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Systematic optimization-based integrated chemical product-process design framework 

Stefano Cignitti, Seyed Soheil Mansouri, John M. Woodley, Jens Abildskov 

Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, 
Technical University of Denmark, Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby, Denmark 

Abstract 

An integrated optimization-based framework for product and process design is proposed. The framework uses a 
set of methods and tools to obtain the optimal product-process design solution given a set of economic and 
environmental sustainability targets. The methods and tools required are property prediction through group 
contributions, unless supported with a database, computer-aided molecular and mixture/blend design for 
generation of novel as well as existing products and mathematical programming for formulating and solving multi-
scale integrated process-product design problems. The application of the framework is demonstrated through three 
case studies: (i) refrigeration cycle unit for R134a replacement, (ii) a mixed working fluid design problem for 
R134a replacement, and (iii) pure solvent design for water-acetic acid LLE extraction. Through the application of 
the framework it is demonstrated that all solutions satisfy product, process, economic and environmental targets 
simultaneously. The solution is obtained through a direct deterministic mathematical optimization strategy. The 
framework proposed in this work is generic and can be applied to a wide range of problems where an integrated 
solution to process-product design is beneficial.  

Keywords: Integrated chemical product-process design, optimization, CAMD, molecular design, organic Rankine 
cycle, ORC 
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1 Introduction 

Global economic growth has resulted in an ever-increasing need for new chemical products given the scarcity of 
resources [1], as well as effective processes to manufacture them. Moreover, sustainable and renewable raw 
material from which new products can made is also important. Each of these needs may be described in terms of 
an independent design problem. A generic product design methodology was proposed by Cussler and Wei [2] that 
consists of four steps: (i) needs, (ii) ideas, (iii) selection and (iv) manufacture; each one of these steps requires sub-
methodologies to fulfill their desired goals. The needs for a chemical product may be centered around its 
properties, its use or its sustainability. Typical chemical products may need to fulfill one or more of such needs. 
For example, cooking oil primary need is centered on its properties, such as smoke point and toxicity; solvents 
require specific product properties, but must be also used in several processes where the process performance is a 
need; refrigerants requirements are present in their sustainability as well, such as ozone depletion potential. 
Therefore, the transition from ideas to a selection of product candidates is challenging. Often, numerous product 
alternatives (ideas) can be generated and not enough resources to screen and select amongst available alternatives. 
The use of computer-aided methods and tools facilitates generation and selection of product candidates. 
Furthermore, such methods can handle the complexity of integrating process and sustainability requirements in 
the chemical product design problem.  

Several computer-aided methods exist for the design of novel molecules and mixtures. Computer-aided molecular 
design (CAMD) methods utilize group contribution (GC) description of molecules, that enable the property 
prediction based on structure alone, to reverse engineer novel molecules and mixtures. Most conventional methods 
can be categorized in the following: 

1. Generate and test  
2. Mathematical optimization  
3. Continuous molecular targeting  

Generate and test methods use CAMD to generate a number of molecule candidates (ideas) and test (selection) 
them by enumeration for structural consistency, structural design criteria, property targets, mixture targets and/or 
process criteria. Harper et al. [3] proposed a method for the design of new molecules based on structure and 
property needs. The method only reaches the testing of pure component and some mixture property targets, but no 
process design objectives. Satyanarayana et al. [4] added feature to handle polymer design problems. Despite this, 
generate and test methods fall back when large number of alternatives are encountered. Optimization is not utilized 
and so, objectives functions for process performance cannot be included. To overcome some of these problems, 
graphical methods were introduced.  Solvason et al. [5] presents a systematic method for CAMD through graphical 
approach. The graphical method in CAMD generate and test enabled the design of mixtures as well. However, the 
search space can still only allow for a low number of alternatives and requires human interaction for the graphical 
design. For designing mixtures using non-graphical methods,  Yunus et al. [6] presented a methodology for mixed 
products, including blends of binary and ternary mixtures. Such generic methods for mixtures design allow for the 
design of many types of mixtures. However, issues such as process application design and evaluation and use of 
objective function is still not overcome. For this, mathematical optimization is needed. Duvedi and Achenie (1996) 
proposed a mathematical program to design novel refrigerants using computer-aided molecular design (CAMD). 
The design problem only concerns the product properties and does not handle the process needs for the final 
application of the designed refrigerant. This simplification results in a less computationally expensive process 
design; however, product targets set by heuristics generate good process criteria. This leads to sub-optimal 
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solutions if common design variables exist for the process and the product, such as temperature. Hostrup et al. [8] 
proposed a method for integration of the product and the process design problem. However, heuristics are applied 
to simplify the mathematical problem with thermodynamic knowledge. The heuristics lead to sub-optimal 
decisions and this hybrid method does not yield deterministic solutions.  Thereby, a structured method of solution, 
which employs thermodynamic insights to reduce the complexity and size of the mathematical problem by 
eliminating redundant alternatives, has been developed for the hybrid method. Therefore, the methods uses 
principles of enumeration rather than rigorous optimization and it does not provide a ranked sub-set of solutions 
based on the value of the objective function. Instead, it generates a sub-set of feasible solutions in which the 
optimal solution is not identified. This trend is seen throughout literature, that either products are designed based 
on property targets, or process targets are introduced through heuristics or simplifications. Papadopoulos et al. [9–
11] proposed a systematic design approach for working fluid generation for organic Rankine cycles (ORC). Here, 
a weighted objective function based on scaled pure properties was proposed and utilized. Papadopoulos et al. [9], 
utilized the weighted objective function using all the key pure fluid properties. Whereas in a later work by them 
[10], the problem was reformulated into a multi-objective optimization problem considering only five of the pure 
fluid properties. Palma-Flores et al. [12] also proposed a method for choosing the optimal pure working fluid for 
an ORC using CAMD approach. The objective functions were based on temperature dependent pure fluid 
properties. The drawbacks of these methods are that the design problem is split into multiple stages: a product 
design phase and a process evaluation/optimization phase. If a given problem has too many product candidates, 
not all alternatives can be evaluated due to combinatorial explosion and resource demand. Furthermore, the product 
properties targets do not exactly translate into targeted process criteria. Working fluid design for thermodynamic 
cycles is a very sensitive and correlated product-process design problem, which today is a particularly important 
industrial topic [13–15]. The works presented aim at optimizing all the fluid properties, resulting in a difficult task, 
given also the correlation between properties that may make the result only locally optimal [16,17]. This is also 
true when considering detailed design of certain components in the ORC that cannot solely be based on primary 
fluid properties [18].  

