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Summary

Research in fusion energy seeks to develop a clean, safe, and sustainable energy
source. Nuclear fusion can be achieved by heating a hydrogen gas to temperatures
of millions of kelvin. At fusion temperatures, some or all the electrons leave the
atomic nucleus of the hydrogen atom. This results in an overall neutral gaseous
state of negatively charged free electrons and positively charged ions. This state
of matter is called plasma. To achieve and maintain fusion temperatures, the
plasma must avoid direct contact with any solid material. Since the plasma
consists of charged particles, it can be confined with an appropriate configuration
of strong magnetic fields. Toroidal magnetic confinement devices, such as the
tokamak, are the most promising designs for a fusion reactor. A tokamak can
operate in two distinct modes of operation. These are the low confinement mode
(L-mode) and the high confinement mode (H-mode). H-mode is the preferred
operating mode for a fusion reactor. The transition from L-mode to H-mode is
called the L–H transition. The confinement properties of a plasma are largely
determined by the physics near the edge of the confinement region of the plasma.

The edge transport of a magnetically confined plasma is predominantly caused by
recurring bursts of coherent plasma structures. These structures are in L-mode
called blob filaments (blobs) and in H-mode categorized into edge localized mode
(ELM) filaments or inter-ELM filaments. To improve the plasma confinement,
it is important to understand the evolution of these structures. We apply a
dynamical systems approach to quantitatively describe the time evolution of
these structures. Three state variables describe blobs in a plasma convection
model. A critical point of a variable defines a feature point where that variable
is significant. For a range of Rayleigh and Prandtl numbers, we analyze the
bifurcations of the critical points of the three variables with time as the main
bifurcation parameter.



ii

Plasma simulations can be computationally demanding. We apply a Galerkin
method to approximate a plasma convection model with a reduced model. The
time evolution of the energies of the pressure profile, the turbulent flow, and
the zonal flow capture the dynamic behavior of the convection model. Rayleigh
decomposition splits the variables of the model into averaged variables and
fluctuation variables. We approximate the fluctuation variables by truncated
Fourier series and project the equations onto the Fourier basis functions. This
results in a computationally simpler model with the spatial dimension reduced
by one. Bifurcation diagrams for the energies show consistency between the
bifurcation structures of the full and the reduced model.

Finally, we utilize a data-driven modeling approach called SINDy to identify
a reduced model from simulation data of a convection model. The reduced
model reveals a predator-prey relationship between the zonal flow energy and the
turbulent energy. The analytically derived bifurcation diagram for the reduced
model has the same structure as the data-based bifurcation diagram for the full
model.



Dansk Resumé

Forskning i fusionsenergi søger at udvikle en ren, sikker og bæredygtig energikil-
de. Kernefusion kan opnås ved at opvarme en hydrogengas til temperaturer på
millioner af kelvin. Ved fusionstemperaturer vil nogle af, eller alle, elektronerne
forlade hydrogenatomets atomkerne. Dette resulterer i en samlet set neutral
gasagtig tilstand af negativt ladede frie elektroner og positivt ladede ioner. Denne
tilstandsform kaldes for plasma. For at opnå og opretholde fusionstemperaturer
må plasmaet undgå direkte kontakt med ethvert fast materiale. Da plasmaet
består af ladede partikler, kan det indesluttes med en passende konfiguration af
stærke magnetfelter. Toroidale magnetiske indeslutningsenheder, såsom tokamak-
ken, er de mest lovende designs for en fusionsreaktor. En tokamak kan operere i
to forskellige driftstilstande. Disse er lav indeslutningstilstand (L-mode) og høj
indeslutningstilstand (H-mode). H-mode er den foretrukne driftstilstand for en
fusionsreaktor. Overgangen fra L-mode til H-mode kaldes L–H-overgangen. Et
plasmas indeslutningsegenskaber bestemmes i høj grad af fysikken nær kanten af
plasmaets indeslutningsområde.

Kanttransporten af et magnetisk indesluttet plasma er overvejende forårsaget
af gentagende udbrud af kohærente plasmastrukturer. Disse strukturer kaldes i
L-mode for blob-filamenter (blobs) og kategoriseres i H-mode som enten edge
localized mode (ELM)-filamenter eller inter-ELM-filamenter. For at forbedre
plasmaindeslutningen er det vigtigt at forstå udviklingen af disse strukturer. Vi
anvender en fremgangsmåde fra teorien om dynamiske systemer til kvantitativt
at beskrive tidsudviklingen af disse strukturer. Tre tilstandsvariable beskriver
blobs i en plasmakonvektionsmodel. Et kritisk punkt for en variabel definerer et
karakteristisk punkt, hvor denne variabel er signifikant. For en række Rayleigh-
og Prandtl-tal analyserer vi bifurkationerne af de kritiske punkter for de tre
variable med tiden som hovedbifurkationsparameter.



iv

Plasmasimuleringer kan være beregningsmæssigt krævende. Vi anvender en Ga-
lerkin metode til at approksimere en plasmakonvektionsmodel med en reduceret
model. Tidsudviklingen af energierne for trykprofilen, den turbulente strøm-
ning og zonalstrømningen indfanger konvektionsmodellens dynamiske opførsel.
Rayleigh dekomposition opdeler variablene i en plasmakonvektionsmodel i mid-
delvariable og fluktuationsvariable. Vi approksimerer fluktationsvariablene med
trunkerede Fourierrækker og projekterer ligningerne på Fourier-basisfunktionerne.
Dette resulterer i en beregningsmæssigt simplere model med den rumlige dimen-
sion reduceret med én. Bifurkationsdiagrammer for energierne viser sammenfald
mellem bifurkationsstrukturerne for den fulde og den reducerede model.

Til sidst gør vi brug af en datadrevet modelleringsmetode kaldet SINDy til at
identificere en reduceret model fra simuleringsdata for en konvektionsmodel. Den
reducerede model afslører et rovdyr-byttedyr forhold mellem zonalstrømnings-
energien og den turbulente energi. Det analytisk udledte bifurkationsdiagram for
den reducerede model har den samme struktur som det databaserede bifurkations-
diagram for den fulde model.
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Chapter 1

Introduction

The main goal for research in controlled nuclear fusion is the development
of a clean and sustainable energy source at competitive energy costs.
Thermonuclear fusion requires the fusion plasma to be heated to very high
temperatures. To achieve these high temperatures, the plasma must avoid
direct contact with any solid material. This can be achieved with magnetic
plasma confinement. Toroidal confinement devices can operate in the low
confinement mode (L-mode) or in the high confinement mode (H-mode).
The transition from L-mode to H-mode is called the L–H transition. The
level of confinement is largely governed by the dynamics at the plasma
edge. The edge transport of plasma is largely caused by recurring bursts of
coherent plasma structures. These structures are in L-mode known as blob
filaments and in H-mode known as edge localized mode (ELM) filaments
or inter-ELM filaments. To improve plasma confinement, it is important
to understand the time evolution of these structures. Plasma dynamics
is often modeled with a set of fluid equations. Many models exist which
describe different types of physics and utilize different approximations. A
plasma convection model is one of the simplest models to describe plasma
edge dynamics. High computational costs of running fluid simulations
motivates the need for reduced plasma models.
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1.1 Fusion energy

Population increase and economic growth cause a yearly increase in the world’s
energy demand. Today, fossil fuels cover the majority of the world’s energy
consumption. Projections estimate depletion of all readily accessible fossil fuel
reserves within the next few hundred years. However, the burning of fossil fuels
releases greenhouse gases such as CO2 into the atmosphere. The higher concentra-
tions of greenhouse gases in the atmosphere cause climate change, which has many
environmental consequences. This precipitates the need for an alternative and sus-
tainable energy source. Controlled nuclear fusion has the potential of providing a
clean and safe energy source that is practically inexhaustible for humankind [18].

A nuclear fusion reaction is the process in which light nuclei combine to form
a heavier one. The mass of a nuclide is less than the sum of the masses of the
nucleons of which it is composed. This mass difference is called the mass defect.
The mass defect ∆m of a nuclide corresponds, by conversion with Einsteins
formula E = (∆m)c2 (c is the speed of light in vacuum), to the binding energy
of the nuclide. The average binding energy per nucleon is largest in nuclides
with atomic mass number around 60 and smaller in lighter or heavier nuclides.
Therefore, energy is released when light nuclei fuse or heavy nuclei split. The
mass defect of a nuclear fusion reaction is the difference between the masses of
the fusion reactants and the fusion products. The amount of energy released by
nuclear fusion is the mass defect of the reaction converted into energy.

Thermonuclear fusion is the fusion of nuclei at extremely high temperatures.
The nuclear force binds the nucleons together in an atomic nucleus. Only within
very short distances, the attracting nuclear force is stronger than the repelling
electrical force between the positively charged protons in the nucleus. To make
two nuclei fuse, it is necessary to bring them so close together that the attractive
nuclear force overpowers the repulsive electrical forces between the nuclei. Having
sufficient kinetic energy will cause a colliding pair of nuclei to fuse instead of
deflecting their trajectories.

When gases are heated to fusion temperatures, the high energy causes some
or all the electrons to leave the atomic nucleus. The resulting ionized state
is quasineutral, meaning that on a macroscopic scale the density of negative
charges is approximately equal to the density of positive charges, but on smaller
scales there may be local concentrations of positive or negative charge. The small
charged regions give rise to electric fields that accelerate the charged particles,
and the resulting currents induce magnetic fields. These electric and magnetic
fields affect the motion of other charged particles far away. Such a gaseous state
of positive ions and free electrons with quasineutrality and collective interaction
between the charged particles is called a plasma.
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The easiest accessible nuclear reaction, which will be used in first generation
power plants, is the fusion of the two hydrogen isotopes deuterium (hydrogen-2)
and tritium (hydrogen-3) to a helium-4 nucleus and a neutron

2
1H + 3

1H −−→
4
2He (3.52 MeV) + 1

0n (14.06 MeV).

The released energy is carried as kinetic energy by the helium-4 nucleus and the
neutron. In comparison with the chemical reaction

H2 +
1

2
O2 −−→ H2O + energy (2.96 eV),

the energy released by the fusion of two hydrogen nuclei is about a million
times greater than this chemical burning of a hydrogen molecule. Deuterium is
abundant in nature and can be obtained from sea water. Tritium is radioactive
with a half-life of 12.3 years, and naturally occurring tritium is therefore extremely
rare on Earth. Tritium can be produced in the fusion reactor by surrounding the
plasma with a lithium blanket. When a neutron from the fusion processes hits
the lithium blanket, tritium can be produced by one of the following reactions

6
3Li + 1

0n −−→
3
1H + 4

2He + energy (4.8 MeV),
7
3Li + 1

0n (2.5 MeV) −−→ 3
1H + 4

2He + 1
0n.

