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Abstract. Experimental data acquired in the New MEXICO experiment on a yawed 4.5m
diameter rotor model turbine are used here to validate the actuator line (AL) and actuator disc
(AD) models implemented in the Large Eddy Simulation code EllipSys3D in terms of loading
and velocity field. Even without modelling the geometry of the hub and nacelle, the AL and
AD models produce similar results that are generally in good agreement with the experimental
data under the various configurations considered. As expected, the AL model does better at
capturing the induction effects from the individual blade tip vortices, while the AD model can
reproduce the averaged features of the flow. The importance of using high quality airfoil data
(including 3D corrections) as well as a fine grid resolution is highlighted by the results obtained.
Overall, it is found that both models can satisfactorily predict the 3D velocity field and blade
loading of the New MEXICO rotor under yawed inflow.

1. Introduction

Wind turbines are often operated in conditions where the wind does not flow perpendicularly
into the rotor plane, but with a so-called yaw angle. This configuration leads to higher fatigue
loads for the rotor blades as well a more complex development of the flow downstream from the
rotor. This configuration being often met in reality, it is important to verify if simulation tools
are able to correctly predict the blade loading and velocity field associated to it. Wind tunnel
measurements, being performed under controlled inflow conditions, allow to validate simulation
methods in this regard. The New MEXICO experiments [1] performed in 2014 in Europe’s
largest wind tunnel on a three-bladed 4.5m diameter wind turbine will be used here to validate
the blade loading and velocity fields under different configurations as predicted using the Ellip-
sys3D Large Eddy Simulation where the rotor plane is modelled using either the actuator disc
(AD) or actuator line (AL) model. While both the AD and AL methods in EllipSys3D have
recently been used with success to model the New MEXICO rotor under axial inflow [2], the
current study will test if they also perform satisfactorily under yawed inflow. Let us mention
that yawed inflow has been a subject of investigation for the AL model in EllipSys3D following
the first round of the MEXICO wind tunnel experiments [3]. The experimental conditions of the
New MEXICO setup differing relatively to the first MEXICO experiment, they allow a further
validation of this method.

http://creativecommons.org/licenses/by/3.0
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Figure 1. Convention used in the New MEXICO experiments for the coordinate system and
yaw angle [4]. Front (left) and top (right) view

In this paper, the numerical and experimental model and setup will first be presented, fol-
lowed by a presentation and discussion of results regarding the velocity field and blade loading
of the New MEXICO rotor under various configurations.

2. Numerical and experimental model and setup

2.1. Experimental setup

The New MEXICO [1] experiments were performed on a three-bladed, 4.5 m diameter upwind
wind turbine in the German Dutch Wind Tunnel (DNW). The rotational velocity of the rotor
was 425.1rpm, and three incoming velocities (V0) were considered, i.e. 10.03, 15.01 (design wind
velocity) and 24.08m/s. For the case under consideration here, the rotor was yawed at an angle
of 30 degrees relatively to the incoming flow. Figure 1 [4] illustrates the conventions used for
the coordinate system, yaw and azimuth angles. One can see from this figure that a 0 degree
azimuth angle corresponds to the reference blade (blade 1) in the vertical position.

The blades were equipped with Kulite pressure sensors, distributed around the airfoil sections
at five radial positions, namely at r/R = 0.25, 0.35, 0.60, 0.82, and 0.92, with r the spanwise
position, and R the 2.25m radius of the blade. Loads on the blades were calculated as a func-
tion of the rotor azimuth angle by integrating the pressure forces around the airfoil section. The
blades consisted of three airfoils, namely the DU 91-W2-250 at the root (20 to 45.6 % span),
the RISOE A2-21 at the centre of the blade (54.4 to 65.6 % span), and the NACA 64-418 at
the tip of the blade (outboard of 74.4% span), with transition zones in between [5]. A cylinder
was used from the root (9.3% span) of the blade to 13.3% span. As opposed to the MEXICO
first experiments [6], the blades in the current experiments were not tripped with zig-zag strips
in the tip region [1].