Continuous molecular targeting methods can be used as a backward approach to eliminate the issue of relating 
process criteria with product properties. Here, the process is optimized first with the product properties as variable. 
In the subsequent step, promising product candidates are generated based on the target properties. Such methods 
have been reported in several works and frequently such a solution approach has been found necessary due to the 
complexity of the thermodynamic model employed [19–21]. However, the second step of finding the promising 
chemical product is difficult when multiple target properties involved, thus, finding candidates that match the 
properties exactly is not possible and the final process criteria changes in an unfavorable direction. This leads to 
sub-optimal solution [22] and finding a global optimal solution requires screening of all alternatives, making this 
method an unfavorable alternative. 

In cases where the sensitivity and correlation between the product design and process design is high, addressing 
the two design tasks separately may lead to sub-optimal solutions, the primary limitation of a sequential design 
approach. An alternative, to ensure a truly optimal product and process design solution, is to carry out such 
optimization simultaneously using a dual objective function. This simultaneous approach can pave the way to 
solve product-process design problems, such that a chemical product leading to an optimal process performance 
is identified in the early stages of process design.  This is a need in several product-process design areas as 
described by Gani and Ng (2015). For example, the design of solvents is highly affected by the process it is used 
for, whether it be for liquid-liquid extraction or extractive distillation [8,24]. Similarly, working fluids used in 
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thermodynamics cycles are also a type of design problem where product properties cannot be directly related to 
the process criteria [22,25].  

The focus of this paper is on the design of chemical products that include process application needs, which requires 
the integration of process design and optimization for the optimal chemical product idea selection. The chemical 
products focus is on molecules and mixtures. Therefore, this paper presents an optimization-based framework for 
integrated chemical product-process design. The framework consists of four hierarchical steps and uses a set of 
methods, tools and databases for property prediction, novel product design and mathematical programming to find 
the optimal product-process design solution. The application of the framework is highlighted through an integrated 
working fluid design and process design of a refrigeration cycle for a pure and mixed fluid presented in two 
separate cases as well as a solvent selection for LLE. The paper is structured such that first, the key concepts are 
presented to introduce the methods and tools incorporated into the computer-aided framework. Next, the 
framework is presented with the developed steps, algorithms and workflows. Finally, the application of the 
framework is demonstrated through three different case studies. 

2 Systematic computer-aided framework for integrated chemical product-process design 

Integrated chemical product-process design is a method for finding the optimal chemical product and optimal 
process given a set of target specifications for both. For the integration to happen, there must be common variables 
in the product and process model and/or in the objective function. Furthermore, a complete mathematical program 
should contain all constitutive and conditional constraints and the solution of this should consider all constraints 
simultaneously. The integration of the two design problems is explained conceptually through a set of model 
equations describing products and processes, their interaction and their common variables.   

The present framework is restricted to deal with process design models consisting of following equations: 

  10 , , , ,f x y u θ Y  (1) 

  10 , ,g x y u θ  (2) 

  20 , ,g x u y  (3) 

 , , , , {0,1} x y u θ Y
 

Where f1 represents balance equations, such as energy, mass and momentum conservation, x is a vector of 
continuous variables, y is a vector of output variables, Y is a vector of binary decision variables, u is a vector of 
design variables and θ is a vector of product properties. The constitutive equations, such as property prediction 
models, are represented through g1, g2 represents conditional equations that the process solution must satisfy, such 
as mole fraction definition. This generic definition represents process design problems [26]. It can be clearly seen 
that the product properties influence the design and decisions made at the design phase through the constitutive 
equations. However, a subset of these properties will be fixed from a process design point of view, if the 
molecule/mixture has been pre-selected. In most cases only temperature dependent properties will remain 
unknown and are described by the constitutive equations, for example, activation energy and interaction 
parameters are known, but reaction rate constant and activity coefficients remain defined by g2. A generic product 
design problem will comprise the following model equations: 
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  20 , , , , ,f x y u θ Y Q   (4) 

  10 , , ,g x y u Q θ    

  20 , ,g x u y    

 , , , , {0,1},  x y u θ Y Q 
 

Where f2 describes the product selection. This can be selection from a database, novel molecular generation 
through CAMD (Eq. (53)-(61)) and mixture selection. Thus, the added vector of integer variables Q describes the 
molecular structure type and number of mixture components, while g1 describes constitutive equations, such as 
GC models, and g1 the conditional constraints, such as mixture stability criteria and structure stability.  

 

Figure 1: Integrated product-process model 

The framework addresses product and process design needs simultaneously for optimal design through an 
optimization-based approach. The product design refers to the chemical design of pure, mixed or blended products, 
from now on simply referred to as products. Commonly, one is interested in optimizing a process variable, such 
as performance, subject to product and process specifications. A generic objective function is formulated as: 

  max ,i i
i

w J x θ   (5) 

Where Ji is the objective function with weight wi. With a single objective function, wi is unity with a single element. 
With multi-objective optimization, the weights can be adjusted from 0 to 1 based on heuristic measures. In a 
generic form, the constraints for product and process design are given by: 

Y

Y
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 10 , , , ,f x y u θ Y  

 20 , , , , ,f x y u θ Y Q
 

 10 , , ,g x y u Q θ  

  1 1 1
L Uk k k Q   (6) 

  2 2 2,L Uk k k Q x   (7) 

  3 3 3,L Uk k k x Y   (8) 

  4 4 4,L Uk k k x θ   (9) 

 L U θ θ θ   (10) 

 ;{ , } ; {0,1}  Q x θ Y    

Where k1 constrains the specifications for molecular design in terms of group combinations, for example for 
number of functional groups, k2 constrains mixture structural design, e.g. for number of components and 
composition, k3 constrains the process variables to satisfy operational conditions, such as accounting for isothermal 
processes, k4 constrains relations between continuous process variables and product properties and constraints 
temperature dependent or mixture properties. In an isolated view of a decomposed solution, the structural 
constraints are an MIP, the pure property constraints an LP (as integer solutions are provided from previous 
program), the mixture properties an NLP and the process models an NLP. An overview of the integrated product-
process design framework is presented in Figure 2. As an example, a decomposed problem can be illustrated as 
follows. In program A, all pure product candidates are designed that will be used in a process that is designed and 
optimized in program B. Such an example is given in Table 1. 