To achieve and maintain the temperatures of hundreds of millions kelvin necessary
for thermonuclear fusion, the fusion plasma must avoid direct contact with any
solid material. The predominant approaches for plasma confinement in the
development of nuclear fusion are inertial confinement and magnetic confinement.

For inertial confinement, an extremely dense and hot plasma is produced within a
very short time by using an intense energy driver, making the fusion reaction occur
before the plasma starts to expand. This concept is utilized in a hydrogen bomb,
where the fusion fuel is compressed and heated with a fission bomb. In laboratory
experiments, inertial confinement fusion is obtained by compressing a small solid
deuterium-tritium pellet with a high-power laser or particle beam to a particle
density 103–104 times that of the solid pellet. The compression is achieved by
irradiating the pellet evenly over its entire surface to form a hot plasma envelope
surrounding the pellet. The heated plasma expands explosively. The resulting
outward plasma jet compresses the inner pellet. The pellet implosion ignites
thermonuclear fusion, which rapidly spreads throughout the compressed pellet.

In the magnetic confinement configuration, the fusion plasma is confined with a
strong magnetic field. The magnetic approach is more developed and is for now
considered the most promising for energy production [61].
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Figure 1.1. Toroidal coordinates. R0 is the major radius and a is the minor radius.

1.2 Magnetic plasma confinement

A particle of charge q moving with velocity v in the presence of an electric field
E and a magnetic field B is subject to the Lorentz force F = q(E + v ×B).
Since a plasma consists of charged particles, it can be confined by an appropriate
arrangement of strong magnetic fields. Magnetic confinement geometries are
classified into open end and toroidal configurations.

An open end magnetic field system confines the plasma within a cylinder with
magnetic mirrors at each end. Coils wrapped around the cylinder produce a
magnetic field along the cylinder. Charged particles with velocity components
both parallel and perpendicular to the magnetic field lines will, due to the
Lorentz force, change their perpendicular motion into a circular motion called
a Larmor motion, while their parallel velocity stays the same. This causes the
particles to gyrate about the magnetic field lines in helical orbits. The center
of the Larmor motion is called the guiding center. The magnetic mirrors at
the open ends repel charged particles. Particles with a large parallel velocity
component v‖, compared to the perpendicular velocity component v⊥, will still
pass through the open ends making end-losses the most critical issue for open
end systems.

A toroidal plasma is a plasma confined in a region with a boundary topologically
equivalent to a torus, as shown in Fig. 1.1. A toroid wrapped with coils has in



1.2 Magnetic plasma confinement 5

Figure 1.2. The helical magnetic field lines form magnetic surfaces also called flux
surfaces. The ions and electrons gyrate about the magnetic field lines.

cylindrical coordinates (R,ϕ, z) (z-axis is the toroidal axis) the simple toroidal
field B = (0, B0R0/R, 0), where R0 is the major radius, and B0 is the magnetic
field strength on the magnetic axis. Charged particles in such a simple toroidal
magnetic field gyrate about the magnetic field lines in helical orbits. The non-
uniform magnetic field causes a slow toroidal drift of the guiding centers in
the z-direction, where the ions and electrons drift in opposite direction. The
resultant charge separation induces an electric field E in the z-direction. This
causes an radial outward E ×B-drift of both ions and electrons.

To reduce the E×B-drift, a poloidal magnetic field must be applied to bend the
magnetic field lines into helices that short-circuit the separated charges. Since
the electrons are much lighter and faster than the ions, they are responsible for
most of the charge neutralization. The helically shaped magnetic field lines lie
in nested toroidal surfaces called magnetic surfaces or flux surfaces, as shown in
Fig. 1.2. If there were no radial diffusion, each plasma particle would be trapped
to move on the same magnetic surface forever. This is essentially what confines
a toroidal plasma.

Toroidal plasma confinement devices may be classified according to the method
used to generate the poloidal field. The tokamak (Russian acronym for toroidal
chamber with magnetic coils) and reversed field pinch devices induce a toroidal
current in the plasma that induces a poloidal magnetic field. In a stellarator,
the shape of the coils surrounding the toroid are altered to produce appropriate
rotating magnetic field lines [41, 61].
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Figure 1.3. Cross sectional view of a toroidal chamber with (a) a limiter and (b) a
divertor.

1.3 Plasma edge physics

The level of plasma confinement is largely governed by the plasma dynamics
near the plasma edge. This section introduces edge physics phenomena relevant
for this project.

1.3.1 Plasma-wall interaction control

Hot plasma striking the reactor walls causes ions from the wall material to diffuse
into the plasma. Heavy ions absorb a lot of energy from the light ions and
thereby cool the plasma. Two interfaces exist to reduce plasma-wall interaction:
the limiter and the divertor. These are illustrated schematically in Fig. 1.3. The
limiter configuration is a simple design that isolates the plasma from the first wall
by a solid object, called the limiter, protruding from the wall. The last closed flux
surface (LCFS) defines the boundary of the confinement region of the plasma, and
separates the inside region with closed magnetic surfaces from the outside region
with open magnetic surfaces. A divertor configuration modifies the magnetic
field to create a magnetic null point in the poloidal magnetic field near the edge
of the plasma. A separatrix of the magnetic field line topology constitutes the
LCFS. The region of open magnetic field lines outside the separatrix is called the
scrape-off layer (SOL). Particles in the SOL follow the open magnetic field lines
into the divertor region, where they strike the rapidly cooled divertor plates. In
the divertor, the ions and electrons recombine into gas that is pumped out [27].
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1.3.2 The L–H transition

Tokamaks have two distinct modes of operation. These are the low confine-
ment mode (L-mode) and the high confinement mode (H-mode). The energy
confinement time is about a factor two higher in H-mode than in L-mode. A
main parameter that determines which operation mode prevails is the amount
of external heating power supplied. For low heating power, tokamaks operate
in L-mode. As the external power increases, a transition from L- to H-mode
occurs. This transition is called the L–H transition. It was first observed in 1982
at the ASDEX tokamak [70], and has been subsequently observed on all other
large tokamaks. In 1993, H-mode was achieved at the W7-AS stellarator [26].
This demonstrated that H-mode is not achievable in only tokamaks, but in all
toroidal confinement devices. H-mode is more easily accessible in tokamaks with
a divertor than in tokamaks with a limiter [27]. The L–H transition can be either
abrupt or have an oscillatory intermediate mode (I-mode).

The L–H transition is caused by the formation of a transport barrier at the plasma
edge. The edge transport barrier is a thin layer (in the order of centimeters thick)
of highly sheared toroidal flows that significantly reduces the radial diffusion
rate. The resulting steepening of the radial pressure gradients within the edge
transport barrier builds up a H-mode pedestal, as shown in Fig. 1.4.

Models of the L–H transition [5, 7, 8, 22, 46–48, 59, 60, 79, 80] focus on the
interaction between the energies related to the ion pressure gradient P , the
turbulence level N , and the zonal flow F . Figure 1.5 shows an example of a
solution to the Kim-Diamond model [46, 47] for the L–H transition. In the
L-mode, the turbulence builds up with the pressure gradient, but also suppresses
the pressure gradient. Reynolds stress transfers turbulent energy to zonal flow
energy. This creates a predator-prey relationship between the zonal flow and the
turbulence, which results in oscillations in the I-mode. In the quiescent H-mode,
the mean flow has become strong enough to fully suppress the turbulence, which
further stops the generation of zonal flow. A full bifurcation analysis of the
Kim-Diamond model can be found in Ref. [22].

1.3.3 Plasma filaments

Fusion ignition requires a proper balance between the maintenance of a high
plasma core temperature and the removal of helium and impurity ions. The
edge-SOL transport of a magnetically confined plasma is dominated by recurring
bursts of coherent plasma structures. The structures are localized regions in the
turbulent flow, which are significantly denser and hotter than the surrounding
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lence level, and F is the zonal flow shear.
The input power is Q(t) = 0.01t.

plasma. The plasma structures are in L-mode known as blob filaments (or simply
blobs) and in H-mode categorized into edge localized mode (ELM) filaments or
inter-ELM filaments. These plasma filaments are highly localized in the plane
perpendicular to the magnetic field, and elongate along the magnetic field lines.
Blobs form at the outboard mid-plane near the separatrix. The interchange
instability causes the formation of finger-like structures that detach from the
core plasma and create blobs. The grad-B and curvature drifts, caused by
the nonuniform magnetic field, charge polarize the blobs perpendicular to the
directions of the magnetic field and the magnetic field variation. The resulting
electric field generates an E × B-drift, causing the blob to propagate in the
radially outward direction. The blobs propagate far into the scrape-off-layer
(SOL) and increase unwanted plasma–wall interactions. Bursts of ELM filaments
are caused by a quasi-periodic relaxation of the edge transport barrier, which
causes the edge pedestal to collapse. ELM filaments form at the top of the
edge pedestal, which typically makes them larger, hotter, and denser than blobs.
ELM filaments transport large amounts of energy in short bursts, which can
damage the wall components and divertor plates. The time between ELMs is
much longer than the duration of an ELM. Inter-ELM filaments form in between
ELMs, and are smaller than both ELM and blob filaments [29].
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1.4 Fluid simulations of plasma

In a plasma, each particle moves according to the equations of motion ẋ = v
and v̇ = q

m (E + v ×B). Besides the external coil generated magnetic field, the
interaction of each charged particle with all other charged particles generates
complicated electric fields, while currents in the plasma induce magnetic fields.
The electric field E and the magnetic field B may be determined from Maxwell’s
equations. The time evolution of the position and velocity of each particle can
be computed from these equations. However, a fusion plasma typically has a
number density in the order of 1018 m−3, so solving for each single particle is
possible for only tiny volumes of plasma.

In the continuum approximation, a plasma can be described by a set of fluid
equations. For each species of particles, let u be the fluid velocity and n the
number density. Then, the equations of motion are for each species given by the
plasma equation (neglecting collisions and viscosity)

mn

[
∂u

∂t
+ (u · ∇)u

]
= qn(E + u×B)−∇p, (1.1)

and the equation of continuity

∂n

∂t
+∇ · (nu) = 0. (1.2)

Maxwell’s equations determine the evolution of E and B, while the thermo-
dynamic equation of state relates p to n. If we add a viscosity term mnν∇2u,
and remove the magnetoelectric forces in the plasma equation (1.1), we get the
Navier-Stokes equation from fluid dynamics [19].