As in the first MEXICO experiment, the velocity field was also measured in this case, using
Particle Image Velocimetry (PIV). The measurements were performed at the 9 o’clock plane rel-
ative to the rotor using windows disposed under two configurations and are rotor-phase locked
averaged. Under the first configuration, windows were disposed radially in the ymodel direction
shown in Figure 1 to perform so-called radial traverse measurements 0.3m upstream and 0.3m
downstream from the rotor plane (i.e. xmodel = ±0.3m), leading to results being available for
−3.0m < ymodel < 3.0m for a yaw angle of 30 deg. Under the second configuration, windows
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were positioned axially along the xtunnel direction shown in Figure 1 to create axial traverses,
whose range covers the interval -4.5m< xtunnel <5.9m, leading to results being available at
ytunnel = ±1.5m for the same yaw angle. Let us mention that the velocities considered in this
work are always defined in the tunnel coordinate system.

While the same spatial resolution as in the first MEXICO measurements was used, the size
of the PIV windows increased from 337×394 mm to 380×610 mm in the axial and lateral di-
rections respectively, allowing to cover a larger measurement area. More information about the
first and New MEXICO measurement campaigns can be found in [6] and [1] respectively.

2.2. Numerical model and setup

Large-eddy simulations are performed using the Computational Fluid Dynamics (CFD) multi-
block finite volume solver EllipSys3D. The rotor is modeled using either the AL or AD tech-
nique [7]. Using the AL and AD techniques avoids the need for resolving the development of
the boundary layer over the blades, allowing the use of a higher resolution to capture the details
of the wake. In the AL model, body forces representing the aerodynamic loads on the rotor
are distributed along points on rotating lines representing the individual blades, which allows
information about the force on the blades to be directly provided as a function of the blade
azimuth angle. In the AD model, the body forces are distributed on points over a rotating disc
represented on a local polar mesh, which can provide information about the local forces on the
disc as a function of the azimuth angle. The body forces in both techniques are smeared into
their imposition points with a three-dimensional Gaussian function [8]. They are calculated
through the use of so-called airfoil data, i.e. values of lift and drag coefficients as a function of
the local angle of attack, obtained in the LES. Furthermore, the tip loss model by Shen et al.
was used in the computations [9, 10].

The airfoil data were obtained from 2D wind tunnel measurements of the RISOE-A1-21 air-
foil and provided to the Mexnext participants. It was recently realized that those were not
obtained at the right Reynolds number and tripping condition for the RISOE-A2-21 airfoil used
in the middle of the blade. However, let us note that the difference in lift-drag polar of the
two airfoils is not so different. Work is currently underway to perform measurements under the
appropriate conditions. In both the AD and AL simulations, the airfoil data are linearly inter-
polated in the transition regions between the different airfoil sections. In the AD simulations,
the airfoil data associated with a cylinder (i.e., a zero lift coeffcient and a value of 1.2 for the
drag coefficient) are used for the hub region, while a hole is considered in the AL calculations.
Neither the presence of the hub nor of the nacelle is modelled in the EllipSys3D simulations.

The grid used in the AD and AL simulation is the same in order to make a fair compari-
son possible. It is made up of about 11.8 million points and covers the range [-20R,20R] ×
[-16R,16R] × [-16R,16R] in the x , y and z directions respectively, with the finest resolution
given by R/40. More information regarding the numerical setup for the calculations performed
with the AD and AL models can be found in [2].

3. Results and discussion

An overview of the available simulated and experimental results in terms of velocities in the
wake and blade loading, representative of the overall results obtained, is provided and discussed
in this section.
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3.1. Velocities in the wake

Velocities shown are averaged over the last fourth of the simulations performed with the AD,
while the velocities at the last simulation iteration are shown for the AL. Please note that the
uncertainty on the experimental velocities, although not included in the graphs, is reported to
be around ± 0.2m/s [11].

Figure 2 shows the axial (u, along x), crosswise (v, along y) and vertical velocities (w, along z)
on the radial traverses located respectively 0.3m upstream and downstream from the rotor in the
model coordinate system. Results are shown for the LES using the AD and AL representations
of the rotor and are compared to the experimental results. The AD results are shown, upstream
from the rotor, to slightly underestimate the downwash effect from the turbine wake as seen in
the overestimated axial velocity. It is seen to also underestimate to a certain extent the velocity
deficit in terms of axial velocity downstream from the rotor. The AL performs better in this
sense and produces results closer to the experimental data. Both the AL and AD simulations
compare rather well with the experimental results in terms of crosswise and vertical velocities.
The AL and AD results also agree quite well, except for small differences in the hub region due
to their different treatment of this region.