Table 1: Decomposed program example 

Program A: Pure product design Program B: Process design and optimization 
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Starting with program A, all pure fluid candidates are desired. This means a dummy objective function is used, 
where the results is always constant. The, a structural equation is used where the integer variables are summed 
with the product of valency vi. The constitutive equations is a predictive calculation of property θi, calculated from 
Qi with arbitrary constant ai. The structure is constrained with k1. In program B, a balance equation is used (e.g. 
conservation of design variable uj and yj. The process variables are constrained in k3. One θi element is then 
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constrained with respect to x1 in k3. A simultaneous program would contain a combination of program A and B 
without the dummy objective function. Although the programs here are separated in decomposed matter, this 
simple example feature common variable θ1. In an LP, direct relation between θ1 and J1 could be made. With this, 
a proper k4 constraint could be added in program A to narrow the pure fluid candidates. However, in very nonlinear 
NLP, or in NLP where heuristic or analytical knowledge is missing, such a constraint cannot be made. A 
simultaneous design path would be preferred in that case.  

 

 

Figure 2: Integrated product-process design and optimization framework 

 Step 1: Define product targets 

The first step in the framework is to define the product targets. It is assumed at this stage that the problem already 
concerns the integrated design of product and process through mathematical optimization. This step is completed 
by applying Algorithm 1. 

Input information Information flow

Step 1
Define product targets

Step 2
Define process targets

Integrated Product-
Process Design

Step 3
Formulate product-process 

integrated program 

Step 4
Solve program for optimal 

solution(s)

* Product type and application 
* Product structure and property 
targets for molecule/mixture
* Databases for property data and 
thermodynamic model parameters

Product des ign targets and required 
experimental and model data

Process design targets and process 
data

* Process type and appl ication
* Flowsheet, unit operations and 
util ity information and data
* Process targets and specifications
* Operation and other fluid data

Mathematical program of objective 
function and constraints. Variable 

bounds and initial values.

* Product, process and consti tutive 
models from libraries
* Objective funct ion(s) and weights
* Model and product-process target 
constraints

Optimal integrated solution with a 
specific solution approach and 

optimization s trategy

* Modelling software (e.g. GAMS)
* Solution approach algorithms
* Optimization solver libraries 

Solution?No Yes End
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Algorithm 1: Define product targets 

Objective: To define the product targets for the integrated product-process design problem. 

Step 1.1: Define product type, i.e. if the desired product is a molecule, mixture or a blend.  

If (product type = molecule) 
Specify the molecular target specifications in terms of structure, functional groups, pure properties 
and sustainability metrics.  

Elseif (product type = mixture/blend) 
Specify mixture/blend targets by defining number of components, mixture properties and mixture 
stability and phase equilibria conditions. Specify any fixed components and target specifications for 
the individual components (molecules).  

end 

Step 1.2: Search space is specified by selecting the option of using a compound database or a CAMD-based 
method for selection/generation of product.  

If (search space = database) 
If (product type = molecule) 

Extract molecules from database based on targets.  
Elseif (product type = mixture/blend) 

Extract mixture components from database based on targets. 
end 
Extract data and specify which properties are missing and require prediction. 

Elseif (search space = CAMD-based methods) 
Confine search space based on molecular/mixture component targets.  

end 

Data: The relevant data for the selected product type can be obtained from various chemical databases 
[27].  

 Step 2: Define process targets 

Given the product design targets, the process targets are defined in this step. The process is the system where the 
target product is applied and it is assumed that the separate design decisions are sensitive to each other, that is, one 
design decision affects the other design decision. The step is performed through an algorithm of sub-steps. 

Algorithm 2: Define process targets 

Objective: To define process targets for the integrated product-process design problem. 

Step 2.1: Define the type of process needed and what the objective of the process is.  
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Step 2.2: Give the pre-defined design decisions made, i.e. fixed flowsheet information on unit operations, 
utility flows, auxiliary streams and fluids present and the connection between these. 

Step 2.3: Define process design specifications, i.e. target process and/or sustainability metric and operating 
conditions.  

Data: The data is collected from real operational data or from knowledge-based insights. 

 Step 3: Formulate product-process integrated program 

To formulate the integrated mathematical program, Algorithm 3 must be used. To setup this algorithm, the product, 
process and constitutive models are first formulated. The product models should contain equations for molecular, 
mixture and/or blend design, depending on targets. Process models should contain balance equations i.e. mass, 
energy and momentum balances. Constitutional models are the property prediction methods for pure properties 
(e.g. GC methods), mixture/blend properties (e.g. mixing rules), phase equilibria and mixture stability models (e.g. 
gE model and modified Raoults law). The choice of models requires to specify assumptions made on mixture type 
(e.g. ideal mixture) and on the operation (e.g. isentropic process). The output of the algorithm is the mathematical 
design program, which can be of several types, such as Linear Programming (LP), Mixed Complementarity 
Problem (MCP), Mixed Integer Nonlinear Programming (MINLP), Mixed Integer Linear Programming (MIP), 
Nonlinear Programming (NLP), Quadratically Constrained Program (QCP), Mixed Integer Quadratically 
Constrained Program (MIQCP) and Mathematical Program with Equilibrium Constraints (MPEC). 

Algorithm 3: Formulate product-process integrated program 

Objective: To formulate an integrated product-process mathematical program. 

Step 3.1: Retrieve from model libraries or formulate product, process and relevant constitutive models. 
Define the objective function that is one or a set of product and/or process functions. Define constraints by 
the models from Step (i) and from a list of conditional equality and inequality constraints from defined 
product and process targets. Define variable types, upper and lower bounds, and initial values. In addition, 
decision variables are defined, i.e. variable selection of certain processing paths through either process 
options or super-structures. 