Even the fluid equations are often too computationally demanding to solve, and
thus further approximations are necessary. The simplest type of models used to
describe plasma edge dynamics are plasma convection models [3, 10, 11, 30, 31,
33, 49–51]. The curvature of the magnetic field creates an effective gravity for
the plasma in the outward radial direction. The plasma convection models are
similar to the models that describe free convection in fluid dynamics.

A typical example of free convection is when a plane horizontal fluid is heated
from below. This type of free convection is called Rayleigh-Bénard convection [37].
Initially, an increasingly hot layer is created near the bottom boundary. Blob
formation occurs when a sufficiently high temperature gradient is reached within
the bottom boundary layer. Thermal blobs then detach from the heated boundary
layer, and advectively transport heat through the upper layers. A possibly
unstable pattern of convection rolls form. This type of dynamics is similar to
the dynamics observed at the edge of a magnetically confined plasma.
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The ESEL (edge-SOL electrostatic turbulence) model by Garcia et al. [34] is
an example of a typical model for the dynamics in the edge-SOL region. The
model successfully simulates blob formation at the edge of magnetically confined
plasma operating in L-mode.

The HESEL (Hot edge-SOL electrostatic) model by Juul Rasmussen et al. [44]
is a four-field drift fluid model. The model is capable of simulating an L–H-like
transition during increase of the input power. A generalized vorticity included
in the model causes the ion pressure curvature to drive a mean flow. This is
thought to be a key component for setting up the edge transport barrier that
supports the H-mode pedestal.

1.5 Outline of thesis

This project applies methods from dynamical systems theory to analyze plasma
convection models. For an introduction to dynamical systems, the textbooks by
Meiss [58] or Wiggins [76] are recommended. We aim to introduce a few analysis
methods from other fields into the field of plasma physics.

To improve plasma confinement, it is important to better understand the evolution
of coherent structures at the edge-SOL. Blob evolution is typically described
by visual interpretation of time instant plots of the state variables. Chapter 2
utilizes a method from topological fluid dynamics to quantitatively describe the
evolution of plasma blobs.

Fluid simulations of plasma can be computationally demanding. Chapter 3
applies a Galerkin method to reduce the spatial dimension of a plasma convection
model from two to one.

Chapter 4 applies a system identification approach to extract an ordinary diffe-
rential equation (ODE) model from simulation data of a convection model. This
effectively reduces the spatial dimension of the model from two to zero.



Chapter 2

Topological bifurcations in
the evolution of coherent
structures in a convection

model

Blob filaments are coherent structures in a turbulent plasma flow. Under-
standing the evolution of these structures is important to improve magnetic
plasma confinement. Three state variables describe blob filaments in a
plasma convection model. A dynamical systems approach analyzes the
evolution of these three variables. A critical point of a variable defines a
feature point for a region where that variable is significant. For a range
of Rayleigh and Prandtl numbers the bifurcations of the critical points of
the three variables are investigated with time as the primary bifurcation
parameter. Bifurcation curves separate the parameter planes into regions
with different critical point configurations for the state variables. For the
Prandtl number equal to 1, the number of critical points of each state
variable increases for an increasing Rayleigh number. For the Rayleigh
number equal to 104, the number of critical points is greatest for Prandtl
numbers of magnitude 100.

The results in this chapter are published in Physics of Plasmas [24].
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2.1 Introduction

The edge transport of a magnetically confined plasma is dominated by recurring
bursts of coherent plasma structures. To improve the plasma confinement, it is
crucial to understand the evolution of these structures. The plasma structures
are in the low confinement (L-mode) regime known as blob filaments (blobs) and
in the high confinement (H-mode) regime categorized as either edge localized
mode (ELM) filaments or inter-ELM filaments [28]. Blobs are localized meso-
scale coherent structures in a turbulent flow, which are significantly denser and
hotter than the surrounding plasma. They are highly localized in the plane
perpendicular to the magnetic field and elongate along the magnetic field [21].
Blobs form at the outboard mid-plane near the separatrix. The interchange
instability causes the formation of finger-like structures that detach from the
core plasma and create blobs [35, 64, 65, 81]. The grad-B and curvature drifts,
caused by the nonuniform magnetic field, charge polarize the blobs perpendicular
to the directions of the magnetic field and the magnetic field variation. The
resulting electric field generates an E ×B-drift causing the blob to propagate in
the radial outward direction. The blobs propagate far into the scrape-off-layer
(SOL) and increase unwanted plasma-wall interactions. During propagation in
the SOL, the blobs deform and may lose coherence [1–3, 25, 36, 39, 49–52, 67,
71–73]. The inclusion of finite Larmor radius effects in simulations enhances the
blob coherence [43, 55, 66, 75].

References [11, 30, 33] investigate the dependency of the blob position, velocity,
and amplitude on Rayleigh and Prandtl numbers in a convection model. To des-
cribe the blob evolution, they apply the common practice of visual interpretation
of time instant plots of the state variables. In fluid flows, the streamline topology
and the vortices can be analyzed using dynamical systems theory [4, 14–16, 42].
This method can analyze the topology of level curves of any function in the plane.

The present chapter applies this dynamical systems approach to quantitatively
describe the evolution of plasma blobs. A plasma convection model describes
the evolution of seeded blobs. The electrostatic potential φ, the thermodynamic
variable θ, and the vorticity Ω are the two-dimensional state variables describing
the blobs. An extremum of a variable defines a feature point for a region where
that variable is significant [45]. Critical points of the electrostatic potential
are instantaneous stagnation points for the unsteady plasma flow. Maxima of
the thermodynamic variable are feature points for the blob, and the creation
of additional maxima indicates the blob splits into smaller blobs. Extrema of
vorticity are feature points for vortices. For a range of Rayleigh and Prandtl
numbers, we determine for each of the state variables φ, θ, and Ω the critical
points and their type. We track the evolution, creation, and annihilation of the
critical points as time increases.
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2.2 Bifurcations of structures

The structure of a fluid flow can be analyzed using dynamical systems theory as
described in Refs. [4, 14–16, 42]. In topological fluid dynamics, the analysis is
typically based on the stream function, and sometimes on the scalar vorticity, but
the same method can be generalized to analyze the topology of any analytically
or numerically given function defined on a subset of R2.

2.2.1 Streamline topology

We consider an incompressible two-dimensional fluid flow. We assume the velocity
field v = (u, v) is given from simulation, experiment, or theory. The streamlines
are the instantaneous integral curves of v. At a given time instant t0 they are
the solution curves x(s) = (x(s), y(s)) to the system

dx

ds
= v(x, t0). (2.1)

The incompressibility of the fluid makes the velocity field divergence free such
that ∇ · v = 0. Then, a stream function ψ(x, y) exists such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

The equations for the streamlines now become

dx

ds
=
∂ψ

∂y
,

dy

ds
= −∂ψ

∂x
. (2.2)

This is a Hamiltonian system with Hamiltonian ψ. The stream function ψ is
constant along streamlines. Let (x(s), y(s)) be a streamline. Then,

dψ

ds
=
∂ψ

∂x

dx

ds
+
∂ψ

∂y

dy

ds
= −vu+ uv = 0.

Hence, the streamlines lie on the level curves of ψ. The velocity vanishes
at the equilibrium points of the Hamiltonian system (2.2), and these points
are therefore called stagnation points. A collection of streamlines comprises a
streamline pattern. Topological fluid dynamics typically characterizes the flow by
carrying out a bifurcation analysis of the system (2.2). If the flow is steady, the
bifurcation parameter could be any parameter that the velocity field depends on.
If the flow is unsteady, the time instant t0 could also be included as a bifurcation
parameter.
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2.2.2 Hamiltonian phase curve topology

We now generalize the concept of analyzing the stream line topology though the
stream function, to analyze the topology of any structure through a Hamiltonian.
Let H : M 7→ R be any analytically or numerically given function defined on
a subset of the plane M ⊆ R2. We assume that H also depends on time t
and possibly some system parameters. For our application, H represents the
electrostatic potential φ, the thermodynamic variable θ, or the vorticity Ω given
numerically from simulations. We fix all parameters and consider a single time
instant. We consider H(x, y) as a Hamiltonian for the autonomous Hamiltonian
system

dx

ds
=
∂H

∂y
,

dy

ds
= −∂H

∂x
. (2.3)

The phase curves of the Hamiltonian system (2.3) lie on the level curves of H,

dH

ds
=
∂H

∂x

dx

ds
+
∂H

∂y

dy

ds
=
∂H

∂x

∂H

∂y
− ∂H

∂y

∂H

∂x
= 0.

A collection of level curves of H comprises the Hamiltonian contour pattern. A
point (x∗, y∗) is an equilibrium point of the system (2.3) if and only if it is a
critical point (i.e. a minimum, maximum, or saddle) of H. A saddle of H is
a saddle point for the corresponding Hamiltonian system (2.3), while a local
extremum of H is a center for the corresponding Hamiltonian system (2.3).

The Hamiltonian contour line topology can now be analyzed by carrying out
a bifurcation analysis of the system (2.3) with time t and other parameters H
might depend on as bifurcation parameters.

2.2.3 Bifurcations of critical points

We want to analyze the bifurcations of the critical points of H. We consider
the time as the primary bifurcation parameter and the system parameters as
secondary bifurcation parameters.

To describe whether two sets of contour patterns are qualitatively alike we use
the notion of topological equivalence [14, 40]:

Definition 2.1 Topological equivalence: Two Hamiltonians H and K define
topologically equivalent Hamiltonian systems if there exists a homeomorphism
h, that maps the trajectories of H onto the phase curves of K. If h is defined in
only a subset of the flow domain, H and K define locally topologically equivalent
Hamiltonian systems.
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This means that Hamiltonian systems with Hamiltonians H and K are topologi-
cally equivalent if the contour pattern of H can be continuously deformed into
the contour pattern of K. In particular, the Hamiltonians of two topologically
equivalent Hamiltonian systems have the same number of critical points of each
type. To describe the robustness of a Hamiltonian contour pattern, we use the
following definition of structural stability [14, 40]:

Definition 2.2 Structural stability: A Hamiltonian H defines a structurally
stable Hamiltonian system if for every Hamiltonian K close to H the two systems
are topologically equivalent. A Hamiltonian system that is not structurally stable
is structurally unstable. A Hamiltonian system is locally structurally stable
at (x0, y0) if for every Hamiltonian K close to H the two systems are locally
topologically equivalent at (x0, y0).