Figure 3 shows the same quantities as Figure 2, but for an incoming velocity of 15.01m/s.
Observations similar to those related to an incoming velocity of 10.03m/s can be made here.
The crosswise velocity which was slightly overestimated upstream from the rotor with the AD
model at V0=10.03m/s for negative y values is so in a more important way here, and so is the
underestimation of the vertical velocity as predicted by the AL model downstream from the
rotor for positive y values. Let us notice that the discrepancies observed are similar for these
two wind speeds when non dimensionalized with respect to the incoming wind speed. They
could result from the use of a slightly too coarse mesh and uncorrected 2D airfoil data.

Figure 4 shows the same quantities as the two previous figures, but for an incoming veloc-
ity of 24.08m/s. It is to be noted here that experimental values were available for comparison
only for negative y values. In this region, the agreement of both the AD and AL results with the
experimental data is quite satisfactory, except for a slight overestimation of the the crosswise
velocity component for the AD model both upstream and downstream from the rotor.

The three velocity component as simulated with the AL and AD models and measured ex-
perimentally along the axial traverse located at ytunnel=-1.5m as a function of the axial position
xtunnel are shown in Figure 5 for the three incoming wind velocities considered in the experi-
ments. In all cases shown, it can be observed that both the results associated to the AL model
agree quite well with the experimental data. This model is in general able to predict the velocity
variations obtained in the experimental data due to the presence of the tip vortices, although
with a smaller amplitude. Indeed, for the 10m/s and 15m/s cases, the fine fluctuation details
associated to the vertical velocity observed in the experimental data are not reproduced by this
AL simulation, while more large variations are produced at a wind velocity of 24m/s [12]. It is
expected that the use of a finer resolution mesh would have allowed to reproduce such detailed
features of the flow at lower wind velocities, as has been observed before [13]. The AD model,
due to its average nature, cannot reproduce these features, but is able to predict the average
behavior in the flow quite satisfactorily. Slight overestimations are however obtained as regards
the axial velocity downstream from the rotor for incoming velocities of 10.03 and 15.01m/s.
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Figure 2. Streamwise, crosswise and vertical wind velocities obtained using the AD and AL in
EllipSys3D compared with experimental data. V0=10.03m/s, yaw angle=30deg, 0.3m upstream
(top figures) and downstream (bottom figures) from the rotor plane.

Figure 3. Streamwise, crosswise and vertical wind velocities obtained using the AD and ALin
EllipSys3D compared with experimental data. V0=15.01m/s, yaw angle=30deg, 0.3m upstream
(top figures) and downstream (bottom figures) from the rotor plane.

The AL and AD method used in this work, although they do not explicitly model complex
phenomena such as flow detachment, which is more important for increasing incoming wind
velocities, are shown to be able to satisfactory reproduce the main flow features. Since the
structures of the flow, as tip vortices, move more slowly at low incoming velocities, the use of a
finer resolution at low wind velocities is expected to lead to a better reproduction of the details
of the flow [13].



6

1234567890

Wake Conference 2017  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 854 (2017) 012005  doi :10.1088/1742-6596/854/1/012005

Figure 4. Streamwise, crosswise and vertical wind velocities obtained using the AD and AL in
EllipSys3D compared with experimental data. V0=24.08m/s, yaw angle=30deg, 0.3m upstream
(top figures) and downstream (bottom figures) from the rotor plane.

Figure 5. Streamwise (u), crosswise (v) and vertical (w) wind velocities obtained using the
AD and AL in EllipSys3D compared with experimental data for the axial traverse located at
y=-1.5m. V0=10.03m/s (top), 15.01m/s (middle), and 24.08m/s (bottom).
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3.2. Blade loading

Figure 6 shows the force normal to the blade chord as simulated using the AD and AL models
and measured experimentally the three incoming velocities of 10.03, 15.01 and 24.08m/s. Four
positions along the blade representative of the root, center and tip are considered. In general,
the AD and AL simulations produce very similar results, and they capture well the azimuthal
trend of the normal force. The normal forces are seen to be slightly underestimated in the root
region, which is expected to be due to the use of 2D airfoil data which neglect stall delay effects.
2D airfoil data were used in the computations performed within the Mexnext consortium to
prevent the use of various 3D correction models that would make a direct comparison between
the simulation codes more difficult. Note however that the maximal uncertainty on the force at
that position is rather large. The largest differences in terms of amplitude of the forces are seen
at a radial position of 0.6R, near the middle of the blade. These differences could be explained
by the fact that the experimental airfoil data used in this section to represent the RISOE airfoil
section were not available at the correct Reynolds number and tripping conditions, which could
lead to incorrect force values to be computed. The best overall agreement is found for the 0.82R
position for which the complex influence the tip, known to be difficult to accurately model, is
not as important as for the 0.92R position.