Step 3.2: Retrieve the data for the model from Step 1 and 2 and for the constitutive models (e.g. 
thermodynamic parameters and group contributions).  

Step 3.3: Analyze model to ensure at least there is one degree of freedom and identify the common variables 
between the two designs. Furthermore, identify the type of program.  

Data: In addition to data from step I and II, data for constitutional models are retrieved from the sources 
of the models selected. The data and compounds specific correlations can be retrieved from several 
databases or handbooks [27–29]. 



 
10 

 
 

 

  

 

 Step 4: Solve program for optimal solution(s) 

The integrated program is solved in this step. This requires first selection of appropriate solution approach, 
optimization strategy and solver. This is covered in the following algorithm. 

Algorithm 4: Solve program for optimal solution(s) 

Objective: To select appropriate solution approach, optimization strategy and solve the product-process 
program 

Step 4.1: Implement integrated program of objective function(s) and constraints into a modelling based 
software for optimization.  

 

Figure 3: Solution approach selection workflow. A decomposed example is shown where each subprogram is kept 
separated and where it is necessary to redefine the initial variable values for the process NLP problem. This is 
because the process NLP problem will be a subset of N problems corresponding to N integer solution from the 

previous program. Each initial guess must be redefined as the value for a previous sub NLP may lead to infeasible 
starting values for current NLP. These initial values can be functions of fixed variables that were resulting from 

previous programs or simply the variable output result from previous NLP. This decomposition strategy has been 
applied in several works [24,30,31] 
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Step 4.2: Select solution approach. Figure 3 provides a workflow for selecting the solution approach. If the 
model can be solved directly and only the global optimal solution is desired, use direct optimization. If 
multiple solutions are required, one can implement integer cutting methods or using a solver that allows 
such option (e.g. CPLEX or BARON [32,33]). Decomposed strategies are needed when the problem cannot 
be solved directly. Here, the constraints and objective function are separated into smaller sets of 
mathematical programs: Structural constraints as MILP, pure component constraints as LP, mixture property 
constraints as LP or NLP, and objective function and process design as a sub-set of smaller NLP problems 
where a NLP problem is solved for each candidate chemical product. The five programs can be kept as five 
individual programs or some subprograms can be merged. It is best to group subprograms together that have 
common variables. More advanced decomposition methods can be selected that are case specific. 

Step 4.3: Select optimization solver. This choice is based on the type of integrated program formulated in 
Step III and on the solution approach selected.  

Step 4.4: Solve the integrated program and obtain the optimal solution(s) according to workflow in Figure 
3.  

Tools: An equation oriented algebraic software – for example GAMS [34]. 

 

The framework is considered satisfactorily followed when desired solution(s) have been obtained. If no solution 
is found, return to step 1 for revising product targets, step 2 for process targets, step 3 for re-formulation of 
constraints, bounds or initial values, or return to step 4 for changing solver or solution approach. 

3 Applications examples 

In this section, application of the framework is highlighted through three case studies. Each case study is unique 
in terms of application area. This is to demonstrate the applicability and versatility of the proposed framework to 
a wide range of problems. The first example is a refrigeration process where the overall performance of the process 
is subject to the performance of the working fluid in power generation. The second case study features design of 
mixed working fluids for a heat pump process. Heat pumps are used to transfer energy from a low-temperature 
source to a high-temperature sink. The last case study is a classic example of integrated product-process application 
design problem, which is the solvent design for a liquid-liquid extraction process. However, the solution strategy 
is unique such that it is solved using the proposed framework in this work. 

 Example I:  Design of pure working fluid for a refrigeration process to replace R-134a 

The goal here is to design a refrigerant for a refrigeration (vapour-compression cycle) process. This is a 
replacement problem for a vapour-compression cycle using R-134a refrigerant. Due to recent EU regulations (No. 
517/2014), R-134a and other commonly used refrigerants are going to be phased out [35]. A study suggest R-
1234yf to be a promising replacement for R-134a [36] as well as other hydrofluoroolefins (HFOs) [37]. A simple 
schematic of the refrigeration process together with key operating parameters is depicted in Figure 4. 
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Figure 4: Vapor-compression cycle 

Recent studies confirm that the design of novel refrigerants is a challenge. The future needs to find fluids that 
respect regulations and perform sufficiently well to replace existing refrigeration’s that will be out-phased. 
However, given the high sensitivity between the fluid properties and the cycle process operating conditions and 
performance, this is a challenging tasks with existing heuristic approaches [38]. Recent literature point at the need 
for use of CAMD techniques for finding novel refrigerants [25].  

Step i: Define product targets  

The tasks in this example is to replace R-134a, a common refrigerant used for mobile and industrial refrigeration 
systems. The R-134a has an exceedingly high GWP that will make it an inappropriate fluid to use according to the 
F-gas regulation by 2020 [39]. Thus, this is a retrofitting problem where it is desired that the fluid utilizes existing 
equipment using R-134a. Therefore, Algorithm 1is applied to search for a pure fluid that has an acyclic structure. 
Given the low number of alternatives existing in literature, the desired search space includes all possible fluids 
within bounds set targets. The CAMD technique is therefore employed. The target properties are then selected 
based on targeting similarities with R-134a [40], as given in table 1. 
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Table 2: Product targets 

Target product property Lower bound  Upper bound 
Molecular mass  110 g/mol 
Normal boiling point*  250 K 
Critical temperature* 350 K 400 K 
Critical pressure* 30 bar 50 bar 
Enthalpy of Vaporization at Tb* 200 kJ/kg  
Thermal conductivity (liquid, Tb)* 0.08 W/m.K  
ODP*  0 
GWP*  1400 
Atmospheric Lifetime **  14 years 
Number of groups  1 10 
Number of functional groups 0 2 

* Properties calculated with Marrero and Gani (2001) and [42] method. ** Property must be looked up in literature. 

 Step ii: Define process targets 

In this step, Algorithm 2 is applied. Ranges for existing common process operating conditions are selected for the 
process targets [36]. The values are translated into utility streams used for the condensation and evaporation of 
the designed fluid and they are listed in Table 2. 