The definition says that a Hamiltonian H is structurally stable if every pertur-
bation of H is topologically equivalent to H. The Flow Box Theorem states
that the dynamics near a non-equilibrium point is topologically equivalent to
the dynamics created by a constant vector field [14]:

Theorem 2.3 (Flow Box Theorem) Let H be Hamiltonian and let (x0, y0) be a
regular point for the corresponding Hamiltonian system, such that ∇H(x0, y0) 6= 0.
Then there exists a neighborhood of (x0, y0) where the Hamiltonian system defined
by H is topologically equivalent to the system ẋ = 0, ẏ = 1.

The Flow Box Theorem implies that regular points are locally structurally stable.
Hamiltonian systems in the plane allow only two types of structurally stable
equilibrium points: saddles and centers. A small perturbation of the Hamiltonian
near a center or a saddle will make the equilibrium move only slightly, keeping its
type. Therefore, only degenerate critical points are locally structurally unstable.
A small perturbation of the Hamiltonian near a degenerate critical point cause a
local bifurcation.

In the analysis, we encounter three types of bifurcations [13, 15, 40]. The most
common bifurcation we observe is the saddle-center bifurcation, where a saddle
and a center appear simultaneously through a cusp singularity as a bifurcation
parameter µ is varied. This bifurcation is the Hamiltonian analogue to a saddle-
node bifurcation. The normal form Hamiltonian for the saddle-center bifurcation
is

H(x, y) =
a

2
x2 +

b

6
y3 − µx, (2.4)

where a, b are constants and µ is the bifurcation parameter. The qualitative
changes of the Hamiltonian contour pattern during the bifurcation is shown in
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Fig. 2.1(a). The degenerate singularity existing at µ = 0 is called a cusp due to
its shape. For µ > 0, a homoclinic orbit of the saddle forms a separatrix around
the center.

A Hamiltonian with the symmetry H(x, y) = H(x,−y) allows the Hamiltonian
pitchfork bifurcation, where a center bifurcates into a saddle and two centers.
The normal form Hamiltonian for the Hamiltonian pitchfork bifurcation is

H(x, y) =
a

2
x2 +

b

24
y4 − 1

2
µy2, (2.5)

where ab > 0 and µ is the bifurcation parameter. The qualitative changes of
the phase curve pattern during the bifurcation is shown in Fig. 2.1(b). The
degenerate singularity existing for µ = 0 is a degenerate center. For µ > 0, two
homoclinic orbits of the saddle form separatrices around each center.

A Hamiltonian with the symmetry H(x, y) = −H(x,−y) allows a bifurcation
where two saddles and two centers appear simultaneously through a degenerate
saddle. We refer to this bifurcation as a duplex saddle-center bifurcation. The
normal form Hamiltonian for the duplex saddle-center bifurcation is

H(x, y) = ax2y + by3 − µy, (2.6)

where ab > 0 and µ is the bifurcation parameter. The qualitative changes of the
phase curve pattern during the bifurcation is shown in Fig. 2.1(c). For µ > 0,
three heteroclinic orbits form separatrices around the centers [40].

The topological property called the Poincaré index is a useful tool to keep track
of equilibria during bifurcations. The index of a node, focus, or center +1 and
the index of a saddle is −1. The sum of the indices of the equilibria remains
constant during a bifurcation [58]. To keep track of the bifurcations, we follow
all critical points even when only some types of critical points are of physical
interest.

2.3 Convection model

We consider viscous plasma flow in a rectangular domain at the edge of a
magnetically confined plasma in the plane perpendicular to the magnetic field
B = B0ez. The flow is described using Cartesian coordinates (x, y) ∈M , where
M = [− 2

5Lx,
3
5Lx] × [− 1

2Ly,
1
2Ly]. The normalized E ×B drift velocity field

v = (vx, vy)ᵀ is

v = (ez ×∇φ)⊥ =

(
−∂yφ
∂xφ

)
. (2.7a)
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µ < 0 µ = 0 µ > 0

a)
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c)

Figure 2.1. The Hamiltonian contour patterns during (a) the saddle-center bifurcation,
(b) the Hamiltonian pitchfork bifurcation, (c) the duplex saddle-center bifurcation. The
left panel (µ < 0) is before the bifurcation, the middle panel (µ = 0) is at the bifurcation,
and the right panel (µ > 0) is after the bifurcation. Filled dots are Lyapunov stable
equilibria and unfilled dots are unstable equilibria. Thick lines are separatrices.

Let Ω = (∂xvy − ∂yvx) be the z-component of the normalized vorticity vector
Ω = ∇×B0vE = (∂xvy − ∂yvx)ez. Then, the normalized electrostatic potential
φ(x, y, t) is obtained from

∇2
⊥φ = Ω. (2.7b)

To describe the evolution of a generic thermodynamic variable θ(x, y, t) (e.g.
density, pressure, or temperature) and the vorticity Ω(x, y, t), we employ a
normalized convection model(

∂

∂t
+ v · ∇⊥

)
θ = κ∇2

⊥θ, (2.7c)(
∂

∂t
+ v · ∇⊥

)
Ω +

∂θ

∂y
= ν∇2

⊥Ω. (2.7d)

Here, κ is the nondimensional diffusion coefficient and ν is the nondimensional
viscocity. These coefficients are related to Rayleigh and Prandtl numbers by
Ra = 1/(κν) and Pr = ν/κ. We apply zero Dirichlet boundary conditions on
all four boundaries for each of the variables φ, θ, and Ω. The thermodynamic
variable is initialized as a Gaussian function,

θ(x, y, 0) = exp

(
−1

2

(
x2 + y2

))
, (2.8a)
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Figure 2.2. The initial condition function θ(x, y, 0) given by Eq. (2.8a) shown inside
the computational domain. The Dirichlet boundary conditions for the problem are
shown at each boundary.

while the vorticity and the electrostatic potential are initialized to zero,

φ(x, y, 0) = Ω(x, y, 0) = 0. (2.8b)

Figure 2.2 shows a plot of the initial condition for θ in the computational domain
with the boundary conditions written on each boundary.

In Eq. (2.7) the thermodynamic variable has the reflection symmetry θ(x, y, t) =
θ(x,−y, t), while the electrostatic potential and the vorticity satisfy the sym-
metry φ(x, y, t) = −φ(x,−y, t) and Ω(x, y, t) = −Ω(x,−y, t). These symmetries,
together with the symmetric initial conditions, imply that θ is symmetric, while
Ω and φ are antisymmetric for all times.

System (2.7) is one of the simplest models used to describe nonlinear plasma
dynamics. References [11, 30, 33] model the evolution of plasma blobs with
system (2.7), while Refs. [3, 49–51] use similar convection models also to describe
plasma blob evolution.
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2.4 Numerical method

We define the size of the computational domain by Lx = Ly = 50. This is
sufficiently large to ensure that the evolution of the blobs is insignificantly
affected by the boundary conditions. To obtain the simulation data, we first
fix Pr = 1 and and solve the convection problem (2.7) for numerous Rayleigh
numbers. Then, we fix Ra = 104 and solve problem (2.7) for numerous Prandtl
numbers.

The FEM software package COMSOL Multiphysics® is used as the numerical
solver [20]. To obtain the required simulation results with sufficient precision,
we use a triangular mesh and activate the adaptive mesh refinement, which
automatically refines the mesh in regions with large gradient of θ or Ω. The
triangular mesh size is defined with the code

model.mesh('mesh1').feature('size').set('table', '
plasma ');

model.mesh('mesh1').feature('size').set('hauto', '1');

and the adaptive mesh refinement is activated with

model.study('std1').feature('time').set('timeadaption '
, 'on');

The maximum number of mesh refinement iterations is set to 10, and the error
estimate is set to depend on the derivatives of both θ and Ω with the code

model.sol('sol1').feature('t1').feature('taDef').set('
ngenlocal ',

'10');
model.sol('sol1').feature('t1').feature('taDef').set('

eefunctime ', 'sqrt(comp1.Omegax ^2+ comp1.Omegay ^2) +
sqrt(comp1.thetax ^2+ comp1.thetay ^2)');

An example of the generated adaptive mesh is shown in Fig. 2.3. This mesh
contains approximately 3× 105 domain elements. The relative error tolerance
were set to 10−6 by

model.study('std1').feature('time').set('rtolactive ',
'on');

model.study('std1').feature('time').set('rtol', '1e-6'
);
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Figure 2.3. A zoom in of the adaptive mesh for the (Pr,Ra) = (1, 104) solution at
t = 10. The mesh is greatly refined where the gradients of θ or Ω are large.

The convection problem is initialized at t = 0, and runs with output time steps
of ∆t = 0.05 until t = 20. The mesh reinitializes and iteratively refines, at
t = 0, 2, . . . , 18, for a total of 10 times during each simulation.

In the analysis, we track the evolution, creation, and annihilation of the critical
points of φ, θ, and Ω. The eigenvalues determine whether a critical point is a
saddle, maximum, or minimum. For each simulation, we determine the critical
points of φ, θ, and Ω numerically as follows: The nullclines of the Hamiltonian
system (2.3) are

Nx = {(x, y) ∈M | ∂yH(x, y) = 0},
Ny = {(x, y) ∈M | ∂xH(x, y) = 0}.

Here, H represents either φ, θ, or Ω at a fixed time t. The set of critical points of
H is Nx∩Ny. To numerically determine the set of critical points, we first compute
Ny. Points in regions where θ is smaller than 1% of θmax = max(x,y)∈M θ(x, y, t)
are removed from Ny. These regions contain very few particles or little energy and
are therefore physically uninteresting. The nullcline set Ny consists of a number
of parametrized curve segments γi(s), i = 1, . . . , N . Along each curve segment we
compute ∂yH(γi(s)) and determine the values of sj for which ∂yH(γi(sj)) = 0.
These zeros are found by finding indices j for which ∂yH(γi(sj)) subsequently
changes sign,

∂yH(γi(sj))∂yH(γi(sj+1)) < 0.
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The corresponding points γi(sj) are the critical points of H. The type of a
critical point of H is determined from the eigenvalues λ1,2 of the Hessian matrix
of H evaluated in the critical point. The Hessian matrix of H is

D2H =

(
Hxx Hxy

Hyx Hyy

)
.

