentrations. From left to right: Pathway contributions to total N₂O pool NN, ND, HD; N₂O emission factor.

^[1] 10.1039/C6EW00179C; ^[2] arXiv:1705.05962v1; ^[3] 10.1073/pnas.1704504114

metabolism of aerobic/anoxic NH_2OH oxidation ^[3].

Conclusions

- A novel experimental design to calibrate N_2O models through extant respirometry is proposed that combines DO, N₂O and NO measurements.
- N_2O and NO production from mixed liquor biomass increased during NH_4^+ oxidation at low DO concentrations and in the presence of NO_2^{-1} .
- The NDHA model response was validated and described N₂O production at varying DO, NH_4^+ and NO_2^- concentrations.
- During NH₄⁺ oxidation the NN pathway showed the largest contribution at high DO levels, while the ND and HD pathways increased and dominated the total N₂O production at low DO and high NO₂⁻ concentrations.