Table 3: Process utility temperatures 

Process specifications Inlet Outlet 
Condensation temperature 313.15 K 333.15 K 
Evaporation temperature 280.15 K 265.65 K 

 

 Step iii: Formulate product-process integrated program 

In this step Algorithm 3 is applied by which the product and process mathematical program is formulated. The 
objective function is the coefficient of performance (COP), which is the main process performance metric for this 
kind of processes: 

 1 3

2 1

max
H H

Obj
H H





  (11) 

Where H is the enthalpy of stream j. The product model is firstly described, which starts with the equations for 
molecular connectivity equations, as described in the key concepts [43]: 

  2 2
i i

i

n v    (12) 
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Where n is the number of i groups. The needed product property prediction equations are described by the 
following equations [42]: 
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The model for Cp,ig is given by the following equation [44]:  
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Where Tc is the critical temperature; Pc is the critical pressure; ω is the acentric factor; k is the thermal conductivity; 
GWP is the global warming potential; ODP is the ozone depletion potential; Cp,ig is the ideal heat capacity. The 
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properties with subscript i refer to the group contribution of that property. Properties with subscript of number of 
letter are constants. For the relation between pressure P, temperature T and compressibility factor Z, for the 
equilibrium values and the calculation of enthalpy, entropy s and fugacity φ, the SRK equation of state is used 
[45]:  
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For the equation-based selection of the correct liquid and vapor phase compressibility factor roots, the following 
equations are employed [46]: 
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The process model is now defined. A model for the compressor efficiency is defined as follows: 

 2 1

2 1s

H H

H H
 



  (29) 

The isofugacity and isentropic constraints are defined as follows: 

 2 1 0s s    (30) 

 1, 1,V L    (31) 

 3, 3,V L    (32) 

 4, 4,V L    (33) 

Isobaric and isothermal constraints: 

 2 3 4 1 4 1, ,P P P P T T     (34) 

Isenthalpic constraint over the expansion valve: 

 3 4 0H H    (35) 

Energy balances over condenser and evaporator:  

    1 4 6,2 3,1gg p g g rF C T T F h h     (36) 
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    1 3 6,2 4,1gg p g g rF C T T F h h     (37) 

Pinch point constraints over heat exchangers: 

  

 3 4boiler gT T T     (38) 

  

 1 1condenser wT T T     (39) 

  

 Step iv: Solve program for optimal solution(s) 

Several options arise from the possible solution strategies in Figure 4. Since a process model and objective function 
is used, the mathematical programming approach is used to solve the problem with the BARON optimizer [32] 
through direct optimization. The solutions are given in Table 4. 

Table 4: Molecular design results  

Property R134a R152a 3,3,3-
trifluoropropy
ne 

3,3-
difluorobut
ene 

2,2-
difluorobut
ane 

MW 102 g/mol 66 g/mol 94 g/mol 92 g/mol 94.1 g/mol 

Tb 236 K 230 K 242 K 246 K 252 K 

TC 374 K 366 K 369 K 392 K 389 K 

PC 37.32 bar 46.75 bar 38.13 bar 39.27 bar 37.8 bar 

Ω 0.33 0.27 0.28 0.14 0.18 

K 0.082 W/m.k 0.097 W/m.k 0.086 W/m.K 0.093 
W/m.K 

0.092 
W/m.K 

Δhv at Tb 26523 J/mol 28562 J/mol 18635 J/mol 21312 J/mol 26991 J/mol 

ODP 0 0 0 0 0 

GWP 1370 (ASHRAE, 
2005) 

133 (ASHRAE, 
2005) 

134.6 2.4 0.9 

ATMOSPHERIC 
LIFETIME 

13.4 years 
(ASHRAE, 2005) 

1.5 years 
(ASHRAE, 2005) 

- - - 

COP  10.1 12.8 9.5 11 11.1 

 

As listed in Table 3, the first solution is R134a. The second solution is a known chemical also called 1,1-
Difluoroethane or R-152a. The third and fourth solutions are triple bond and double bond containing refrigerants, 
respectively. However, they do not perform as well with the COP objective function and self-polymerization may 
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become an issue. The fifth solution is 2,2-diFluorobutane, which has not been reported as a refrigerant. R-152a 
has very comparable properties to R134a, but performs better in terms of environmental properties. All three 
refrigerants are now used for the NLP process model to find optimum operating conditions. Two NLP problems, 
one for each candidate, are solved to establish the best refrigerant. The KNITRO optimizer in GAMS [47] is used. 
KNITRO utilizes an interior-point optimization method. It can be seen from the results that R152a obtains a higher 
COP value than R134a in addition to better environmental properties.  

 Example II:  Mixed fluid design for refrigeration cycle process  

Example I is now extended for the design of mixed working fluids. The design problem concerns the replacement 
of R-134a refrigerant. In this paper, the case study was extended to include an expanded search space, inclusion 
of utility streams and practical design criteria. Furthermore, both binary mixtures and molecules are investigated. 
The problem was solved through a simultaneous design strategy using the framework proposed here. 

 

Figure 5: Overview of refrigeration cycle 

 Step i: Define product targets  

The design criteria are the same as the one provided for example I (see Table 2). However, Algorithm 1 is followed 
differently with the selection of a mixture design target rather than a molecular design target.   
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 Step ii: Define process targets 

An overview of the cycle is provided in Figure . A sub-cooler, de-super heater and super heater are added in the 
cycle for practical reasons. It must be ensured that the temperature of fluids entering and exiting from the 
compressor exceed the saturation temperatures at the specified pressures. The sub-cooling is a necessary option to 
have as the pinch point match between cold utility and refrigerant may not lie at the saturation point. A minimum 
super-heating of 5K and minimum de-super heating of 5K was specified. The outlet of the evaporator and inlet 
and outlet of the condenser are constrained as saturated state points. The evaporation pressure is lower than the 
condensation pressure. Hot utility temperature was bounded between 265.65 K and 280.15 K, cold utility 
temperature has a lower bound of 313.15K and an upper bound was not defined. Minimum approach temperature 
was set to 10K. These numbers are based on common R-134a refrigeration applications [36]. Minimum 
temperature and pressure in the cycle are set to 200K and 1 bar, respectively. Extended bounds are allowed to 
avoid exclusion of optimal solutions, while the simultaneous solution approach helps us avoiding combinatorial 
explosions.  