Let τ = tr(D2H) = Hxx + Hyy be the trace and δ = det(D2H) = HxxHyy −
H2
xy be the determinant of D2H. Then the eigenvalues of D2H are λ± =

1
2

(
τ ±
√
τ2 − 4δ

)
. Since D2H is symmetric, D2H = (D2H)ᵀ, both eigenvalues

are real. The critical point is a saddle if λ1 and λ2 are of opposite sign, a local
maximum if λ1,2 are both negative, a local minimum if λ1,2 are both positive, and
a degenerate point if either λ1 or λ2 is zero. Hence, in the (τ, δ)-plane there are
four different eigenvalue regions separated by lines at δ = 0 and {τ = 0 | δ > 0}:


Saddle for δ < 0 (λ+λ− < 0),
Degenerate point for δ = 0 (λ+λ− = 0),
Local maximum for δ > 0 and τ < 0 (λ± < 0),
Local minimum for δ > 0 and τ > 0 (λ± > 0).

(2.9)

The critical points are categorized as saddles, maxima or minima according
Eq. (2.9). Fig. 2.4 shows an example of a scalar vorticity function at a time
instant overlayed by the nullclines and equilibrium points for the corresponding
Hamiltonian system.

2.5 Bifurcation analysis

This section analyzes the bifurcations of the critical points of the electrostatic
potential φ, the thermodynamic variable θ, and the vorticity Ω as time increases
from t = 0 to t = 20 for a range of Rayleigh and Prandtl numbers. We use
the same set of simulation data for the analysis of φ, θ, and Ω. We first fix
(Pr,Ra) = (1, 104) and track the evolution, creation, and annihilation of the
critical points as time evolves. We then fix Pr = 1 and track the creation and
annihilation of the critical points for numerous Rayleigh numbers in the range
Ra ∈ [10, 105]. Similarly, we fix Ra = 104 and track the creation and annihilation
of the critical points for numerous Prandtl numbers in the range Pr ∈ [10−3, 104].
We draw the bifurcation curves in the (t,Ra)- and (t,Pr)-parameter planes.
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Figure 2.4. A zoom in of the instant vorticity Ω(x, y, t) for the (Pr,Ra) = (1, 104)
solution at t = 10. The white curves are the x-nullcline, the black curves are the
y-nullcline, and the extremum points are marked in their intersection points.

2.5.1 Critical points of the electrostatic potential

The electrostatic potential defines the velocity field of a plasma flow analogous
to the way the stream function defines the velocity field of a fluid flow. The
critical points of φ define the instantaneous stagnation points of the flow.

Figure 2.5 shows representative time instant plots of φ for three different critical
point configurations labeled 1○– 3○ superimposed by the contour patterns of φ.
The symmetry φ(x, y, t) = −φ(x,−y, t) causes the x-axis to be the zero level
set and imposes a symmetry of the critical points such that we can limit our
comments to bifurcations in the upper half-plane (uhp). Table 2.1 characterizes
the different critical point configurations of φ by the number of each type of
critical point.

For (Pr,Ra) = (1, 104), we consider φ(x, y, t) with time t ∈ [0, 20] as a bifurcation
parameter. Figure 2.6 shows the physical positions of all critical points of φ
plotted with t as an external parameter. All critical points are constantly
moving to the right with nonconstant velocity. Hence, the x-coordinates of
the critical point positions are monotonically increasing functions of t. The
bifurcation diagram in Fig. 2.7 shows the y-coordinates of the critical points of φ
as functions of t. The electrostatic potential φ is initialized to zero, but quickly a
minimum emerges at (x, y) ≈ (0, 1.58) such that φ has the configuration 1○. At
t = 10.13, a saddle-center bifurcation creates a saddle and a minimum changing
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Figure 2.5. Representative critical point configurations for φ corresponding to different
level curve topologies of φ.

Critical points of φ 1○ 2○ 3○

Saddles in uhp and lhp 0 1 2
Max in uhp and min in lhp 0 0 1
Min in uhp and max in lhp 1 2 2
Total (uhp+lhp) 2 6 10

Table 2.1. Number of saddles, maxima (max), and minima (min) in the upper half-
plane (uhp) and the lower half-plane (lhp) for the different critical point configurations
of φ shown in Fig. 2.5. The index +2 is preserved.
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Figure 2.6. The physical position of all critical points of φ for (Pr,Ra) = (1, 104) and
with time t ∈ [0, 20] as external parameter.
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Figure 2.7. Bifurcation diagram showing the y-coordinates of all critical point of φ
for (Pr,Ra) = (1, 104) and time as bifurcation parameter. Saddle-center bifurcations
occur at t = 10.13 and t = 14.91. The different critical point configurations of φ are
shown in Fig. 2.5.
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Critical points of θ 1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

Saddles in uhp and lhp 0 1 2 2 1 3 0 2
Max in uhp and lhp 0 1 2 3 2 3 1 2
Min in uhp and lhp 0 0 0 0 0 1 0 1
Saddles on the x-axis 0 0 0 1 1 1 1 1
Max on the x-axis 1 1 1 0 0 0 0 0
Total (uhp+lhp+x-axis) 1 5 9 11 7 15 3 11

Table 2.2. Number of saddles, maxima (max), and minima (min) in the upper half-
plane (uhp) and the lower half-plane (lhp) for the different critical point configurations
of θ shown in Fig. 2.9. The index +1 is preserved.

the configuration to 2○. At t = 14.91, this saddle and minimum vanish again in
a saddle-center bifurcation and φ has again the configuration 1○.

We fix Pr = 1, and for numerous Rayleigh numbers, we determine all bifurcation
values of t for the critical points of φ. Then, we fix Ra = 104, and for numerous
Prandtl numbers, we determine all bifurcation values of t. Figure 2.8 shows the
bifurcation curves in the (t,Ra)- and (t,Pr)-planes. Two types of saddle-center bi-
furcations are observed: The saddle-center bifurcation (min) creates or annihilates
a saddle and a minimum in the upper half-plane, while the saddle-center bifurca-
tion (max) creates or annihilates a saddle and a maximum in the upper half-plane.
The bifurcation curves divide these sections of the parameter planes into regions
with configurations 1○– 3○. For fixed Pr = 1, no bifurcations occur for Ra . 5.1×
103. The number of critical points of φ increases for an increasing Rayleigh num-
ber. For fixed Ra = 104, no bifurcations occur for Pr . 3.0× 10−1 or Pr & 9.0.

2.5.2 Critical points of the thermodynamic variable

The thermodynamic variable defines the physical shape of the blob. A maximum
of θ is a feature point for the blob. The creation of additional maxima indicates
the blob splits into smaller blobs. We can use the number of maxima of θ as a
measure for the level of coherence of a blob. A blob with a single maximum is a
fully coherent blob and a blob with more maxima is less coherent.

Figure 2.9 shows representative time instant plots of θ for different critical point
configurations labeled 1○– 8○. Table 2.2 characterizes the different configurations
of θ by the number of each type of critical point.

Figure 2.10 shows for (Pr,Ra) = (1, 104) the positions of all critical points of
θ in physical space plotted with t as an external parameter. The bifurcation
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Figure 2.8. Bifurcation curves for the critical points of φ in a) the (t,Ra)-parameter
plane for Pr = 1, b) the (t,Pr)-parameter plane for Ra = 104. The different critical
point configurations of φ are shown in Fig. 2.5.
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Figure 2.9. Representative critical point configurations for θ.
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Figure 2.10. The physical position of all critical points of θ for (Pr,Ra) = (1, 104)
and with time t ∈ [0, 20] as external parameter.

diagram in Fig. 2.11 shows for (Pr,Ra) = (1, 104) the y-coordinates of the critical
points of θ as functions of t. The thermodynamic variable θ is initialized with a
maximum at (x, y) = (0, 0) corresponding to the critical point configuration 1○.
Saddle-center bifurcations at t = 8.55 and t = 11.69 change the critical point
configuration to 2○ and further to 3○. At t = 11.91, a Hamiltonian pitchfork
bifurcation, allowed by the reflection symmetry, changes the critical point con-
figuration to 4○. Four more saddle-center bifurcations bring the critical point
configuration through 5○– 4○– 6○– 4○.

Figure 2.12 shows the bifurcation curves in the (t,Ra)- and (t,Pr)-planes. We
observe three types of bifurcations: The saddle-center bifurcation (max) creates
or annihilates a saddle and a maximum in the upper and lower half-plane, the
saddle-center bifurcation (min) creates or annihilates a saddle and a minimum
in the upper and lower half-plane, and the Hamiltonian pitchfork bifurcation
splits a maximum on the x-axis into a saddle on the x-axis and two maxima
symmetrically located in the upper and lower half-plane. The first bifurcation
marks the time the blob starts to lose coherence. For Pr = 1, no bifurcations occur
for Ra . 5.3× 101. The number of critical points increases with an increasing
Rayleigh number. For Ra = 104, no bifurcations occur for Pr . 1.1 × 10−3

or Pr & 1.5 × 103. The number of critical points of θ is greatest for Prandtl
numbers of magnitude 100. Hence, blobs stay more coherent for small Rayleigh
numbers, and for small or large Prandtl numbers.
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Figure 2.11. Bifurcation diagram showing the y-coordinates of all critical points of θ
for (Pr,Ra) = (1, 104) and time as bifurcation parameter. Saddle-center bifurcations
occur at t = 8.55, 11.69, 12.85, 13.84, 14.87, 18.54, and a Hamiltonian pitchfork
bifurcation occurs at t = 11.91. The different critical point configurations of θ are
shown in Fig. 2.9.

2.5.3 Critical points of the vorticity

The extrema of Ω define vortex centers and are feature points of the vortices. A
typical vortex analysis follows the full evolution of the vortical regions enclosed
by separatrices. Here, we simply track the evolution of the extrema of vorticity,
and in this way, disregard all information about the actual vortex shape. The
sign of vorticity in an extremum defines the direction of rotation for the vortex.

Figure 2.13 shows representative time instant plots of Ω for different critical point
configurations labeled 1○– 8○. The symmetry Ω(x, y, t) = −Ω(x,−y, t) causes
the x-axis to be a zero level set and imposes a symmetry of the critical points
such that we can limit our comments to bifurcations in the upper half-plane and
on the x-axis. Table 2.3 characterizes the different configurations of Ω by the
number of each type of critical point.
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Figure 2.12. Bifurcation curves for the critical points of θ in a) the (t,Ra)-parameter
plane for Pr = 1, b) the (t,Pr)-parameter plane for Ra = 104. The different critical
point configurations of θ are shown in Fig. 2.9.
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Figure 2.13. Representative critical point configurations for Ω.
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Critical points of Ω 1○ 2○ 3○ 4○ 5○ 6○ 7○ 8○

Saddles in uhp and lhp 0 0 1 2 3 4 5 1
Max in uhp and min in lhp 1 1 2 2 3 3 3 2
Min in uhp and max in lhp 0 1 1 2 2 3 4 0
Saddles on the x-axis 0 2 2 2 2 2 2 0
Total (hhp+lhp+x-axis) 2 6 10 14 18 22 26 6

Table 2.3. Number of saddles, maxima (max), and minima (min) in the upper half-
plane (uhp) and the lower half-plane (lhp) for the different critical point configurations
of Ω shown in Fig. 2.13. The index +2 is preserved.