Figure 7 shows the force tangential to the local blade chord measured and obtained using
the AD and AL models for the same radial positions and incoming velocities as in Figure 6.
Once again, the AD and AL models lead to very similar results, and are able to reproduce in
a satisfactory way the experiments results in terms of trends and absolute values (notice the
much smaller y-axis range than for the normal force shown in Figure 6). The tangential force
is found to be slightly underestimated in both the AD and AL cases in the root region, which
can be explained, as for the normal force, by the neglect of stall delay effects. The differences
as regards the amplitude of the tangential force observed at a radial position of 0.6R could, as
for the normal force, be explained by the issue outlined above regarding the RISOE airfoil in
this region. One can notice an interesting feature of the measured tangential force at a radial
position of 0.6R, which does not show the same azimuthal trend as for the other velocities and
radial positions. This is expected to result from dynamic stall effects affecting the yawed turbine
at this high incoming velocity, a phenomenon that is not specifically accounted for in the current
simulations. It would be interesting to investigate whether full CFD simulations modeling in
detail the development of the boundary layer over the blades would reproduce this flow behavior.

4. Conclusion

Simulations of the New MEXICO rotor tested under controlled conditions in a wind tunnel were
performed under yawed inflow with the Large Eddy Simulation code EllipSys3D, where the disc
was modelled using either an actuator disc (AD) or actuator lines (ALs). Comparisons in terms
of loading and velocity field with experimental data were made under various configurations.
Satisfactory agreement was in general obtained between the experiments and simulations. As
regards the velocities, the AL, as expected, was shown in general to be able to capture the
induction effect from the individual blade tip vortices, however with a smaller amplitude for low
incoming velocities. Although not able to capture this effect, the AD was shown to be capable
of reproducing the averaged flow in the near wake quite satisfactorily. It would be interesting in
a next step to model the geometry of the nacelle and hub under yawed inflow. This was recently
performed under axial flow using both the AD and AL [2] and shown to improve the agreement
of the near wake in the blade root region.

The general trends in blade loading were well captured with both the AD and AL models. Small
differences were obtained in terms of force amplitude, which were explained by the non-modelling
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Figure 6. Force per unit length normal to the blade local chord at four radial positions, i.e.
0.35R (top), 0.6R (2nd row), 0.82R (3rd row) and 0.92R (bottom) as a function of the blade
azimuth angle obtained using the AD and AL in EllipSys3D compared with measurement. Three
incoming wind velocities are shown, i.e. V0=10.03m/s (left), 15.01m/s (middle), and 24.08m/s
(right). The shaded area around the experimental curve shows the uncertainty as ± one standard
deviation, indicating the repeatability between the data points.

of stall delay effects in the root region and use of incorrect airfoil data in the middle part of the
blade. This emphasizes the importance of employing as accurate airfoil data as possible for such
simulations. This is especially true of the tangential force whose small amplitude makes it very
dependent on the validity of the airfoil data. The nature of the airfoil data is found to be more
important as regards the prediction of the loading on the blade than for that of the velocity field.
It would also be of great interest to compare the present simulations with calculations where the
full rotor geometry would be considered to see if experimental trends not totally captured by the
current simulations could be reproduced. Nevertheless, both the AD and AL model tested in
this work, even though they do not model the development of the boundary layer on the blades
or the geometry of the hub and nacelle, are shown to be capable of reproducing the main flow
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Figure 7. Force per unit length tangential to the blade local chord at four radial positions,
i.e. 0.35R (top), 0.6R (2nd row), 0.82R (3rd row) and 0.92R (bottom) as a function of the
blade azimuth angle obtained using the AD and AL in EllipSys3D compared with measurement.
Three incoming wind velocities are shown, i.e. V0=10.03m/s (left), 15.01m/s (middle), and
24.08m/s (right). The shaded area around the experimental curve shows the uncertainty as ±
one standard deviation, indicating the repeatability between the data points.

features and blade loading characteristics under yawed inflow.
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