 Step iii: Formulate product-process integrated program 

In this step, the mathematical program is formulated. The GC method by Hukkerikar et al. [42] was utilized to 
predict Tc, Pc and ω (acentric factor). The GC method by Joback and Reid [44] was used to predict the ideal gas 
heat capacity. The SRK equation of state by Soave [45] was used to predict the PVT behavior and properties,  
particularly enthalpy (H), entropy (S) and fugacity (φ). The objective function is the coefficient of performance 
(COP):   

 max evaporator superheater compressorCOP Q W   (40) 

As an equation-based method is needed for the selection of the vapour and liquid compressibility root of the 
equation of state, the method by Kamath et al. [48] was applied. Remaining equations are the same as example I. 
van der Waals mixing rules are used to adjust the equation of state (EoS) for mixtures. Much advanced models 
would be required to model the advantages of using a mixture, such as temperature glide during phase change. 
Nonetheless, the target remains the optimization of COP, therefore, a simultaneous solution strategy would imply 
the redundancy in modelling temperature glides.  

 Step iv: Solve program for optimal solution(s) 

The program was implemented into GAMS where the simultaneous solution strategy was used. The solver utilized 
was SBB [49]. For results report generation, the gnuplotxyz and gdx2xls options are used. Table 5 summarizes the 
product results while Table 6 summarizes the cycle (process) results. Restrictions to pure fluids identified R-161 
as a solution. Its results are also well given in Table 6. As it can be seen, the mixture offers significant 
improvement. A Q-T diagram and a log(P)-H diagram are given in Figure 6 for the mixture and pure component 
result. It can be seen that the pinches are satisfied and a temperature glide is prominent. The GWP of the mixture 
is significantly lower than R-134a (1430 kg CO2 eq) [50].  
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Table 5: Binary mixture design product results (* predicted properties [42], ** Experimental value 14 kg CO2 eq [50]) 

Components 

 
Fluoroethane (R-161) 

 
1,1-difluoroprop-1-ene (novel) 

x 0.54 0.46 
Tc* 360.84 K 437.09 K 
Pc* 52.3 bar 43.29 bar 
ω* 0.21 0.23 
GWP100* 3.49 kg CO2 eq ** 0 kg CO2 eq 
ODP* 0 eqR11 0 eqR11 

 

Table 6: Binary mixture cycle results 

 COP F 
[mol/s] 

P2 [bar] P3 [bar] T7 [K] T3 [K] 

Mixture 1.93 57.29  1 bar 13.73 254.73 393.06 
Pure 1.50 67.67 1.67 27.06 249.76 423.93 
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Figure 6: Q-T and log(P)-H diagram for the binary mixture and pure solution. 

The COP of 1.93 is comparable to systems with similar operating conditions using R-134a [51]. A relaxed solution 
to the mixture design problems shows a COP value of 1.97. Thus, the discrete group variables are made continuous 
to obtain a theoretical best solution. As the COP value is close to the one obtained in Table 2, it indicates that a 
near optimal solution is obtained. However, global optimality can only be guaranteed with a design using a 
sequential approach and observe if the optimal solution of all feasible working pairs matches the one found in the 
simultaneous solution. This is subject to an upcoming work by the authors of this manuscript. 

 Example III: Pure solvent for liquid-liquid extraction process using a one stage process representation 

In this case study, a solvent is designed for an extraction process. Given a mixture of water (H2O) and acetic acid 
(CH3COOH), find a suitable solvent that can extract acetic acid from water. The simple block flowsheet of the 
extraction process is given in Figure 7. The feed is the acetic acid/water binary mixture, the extract is the acetic 
acid rich phase, whereas the raffinate (R) is the water rich phase. 
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Figure 7: Extraction Process 

 Step i: Define product targets  

It is desired to obtain a solvent that splits acetic acid from water. Therefore, an efficient solvent for removal of 
acetic acid from water is needed. As the extraction process is operated at 298K, it is needed that the solvent is in 
a liquid state at this temperature. The boiling point of acetic acid is 391K. In many cases, the solvent is separated 
from the solute in the extract phase in a solvent recovery system. Thus, the volatility between solute and solvent 
must be high.  
 
As the needs have been defined, a CAMD problem is formulated. Here, the needs will be formulated through lower 
and upper bounds of the needed properties. It is specified here that, for the sake of this case study, only acyclic 
solvents containing C, H and/or O atoms are chosen. Thus, the group set u only contains acyclic groups (see Eq. 
8)  containing C, H and/or atoms (u ∊ {CH3, CH2, CH, C, OH, CH3OH, CHO, CH3COO, CH2COO, HCOO, 
CH3CO, CH2O, HCO, COOH, COO}). The size of the generated solvents will also be limited. The needs with 
their respective lower and upper bounds are given in Table 7. NG is the total number of groups u, NF is the total 
number of functional groups. The need regarding efficient solvent is here expressed as distribution coefficient m, 
solvent loss SL, solvent power SP, and selectivity β.  

Table 7: Lower and upper bounds for specified needs 

Need Lower  Upper  Need Lower  Upper  
NG 1 6 m 0.49 - 
NF 0 2 SL - 0.0038 
Tm - 270K SP 0.778 - 
Tb 430K - β 11 - 

 
Step ii: Define process targets 

The combined flow of feed and solvent (F) is 2338.2 mol/h. Mole fractions xi of acetic acid (A), water (B), and 
solvent (S) are 0.0077, 0.2951 and 0.6972, respectively. The extraction process is operated at 298 K. Every step 
of the framework from Figure 1 will be walked through in the following. 
 