Figure 2.14 shows for (Pr,Ra) = (1, 104) the positions of all critical points of
Ω in physical space plotted with t as an external parameter. The bifurcation
diagram in Fig. 2.15 shows for (Pr,Ra) = (1, 104) the y-coordinates of the
critical points of Ω as functions of t. The vorticity Ω is initialized to zero,
but a maximum at (x, y) ≈ (0.0, 1.0) quickly emerges giving Ω the critical
point configuration 1○. A duplex saddle-center bifurcation, allowed by the
symmetry Ω(x, y, t) = −Ω(x,−y, t), changes the configuration to 2○. A series
of saddle-center bifurcations then creates or annihilates saddles and extrema,
which changes the critical point configuration through 3○– 4○– 5○– 6○– 7○– 6○.

Figure 2.16 shows the bifurcation curves for the critical points of Ω in the (t,Ra)-
and (t,Pr)-planes. Three types of bifurcations are observed: The saddle-center
bifurcation (max) creates or annihilates a saddle and a maximum in the upper
half-plane, the saddle-center bifurcation (min) creates or annihilates a saddle and
a minimum in the upper half-plane, and the duplex saddle-center (min) creates
two saddles on the x-axis, a minimum in the upper half-plane and a symmetrically
located maximum in the lower half-plane. For Pr = 1, no bifurcations occur for
Ra . 6.5 × 102. For Ra = 104, no bifurcations occur for Pr . 8.0 × 10−3 or
Ra & 2.8× 103.

2.5.4 Discussion

The diagrams in Figs. 2.8, 2.12, and 2.16 follow qualitatively the same pattern:
For Pr = 1, the number of critical points increases for an increasing Rayleigh
number and for Ra = 104, the number of critical points is greatest for Prandtl
numbers of magnitude 100. The electrostatic potential φ is at each time instant
related to the vorticity Ω by Eq. (2.7b). However, the vorticity has many more
critical points than the electrostatic potential. A quantitative comparison of
the three diagrams show no direct relation between the bifurcation values of
t at which critical points are created or annihilated. Hence, the analysis of
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Figure 2.14. The physical position of all critical points of Ω for (Pr,Ra) = (1, 104)
and with time t ∈ [0, 20] as external parameter.
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Figure 2.15. Bifurcation diagram showing the y-coordinates of all critical points of
Ω for (Pr,Ra) = (1, 104) and time as bifurcation parameter. A duplex saddle-center
bifurcation occurs at t = 6.37 and saddle-center bifurcations occur at 9.62, 12.65, 13.35,
15.44, 18.70, and 19.81. The different critical point configurations of Ω are shown in
Fig. 2.13.
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point configurations of Ω are shown in Fig. 2.13.
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one state variable characterizes only the configurations of the feature points
corresponding to that variable. The analysis restricts to Ra ≤ 105 and t ≤ 20.
By simultaneously increasing Ra and t further beyond these values, the number
of bifurcations grows to the extent that it becomes both impractical and of
limited interest to systematically track and distinguish the different bifurcations.
The present method is unsuitable to describe structures in such a turbulent
flow.

2.6 Conclusion

A convection model, with Rayleigh number, Ra, and Prandtl number, Pr, as
parameters, describes the evolution of two-dimensional seeded plasma blobs.
The blobs are described in terms of three variables: the electrostatic potential
φ, the thermodynamic variable θ, and the vorticity Ω. The critical points of a
variable define feature points where that variable is significant. Extrema of the
electrostatic potential define stagnation points. Maxima of the thermodynamic
variable are feature points for the blob such that the creation of additional
maxima indicates a splitting of the blob into smaller blobs. Extrema of vorticiy
are feature points for vortices.

We apply a dynamical systems approach to analyze bifurcations of the critical
points of φ, θ, and Ω with time, t ∈ [0, 20] as the primary bifurcation parameter.
We fix the Prandtl number to Pr = 1 and consider the Rayleigh number as
an additional bifurcation parameter. We then fix the Rayleigh number to
Ra = 104 and use the Prandtl number as an additional bifurcation parameter.
The bifurcation curves separate the parameter planes into multiple regions with
different critical point configurations. The diagrams reveal that for Pr = 1, the
number of critical points of φ, θ, and Ω increases for an increasing Rayleigh
number. For Ra = 104, the number of critical points is greatest for Prandtl
numbers of magnitude 100.

We have demonstrated that a bifurcation analysis of the critical points is a
feasible method to quantitatively describe the evolution of coherent structures
in a plasma physics convection model.
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Chapter 3

Galerkin dimension
reduction of plasma
convection models

Plasma simulations can be computationally demanding. This complicates
parameter dependency analysis of model solutions. We apply a Galerkin
method to approximate a plasma convection model by a computationally
simpler model of reduced spatial dimension. A convection model with a
pressure source centered at the inner boundary models the edge dynamics
of a magnetically confined plasma. The time evolution of the energies
of the pressure profile, the turbulent flow, and the zonal flow represent
the dynamics of a solution. Perturbing the vorticity variable with a
term proportional to the pressure curvature causes the generation of an
additional zonal flow, which qualitatively changes the solution. Rayleigh
decomposition splits the variables of the model into averaged variables
and fluctuation variables. The fluctuation variables are approximated by
truncated Fourier series, and the equations are projected onto the Fourier
basis functions. This results in a computationally simpler model with the
spatial dimension reduced by one. Bifurcation diagrams reveal consistency
between the bifurcation structures of the full model and the reduced model.
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3.1 Introduction

The dynamics near the edge of a magnetically confined plasma is largely governed
by convection-diffusion effects. A convection model, with governing equations for
a thermodynamic variable and the vorticity, constitutes a simple model for inter-
change motions in the edge region. The pressure gradient drives the interchange
motions in the plasma similarly to the way gravity drives Rayleigh–Bénard
convection in fluids. The plasma flow can be decomposed into a non-zonal
(turbulent, fluctuating) flow and a zonal flow. The non-zonal flow increases the
radial transport and generates Reynolds stress that drives the zonal flow.

The L–H transition is a transition from a low confinement mode to a high
confinement mode of a magnetically confined plasma. The 3-ODE Kim-Diamond
L–H transition model [46, 47] and the 1D L–H transition model by Miki et al.
[59, 60] include, in addition to the zonal flow, a pressure-gradient driven mean
flow, which suppresses the turbulence and the growth rate of the zonal flow.

The HESEL model [44] is a 2D four-field drift fluid model. Solutions to the
HESEL model reveal L–H-like transitions in response to ramping up the input
power. A generalized vorticity replaces the vorticity in the HESEL model. This
causes the curvature of the ion pressure to generate an additional zonal flow.
This additional zonal flow can be thought of as the mean flow included in the
low-dimensional L–H transition models. Hence, the generalized vorticity might
be main responsible for allowing the observed transition.

Plasma models can be computationally demanding to solve. Capturing the
physics with a model of reduced dimension simplifies the model analysis, and
might enable the connection of specific terms to specific effects observed in the
simulations.

In this chapter, we model the edge dynamics of a magnetically confined plasma
with a convection model with a pressure source centered at the inner boundary.
We introduce a perturbation to the vorticity, which is proportional to the
pressure curvature, and investigate the solution dependency on the strength
of this perturbation. We apply a Galerkin method to approximate the 2D
convection model by a computationally simpler 1D convection model. The time
evolution of the energies of the pressure profile P , the turbulent flow N , and
the zonal flow F represent the dynamics of the solutions. Bifurcation diagrams,
with the source strength as bifurcation parameter, reveal consistency between
the bifurcation structures of the full model and the reduced model.
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3.2 Galerkin method

To reduce the spatial dimension of a set of governing equations, we use a Reynolds
decomposition of the state variables, followed by a Fourier series approximation
of the fluctuation variables. We make a Galerkin projection of the resulting set
of equations onto the Fourier basis functions. Benkadda et al. [9] and Bian et al.
[12] use a similar approach to reduce a 2D interchange instability model to a 1D
model for bursty transport.

3.2.1 The Reynolds decomposition principle

Reynolds decomposition is the decomposition of a variable f(x, t) into a mean
part f̄ and a fluctuating part f̃ ,

f = f̄ + f̃ .

The mean f̄ can be defined in different ways. The ensemble-average assumes f is
a random variable, and defines the mean as the expectation value f̄ = E[f(x, t)].
The ensemble-average of f can be computed from repeated measurements of
f(x, t). The mean f̄ can also be defined as a convolution between an appropriate
filter function H(x, t) and f , f̄ = (H ∗ f)(x, t). These definitions of f̄ cause
both f̄ and f̃ to depend on the same independent variables as f depends on [63].

For a function f : [0, Lx]× [0, Ly]× R 7→ R, we here define the mean f̄ as the
average of f taken over the y-variable

f̄(x, t) =
1

Ly

∫ Ly

0

f(x, y, t)dy.

With this definition, the mean part f̄ depends on only (x, t), while the fluctuating
part f̃ = f − f̄ depends on (x, y, t).

3.2.2 Fourier-series approximation of PDEs

After a Reynolds decomposition of the state variables, we approximate the (2+1)-
dimensional partial differential equations (PDEs) for the fluctuation variables
with truncated Fourier series and derive a (1+1)-dimensional PDE for each
Fourier coefficient. We here outline the principle.
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Let L2(0, Ly) be a Hilbert space equipped with the inner product

〈f, g〉 =

∫ Ly

0

f(y)g∗(y)dy, f, g ∈ L2(0, Ly).