Step iii: Formulate product-process integrated program 

As the objective function, the molar flow of water in the raffinate and of acetic acid in the extract should be 
maximized (Eq. 6). The process models will be molar balances for the extraction process and liquid-liquid phase 
equilibrium (Eq. 16-18). 

  max
obj A B

f x x RE    (41) 
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As in example I, the same equations are used for the molecular connectivity of groups. However, following pure 
property model is used for melting point: 

 102.425 log 270
i mi

i

N T    (42) 

And boiling point: 

 430 204.359 log
i bi

i

N T     (43) 

UNIFAC is utilized for the calculation of the activity coefficients and the liquid-liquid equilibria conditions [52]. 
The model for infinite dilution properties of the solvent, which can be evaluated without the process conditions, 
are given: 

  , ,S
0.49 /

A B B A S
MW MW     (44) 

 ,
1 / 0.00381

S B
     (45) 

 ,S0.778 1 / A
   (46) 

 ,S ,
11 /

B A S
     (47) 

The process equations for the extractive single stage are given: 

 0, { , , }E E R R

i i i i
x x i A B S      (48) 

 0, { , , }F E R

i i i
x F x E x R i A B S      (49) 

 1, { , , }p p p

A B S
x x x p F E R      (50) 

Step iv: Solve program for optimal solution(s) 

The MINLP cannot be solved directly due to its size. Thus, the decomposed solution strategy is used (step 4.1 to 
step 4.4).  In step 4.1 constraint 7 to 9 are solved as MIP, which yields 514 solutions. The solutions are screened 
in step 4.2 through constraint 10 to 11, which yields 196 solutions. These are further screened in step 4.3 in 
constraints 12 to 15, which yields 19 solutions. These are then solved in a set of 19 NLP with objective function 
from Eq. 6 with constraints 16 to 18. This yields the optimum solvent, given in Table 8. As it can be seen, a diester 
(butane-2,3-diyl diformate, groups: 2 CH3, 2 CH, 2 HCOO), was generated that satisfied the constraints and 
obtained a maximized objective function value. The recovery is 98.3%.  
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Table 8: Optimum designed solvent and key properties 

Tm [K] Tb [K] m SL β Possible Structure 
236.75 455.22 0.7678 0.0021 14.7702 

CH3

CH3

O

O

O

O  

SP xA
E xB

E xS
E xA

R 
2.1290 0.00859 0.20005 0.79136 0.00112 
xB

R xS
R E [mol/h]  R [mol/h]   fobj  [mol/h] 

0.99700 0.00188 2059 278.86 295.72  

 

4 Discussion 

The framework application solution the in the three examples have shown that viable solution can be found. In 
this discussion, the solution quality and the resources required are compared against conventional solution and 
solutions from conventional methods.   

Comparison with other conventional methods 

 Heuristics 

  Example I and II 

A heuristic approach for the design of refrigeration systems involving pure and mixed refrigerants is a conventional 
method of design. Navarro-Esbrí et al. [36] has performed experimental testing of R1234yf as a potential 
replacement for R134a. Although the fluid will comply with current and future regulations, it is reported it has a 
19% lower COP than R134a. Our designed fluids show that we obtain same or higher COP with improved 
environmental properties of the fluid. However, the comparison is difficult between the example results in this 
paper and the results of the cycle process performance from other works. This is primarily due to differences in 
process conditions, product targets and the overall scope of the problem.  

  Example III 

A heuristic approach for the acetic acid and water case study would require a sequence of decision making process 
for the search space confinement, selection of a handful of potential fluid candidates followed by model-based and 
experiment-based testing. This has several disadvantages. For one, it would require the search space confinement 
only using two chemical properties (melting and boiling point). However, as given in the case results, this would 
require the further evaluation of 512 fluids. This imposes a heavy burden on resources required for the 
experimental testing. Model-based testing through a process simulator can be feasible approach in this case, 
although very tedious. A final point, the final solution can only be as good as the knowledge-based capabilities 
and will not contain the design of new molecules. Classical solvent selection requires experienced people within 
a process studies group. This experience can be hard to maintain; however, PSE also requires experienced 
personnel. Many process studies groups are being cut these decades. 

The framework designed and optimized a potential fluid (see Table 2). The separation problem of acetic acid and 
water is widely studied in literature. In [53] methyl ethyl ketone was designed as solvent for the same problem.  
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 Sequential (decomposed approach) 

  Example I and II 

As it was presented, working fluids are difficult fluids to design new alternatives for due to the high sensitivity 
between the product and process design variables. It is therefore the case that sequential, as with heuristic methods, 
obtain sub-optimal design solutions. Works that employ a sequential approach to replacement problems for R134a 
are found in literature. Seader et al. [54] performed an exergy analysis for R600a as a replacement for R134a and 
found a COP of 1.82. This value matches very well with our results and their existing system obtained a 54.95% 
improved compared to when used with R134a. However, as explained with detail in the work, the process required 
optimization and modification of the compressor. 

  Example III 

Conventionally, the acetic-acid and water problem would have been solved using sequential approach (or 
decomposed approach). Where the integrated model would be solved in sequential steps involving the gradual 
confinement of the search space as follows: selection based on molecular groups, selection based on the pure 
compound properties and final selection based on the mixture properties. Such methods rarely involved process 
models or objective function if not only for verification purposes afterwards. Such conventional methods include 
the ProCAMD computer-aided tool [55]. Karunanithi etl a. (2005) designed 2-hexanone as a potential solvent for 
this problem using the sequential approach, however, it does not achieve same recovery.  

SWOT analysis 

The presented framework capabilities and weaker sides are summarized in a SWOT table.  

Strengths  Weaknesses 
 A holistic design approach can be achieved 

accounting for the design and optimization 
of product and process application.  

 The approach is particularly strong and 
outperforms other methods when there is a 
high design sensitivity between the product 
and process side. 

 The framework can accommodate different 
types of processes, products and search 
spaces. 

 The method requires models for the product 
or a product database and a process model. 

 The problems need to be well bounded and 
a feasible initial point is needed. 

 The method is prone to uncertainties, as with 
any prediction method. 

 Large process models may need to be 
simplified down to smaller representative 
processes 

Opportunities  Threats 
 New products can be found and further 

verified that otherwise would not be 
considered. 

 The product and process synergies can be 
utilized to find a global or close to global 
optimal solution. 

 The decomposed method can be preferred 
when all feasible fluid designed solutions 
are desired, e.g. for sensitivity studies.  

 Use of more complex and high fidelity 
thermodynamic models or process models 
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 More sustainable fluids can be designed that 
comply with international regulations. 

can make the simultaneous solution of the 
MINLP infeasible. 

5 Conclusions 

A systematic, multi-level and multi-scale framework has been developed for the holistic design and optimization 
of process application systems. The framework can integrate and solve simultaneously product and process design 
models. The proposed framework is resilient and robust as it can be applied to design different types of problems 
at different levels of complexity and across scales. Furthermore, problems with high sensitivity between the 
product and process application design decision variables are overcome using this framework. For the refrigeration 
design problem, pure and mixed refrigerants were designed that outperforms the replacement fluid R134a both on 
regulatory level, but also on a performance level. The designed fluids are comparable with other proposed fluids 
in literature that were based on heuristic or conventional modelling approaches. A liquid-liquid extraction of acetic 
acid and water mixture was solved by the design and optimization of a pure solvent and single stage extraction 
process. The designed pure solvent outperforms on recovery with other solvents in literature reported for this 
problem. Overall, the framework and cases have shown a capable approach for designing new fluids and processes 
through optimization that can offer substantial demands in resources required for otherwise solving such difficult 
problems. 
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Appendix: Key concepts 

This section presents some of the key concepts that are used throughout the integrated chemical product-process 
design method, which is implemented through a computer-aided optimization framework. The concepts are used 
in parts of the algorithms and in product-process model constraints to generate novel products and to predict 
properties.  

 Group-contribution (GC) methods 

GC methods are property prediction methods that only require the molecular structure for property prediction. The 
group contribution methods are generally formulated as follows [41]:  

 ( ) i i j j k k
i j k

f X N C w M D z O E       (51) 

Where X is a property of the function f(X). N and M are the number of first and second order groups, respectively; 
while C and D are the contributions to the first and second order groups, respectively. The first order approximation 
utilizes representation of simple molecular groups and functional groups, such as CH3 and OH. The second order 
approximations use the combination of first order groups to increase the model accuracy by considering adjacent 
first order groups, such as (CH3)2CH group. Similarly, O and E refer to the third order approximation by its number 
of groups and its contribution, respectively. Second order groups provide an improved description of 
polyfunctional components and can differentiate between some isomers. Third order groups allows prediction of 
complex heterocyclic and larger polyfunctional acyclic components [59]. Finally, w and z are binary variables that 
determine if a certain order of approximation is to be included.  

There are also GC methods for the prediction of mixture phase equilibria for mixtures and blends, such as UNIFAC 
or KT-UNIFAC [52,60]. These excess Gibbs free energy models provide activity coefficients needed for phase 
equilibria constraints and mixing rules for property prediction. In addition, they provide prediction for interaction 
parameters needed also in other thermodynamic models, such as equations of state (EoS). GC methods are also 
used for temperature dependent properties, such as ideal gas heat capacity proposed by Joback and Reid (1987), 
where Eq. (51) is modified to include temperature dependent terms. 

There are certain limitations to GC methods. The methods require description of molecular groups. If a molecular 
group description is missing for a part of a molecule, the prediction is not possible. For obtaining the contribution 
of this new groups, it is required to find experimental data and re-do the regression. To overcome this, Gani et al. 

(2005) combined atom connectivity index (CI) method with GC to create missing groups and predict their co  
ntributions. This new type of method is called Group Contribution+ Method (GC+). The CI method utilizes the 
following equation: 

   0 1( ) 2 ( )v v
i i

i

f X a A b c d       (52) 

Where ai is the contribution of atom i and Ai is the number of occurrences of group i in the molecule. The 
parameter	௩߯଴ is the zeroth-order atom valence connectivity index, 	௩߯ଵ is the first-order bond connectivity index. 
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The symbols b and c represent adjustable parameters and d is a universal parameter. Hukkerikar et al (2012) 
extended the GC method of Marrero and Gani (2001) to be used as a GC+ method. From this, environmental 
properties have also been included. These environmental properties are used for sustainability specifications.  

 Computer-aided molecular design (CAMD) 

CAMD methods employ a reverse engineering approach to the GC methods; given a set of target properties find 
the novel molecules that satisfy these targets. CAMD methods use a set of constraints that describe chemically 
feasible and stable molecules in combination with GC property prediction functions. This results in MILP 
problems that often are solved through optimization or generate and test methods [23]. The octet rule provides a 
simple relation for the structural feasibility of a collection of groups [43] by classifying different structural groups 
based on their valencies (number of free attachments).  

  
1 1

12

2 2
i

i i
G

n q


    (53) 
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       (54) 

Eq. (53) is the octet rule and eq. (54) ensures single bonds between groups. The parameter ni
(1) is the number of 

first-order groups G1 of set i in the target molecule, υi is the valency of group i and q is assigned the value of 1, 0 
or -1 for acyclic, monocyclic or bicyclic groups, respectively. Bicyclic groups with or without branches require 
additional constraints. Additional constraints may be placed on the number (ni

(1)) of groups to keep it within lower 
and upper bounds, ni

L and ni
U, respectively.  

 
1 1 1

L U
i i in n n    (55) 

Another constraint may be imposed on the total number of groups making up a molecule.   
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L
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Eq. (53)-(56) are valid for structural combination of first order molecular groups. The drawback is that higher 
order groups cannot be incorporated and do not add the additional accuracy of prediction and structural 
information. Higher order groups are conventionally added in post-design phase through a combinatorial problem 
where all different combinations are tested [55]. Recently, Zhang et al. (2015) proposed an equation-based 
optimization approach for including higher order groups in CAMD problem inherently in the optimization 
problem. Eqs. (53)-(56) can be only used to generate acyclic or unbranched cyclic and bicyclic molecules. For 
branched cyclic and bicyclic molecules additional constraints are required [22] 

   
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      (57) 
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Similarly, equations were defined for aromatic monocyclic and bicyclic molecules: 
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i G
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 2 aCq n    (60) 

An additional equation was defined for the number of branched chains on the cyclic molecule:   

  
1 1 1

1 1 1
{ , | 3}

2 2
Acyclic Alicyclic Aromatic i

U
i branch i i

i G i G G v

n n n v q
  

 
    

 
    (61) 

CAMD has been applied and extended in the area of molecular design for mixtures (Cignitti et al., 2015; 
Karunanithi et al., 2005). In addition, in the area of mixture-blend design (CAMbD) where mixing rules and 
mixture stability criteria are used as foundation for generating novel mixtures from a set of molecules and target 
needs [5,6,62].  

 