For each x ∈ [0, Lx] and t > 0, assume f(x, y, t) ∈ L2(0, Ly) is a state variable,
which is Ly-periodic in y. Let D be a nonlinear differential operator, which
differentiates with respect to (x, y). Consider the PDE problem

∂tf = D(f), (3.1a)
f(x, y, 0) = 0, (3.1b)
f(0, y, t) = f(Lx, y, t) = 0, (3.1c)
f(x, 0, t) = f(x, Ly, t). (3.1d)

Since the state variable f is periodic in the y-variable, but not in the x-variable,
we approximate f(x, y, t) by the Nth partial sum of its Fourier series expansion
in the y-variable

f(x, y, t) ≈
N∑

n=−N
fn(x, t)einay, a =

2π

Ly
. (3.2)

The Fourier coefficients fn are given by

fn(x, t) =
1

Ly
〈f, einay〉 =

1

Ly

∫ Ly

0

f(x, y, t)e−inaydy, f−n = f∗n.

The approximation (3.2) is inserted into the PDE (3.1a). For each k ∈ {−N, . . .N},
an equation for the Fourier coefficient fk is obtained by projecting the differential
equation onto the corresponding Fourier basis function eikay. The projection
takes the inner product of the equation with eikay, which is equivalent to Fourier
transforming the equation,

Ly∂tfk(x, t) =

〈
D

(
N∑

n=−N
fne

inay

)
, eikay

〉
, k = −N, . . . , N. (3.3)

The right-hand-side of Eq. (3.3) is calculated term-wise. For instance, the
projection of f onto eikay is simply 〈f, eikay〉 = Lyfk, and the projection of ∂yf
onto eikay is 〈∂yf, eikay〉 = ikaLyfk.

If D(f) includes only linear terms, this procedure simply results in a set of
uncoupled PDEs for fk, k = −N, . . . , N , where each equation can be solved
independently. If D(f) includes nonlinear terms, say f2, the equations couple.
System (3.3) can be solved numerically for the Fourier coefficients, and the
approximated solution to the original problem (3.1) is then calculated by inserting
the Fourier coefficients into Eq. (3.2).
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3.3 Simulation data generation

A convection model is used as a simple model for convectively driven transport
in a magnetized plasma. A pressure source at the inner boundary of the slab
geometry describes plasma radially diffusing from the center into the computati-
onal domain. The source strength is considered the main bifurcation parameter
of this problem. We define as state variables the potential energy related to the
pressure, the kinetic energy of the turbulent flow, and the kinetic energy of the
zonal flow. During the numerical solving process these three energies and their
time-derivatives are computed and saved at each output time step.

3.3.1 Convection model

We consider viscous plasma flow in a small rectangular domain at the edge of a
magnetically confined plasma in the plane perpendicular to the magnetic field
B = B0ez. The transport of plasma into the domain is modeled by a source
centered at the left boundary. The flow is described using Cartesian coordinates
(x, y) ∈ [0, Lx]× [0, Ly]. The E ×B drift velocity is given by

vE =
E ×B
B2

0

,

where B0 = ‖B‖. We make the electrostatic approximation ∇×E = ∂tB = 0,
such that E = −∇φ. We define the normalized velocity field v = (vx, vy)ᵀ as

v = B0vE⊥ = (ez ×∇φ)⊥ =

(
−∂yφ
∂xφ

)
. (3.4a)

Let Ω denote the z-component of the normalized vorticity vector Ω = ∇×B0vE =
(∂xvy − ∂yvx)ez. We introduce a perturbed scalar vorticity by ω = Ω + τ∇2

⊥p,
where τ is a coefficient of the perturbation. The introduction of this perturbation
is inspired by the definition of the generalized vorticity in the HESEL model [44],
with the aim to investigate how such a term affects solutions with everything
else unchanged. Then, the normalized electrostatic potential is obtained from

∇2
⊥φ = ω − τ∇2

⊥p. (3.4b)

To describe the evolution of the pressure p(x, y, t) and the perturbed vorticity
ω(x, y, t), we employ a normalized convection model(

∂

∂t
+ v · ∇

)
p = κ∇2

⊥p+ S(x), (3.4c)(
∂

∂t
+ v · ∇

)
ω +

∂p

∂y
= ν∇2

⊥w. (3.4d)
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Here, κ is the diffusion coefficient, ν is the viscosity, and S(x) is a pressure
source. We choose the source as a Gaussian function of x centered at the left
boundary,

S(x) = qe−
x2

2σ2 . (3.4e)

The parameter q determines the strength of the source and σ determines the
width of the source. At the y = 0 and y = Ly boundaries, we apply periodic
boundary conditions:

f(x, 0, t) = f(x, Ly, t), ∂yf(x, 0, t) = ∂yf(x, Ly, t), f = p, ω, φ. (3.5a)

For the pressure, we apply a Neumann boundary condition at the left boundary,
and a zero Dirichlet boundary condition at the right boundary,

∂xp(0, y, t) = 0, p(Lx, y, t) = 0. (3.5b)

These boundary conditions allow the pressure gradient to increase as the source
strength, q, increases. For the electrostatic potential and perturbed vorticity, we
apply zero Dirichlet boundary conditions at both the left and right boundaries,

ω(0, y, t) = ω(Lx, y, t) = 0, φ(0, y, t) = φ(Lx, y, t) = 0. (3.5c)

As initial condition, each of the system variables is set to zero at t = 0,

p(x, y, 0) = ω(x, y, 0) = φ(x, y, 0) = 0. (3.6)

These choices of computational domain, pressure source, and boundary conditions
are visually summarized in Fig. 3.1.

For τ = 0, system (3.4) is one of the simplest models used to describe nonlinear
plasma dynamics. Bian et al. [12] and Garcia et al. [31] model the resistive
g-instability in a plasma fluid layer with a system similar to Eq. (3.4) with τ = 0.
References [10, 30, 33] model the interchange motions of isolated structures
in magnetized plasmas with a system equivalent to Eq. (3.4) with τ = 0. In
the field of fluid dynamics the system is often used to model Rayleigh-Bénard
convection [37]. More accurate models for nonlinear plasma dynamics like the
ESEL model [32, 34] can be regarded as extensions to the τ = 0 convection
model (3.4) by including additional terms and couple more fields to describe
more nonlinear effects.

For τ > 0, system (3.4) includes a perturbed vorticity that imitates the generali-
zed vorticity in the HESEL model [44]. The generalized vorticity is thought to be
a main component responsible for the L–H-like transition, that can be observed
in HESEL simulations. This motivates the investigation of this perturbation to
the vorticity in a simple convection model.
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Figure 3.1. The pressure source S(x) given by Eq. (3.4e) with σ = 0.1Lx shown
inside the domain. The boundary conditions (3.5) for the problem are shown at each
boundary.

3.3.2 State variable definitions

Predator-prey models for the L–H transition are often based on three state
variables; the potential energy related to the pressure profile, the turbulent flow
energy, and the zonal flow energy. To formally define these variables in terms
of the state variables of the PDE system (3.4), we first introduce some useful
notation: An overline denotes average over the y-variable, a tilde denotes the
spatial fluctuations, and angle brackets denote average over the x-variable

f̄(x, t) =
1

Ly

∫ Ly

0

f(x, y, t) dy,

f̃(x, y, t) = f(x, y, t)− f̄(x, t),

〈f̄〉(t) =
1

Lx

∫ Lx

0

f̄(x, t) dx.

To consistently define the state variables, we consider Eq. (3.4) with unchanged
boundary conditions in the limit of no source, no viscosity, no diffusivity, and no
perturbation of the vorticity, i.e. with κ = ν = S = τ = 0. Then we obtain the
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system

Ω = ∇2φ, (3.7a)
∂tp = −v · ∇p, (3.7b)

∂tΩ = −v · ∇Ω +
∂p

∂y
. (3.7c)

Averaging Eq. (3.7b) over y and x, followed by integration by parts with the
boundary conditions (3.5), gives

∂t〈p̄〉 = −〈vx(∂xp)〉 − 〈vy(∂yp)〉 = 〈(∂xvx + ∂yvy)p〉 = 0.

Since the average of p is constant in time, even when the pressure drives a flow,
it can not be used as a measure for the potential energy of the system. If we
instead consider Eq. (3.7b), multiply by x, and then average over y and x, we
obtain

∂t〈xp〉 = 〈vxp〉. (3.8)

The spatially averaged kinetic energy of the flow is given by K = 1
2 〈v · v〉.

Considering Eq. (3.7c), multiplying by φ, and using integration by parts, it can
be shown that

1

2
∂t〈v · v〉 = −〈φ(∂tΩ)〉 = −〈vxp〉. (3.9)

Adding Eqs. (3.8) and (3.9) gives the conservation equation

∂t

(
1

2
〈v · v〉+ 〈xp〉

)
= 0. (3.10)

Since the first term in Eq. (3.10) is the time derivative of the kinetic energy, we
define the second term to be the time derivative of the potential energy. We now
separate the kinetic energy into the zonal flow energy and the fluctuation energy.
Inserting the decomposition vx = v̄x + ṽx, with v̄x = 0 and vy = v̄y + ṽy, into
the expression v · v and averaging over y and x gives

1

2
〈v · v〉 =

1

2
〈ṽ2x + ṽ2y〉+

1

2
〈v̄2y〉. (3.11)

The first term on the right-hand side is the kinetic energy related to the fluctua-
tions, while the second term is the kinetic energy related to the zonal flow.

We can now define the average potential energy P , related to the pressure profile,
the average fluctuation energy N , and the zonal flow energy F , by

P = 〈xp〉, N =
1

2
〈ṽ2x + ṽ2y〉, F =

1

2
〈v̄2y〉. (3.12)

Sugama and Horton [68], and Ball, Dewar, and Sugama [8] define state varia-
bles for their L–H transition models which are equivalent to the definitions in
Eq. (3.12).
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Lx Ly κ ν σ

1 1 0.05 0.05 0.1

Table 3.1. The fixed parameter values for the system (3.4). q ∈ [0, 10] is a bifurcation
parameter.

3.3.3 Parameters and numerical solver

The convection problem (3.4) contains six parameters: Lx and Ly determines the
size and aspect ratio of the rectangular domain, κ is the diffusion coefficient, ν
is the viscosity, σ determines the width of the pressure source, and q determines
the strength of the pressure source. The value of each of these parameters affect
the solution and could be chosen as the main parameter for the analysis.

We fix all parameter values except q, which we consider as a bifurcation parameter.
The values of the fixed parameters in Eq. (3.4) are listed in Table 3.1. The values
of κ and ν were chosen sufficiently large that equilibrium solutions existed for
small values of q and a period-1 solution could be observed for a range of q-values.
The bifurcation parameter q is fixed for each simulation, but we consider multiple
simulation data sets obtained for different values of q ∈ [0, 10].

The FEM software package COMSOL Multiphysics® is used as the numerical
solver [20]. The PDE system (3.4) and the corresponding boundary conditions
are defined on the rectangular domain [0, Lx]× [0, Ly]. To obtain the required
simulation data we use a triangular mesh containing 6282 domain elements. The
triangular mesh size was set with the command:

model.mesh('mesh1').feature('size').set('table', '
plasma ');

model.mesh('mesh1').feature('size').set('hauto', '5');

The generated mesh is shown in Fig. 3.2. The solution is initialized at t = 0 and
run with output time steps of ∆t = 0.05 until t = 400. At each output time of
the simulation the three energies (3.12) and their time-derivatives are computed
and saved. We set the relative error tolerance by

model.study('std1').feature('time').set('rtolactive ',
'on');

model.study('std1').feature('time').set('rtol', '1e-6'
);
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Figure 3.2. The used triangular mesh contained 6282 domain elements and 200
boundary elements.

3.3.4 Solution examples

The source strength q is the bifurcation parameter for the system (3.4), and as q
varies, the solution moves through different modes. To investigate the additional
dependency on τ , we increase q linearly in time from zero to 30, by defining
q(t) = 30t/400, and plot the energies (P,N, F ) as functions of time, for different
values of τ .

Figures 3.3–3.6 show the solutions for τ = 0.00, τ = 0.02, τ = 0.04, and τ = 0.06,
respectively. The perturbation with τ as coefficient generates an additional zonal
flow, which suppresses the turbulence. Increasing τ from zero to 0.06 heavily
changes the solution type. For τ = 0.04 the turbulence grows up, enters an
oscillating phase, and converges to zero. A similar behavior can be observed
in the minimal L–H transition suggested by Kim and Diamond [46, 47]. Their
model includes, in addition to the zonal flow, a mean flow. In our solutions, the
mean flow is included in the zonal flow. The τ = 0.04 solution suggests that
a generalized vorticity could be the source of this so-called mean flow, which
enables the L–H transition. For τ = 0.06 the zonal flow is so strong that it
prevents the turbulence to grow at all. We shall work further with the τ = 0
and τ = 0.04 solutions.
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Figure 3.3. For τ = 0.00 and q(t) =
30t/400, the time evolution of the energies
P , N , and F .

0
2
4
6
8

P

0

0.2

0.4

N

0 100 200 300 400
t

0
0.2
0.4
0.6

F

Figure 3.4. For τ = 0.02 and q(t) =
30t/400, the time evolution of the energies
P , N , and F .

0

5

10

P

0
0.05
0.1
0.15

N

0 100 200 300 400
t

0
0.05
0.1
0.15

F

Figure 3.5. For τ = 0.04 and q(t) =
30t/400, the time evolution of the energies
P , N , and F .
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Figure 3.6. For τ = 0.06 and q(t) =
30t/400, the time evolution of the energies
P , N , and F .
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Figure 3.7. For τ = 0, the q = 2.8 static
solution at t = 200 showing p (upper left),
Ω (upper right), vx (lower left), and vy
(lower right).
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Figure 3.8. For τ = 0, the q = 2.8
time evolution of the energies P , N , and
F . P converges to a constant value while
N = F = 0 for all t.

3.3.5 Solution parameter dependency

For τ = 0, simulation data were obtained for multiple values of q ∈ [0, 10], and
for τ = 0.04, simulation data were obtained for q ∈ [0, 24]. As q varies, we
observe four qualitatively different types of solutions. In the (P,N, F )-state
space, each solution type is characterized by the stability type of the observed
equilibrium points. We pair each of the four distinct solution types observed in
the (P,N, F )-state space with the corresponding full solutions of the convection
problem, represented by the variables p, ω (ω = Ω when τ = 0), vx, and vy.

3.3.5.1 The static solution

For τ = 0 and q = 2.8, the solution to Eqs. (3.4)–(3.6) converges to the static
solution shown in Fig. 3.7. Here, the pressure is independent of the y-coordinate,
and there is no vorticity and therefore no flow. For the time evolution of the
energies P , N , and F , shown in Fig. 3.8, P converges to a positive constant
value, while N = F = 0 for all time. We denote the equilibrium (Ps, Ns, Fs)
corresponding to this static state the s-equilibrium.

For τ = 0.04 and q = 2.8, the solution converges to the static solution shown
in Fig. 3.9. Here, all variables are independent of the y-coordinate, and ω = 0.
There is a poloidal flow induced by the pressure curvature, vy, but with a static
profile. The time evolution of the energies P , N , and F is shown in Fig. 3.10.
P and F converge to positive constant values, while N = 0 for all time.
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Figure 3.9. For τ = 0.04, the q = 2.8
static solution at t = 200 showing p (upper
left), ω (upper right), vx (lower left), and
vy (lower right).
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Figure 3.10. For τ = 0.04, the q = 2.8
time evolution of the energies P , N , and
F . P and F converge to constant values
while N = 0 for all t.

3.3.5.2 The low confinement solution

For τ = 0 and q = 6, the solution converges to the stable solution shown in
Fig. 3.11. For this equilibrium solution, p and vx are symmetric, while Ω and
vy are antisymmetric through a line at y = 1/2. The time evolution of the
energies P , N , and F is shown in Fig. 3.12. The solution contains two phases:
The first phase is similar to the solution for q = 2, where N = F = 0, while P
approaches an equilibrium value. However, this equilibrium solution is unstable
and, during the second phase, N first increases rapidly and then decreases toward
an equilibrium value. This causes P to make a little bump on the curve and then
decreases toward a lower stable equilibrium value. Since vx and vy are nonzero
almost everywhere, there is a non-zonal flow, N > 0, while the symmetry of vx
and the antisymmetry of vy cause the vanishing zonal flow, F = 0. The potential
energy of the pressure, P , is a measure of the level of plasma confinement. Since
this state results in the lowest confinement level of the four states, we denote
this state the low confinement state and the corresponding equilibrium point
(PL, NL, FL) is denoted the L-equilibrium.

For τ = 0.04 and q = 8, the solution converges to the pattern shown in Fig. 3.13.
Here, p, ω, vx, and vy drift downward. The time evolution of the energies P , N ,
and F is shown in Fig. 3.14. The solution contains two phases: The first phase
is similar to the static solution, but the s-equilibrium is unstable, and N first
increases rapidly and then decreases toward an equilibrium value. This cause P
and F to make small bumps and decrease toward the L-equilibrium, where P is
smaller and F is larger than in the s-equilibrium.
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Figure 3.11. For τ = 0, the q = 6.0 low
confinement solution at t = 200 showing
p (upper left), Ω (upper right), vx (lower
left), and vy (lower right). The patterns
are constant in time.
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Figure 3.12. For τ = 0, the q = 6 time
evolution of the energies P , N , and F . P
and N converge to constant values while
F = 0 for all t. This is the low confinement
solution.

Figure 3.13. For τ = 0.04, the q = 6.0
low confinement solution at t = 200 sho-
wing p (upper left), ω (upper right), vx
(lower left), and vy (lower right). The pat-
terns drift downward for increasing time.
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Figure 3.14. For τ = 0.04, the q = 6
time evolution of the energies P , N , and F .
P , N , and F converge to constant values.
This is the low confinement solution.
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Figure 3.15. For τ = 0, the q = 8.0 high
confinement solution at t = 200 showing
p (upper left), Ω (upper right), vx (lower
left), and vy (lower right). The patterns
are in motion and are drifting downwards
for increasing time.
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Figure 3.16. For τ = 0, the q = 8.0
time evolution of the energies P , N , and
F . The solution converges to the H-
equilibrium, where all three energies are
positive.

3.3.5.3 The high confinement solution

For τ = 0 and q = 8, the solution converges to the down-drifting patterns shown
in Fig. 3.15. The symmetry of the patterns that exist for q = 6 is now broken.
The time evolution of the energies P , N , and F is shown in Fig. 3.16. The
solution now consist of three phases: The first two phases are similar to the
solution phases for q = 6 shown in Fig. 3.12. In the third phase, F increases
and approaches an equilibrium value. This causes P to converge to a larger
equilibrium value and N to converge to a smaller equilibrium value. Compared
to the q = 6 solution in Fig. 3.15, breaking of the symmetry of vx and vy causes
the zonal flow, F > 0. Since this state results in a higher confinement than
before, we denote this state the high confinement state. The corresponding
equilibrium point (PH , NH , FH) is denoted the H-equilibrium.

For τ = 0.04 and q = 20, the solution converges to the down-drifting patterns
shown in Fig. 3.17. The time evolution of the energies P , N , and F is shown in
Fig. 3.18. Similarly to the low confinement solution, the solution consist of two
phases, but the equilibrium values of N and F are lower and P is higher than in
the L-equilibrium.
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Figure 3.17. For τ = 0.04, the q =
20.0 high confinement solution at t = 200
showing p (upper left), ω (upper right),
vx (lower left), and vy (lower right). The
patterns are in motion and are drifting
downward for increasing time.
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Figure 3.18. For τ = 0.04, the q =
20 time evolution of the energies P , N ,
and F . The solution converges to the H-
equilibrium, where all three energies are
positive.

3.3.5.4 The limit cycle solution

For τ = 0 and q = 10, the solution converges to the oscillating patterns shown
in Fig. 3.19. The pressure p is oscillating between two clearly different patterns,
while the patterns for Ω, vx, and vy are mostly oscillating in terms of amplitude.
The time evolution of the energies is shown in Fig. 3.20. The solution still consists
of three phases similarly to the low confinement solution for q = 8. However, the
third phase is now replaced by convergence to a stable limit cycle, where the
three energies oscillate at identical frequencies. We denote this solution type the
limit cycle solution.

For τ = 0.04 and q = 16, the solution converges to the oscillating patterns shown
for t = 200 in Fig. 3.21. For this limit cycle solution, p is oscillating between
two clearly different patterns, while the patterns for ω, vx, and vy are mostly
oscillating in terms of amplitude. The time evolution of the energies is shown in
Fig. 3.22. The solution consist of two phases: the first phase is similar to the
s-state, but as N begins to increase the solution converges to a stable oscillating
phase.
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Figure 3.19. For τ = 0, the q = 10.0
limit cycle solution at t = 196 showing
p (upper left), Ω (upper right), vx (lower
left), and vy (lower right). p is oscillating
between two different patterns, while Ω,
vx, and vy are mostly oscillating in ampli-
tude.
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Figure 3.20. For τ = 0, the q = 10 time
evolution of the energies P , N , and F .
The solution converges to stable limit
cycle oscillations of P , N , and F . This is
the limit cycle solution.

Figure 3.21. For τ = 0.04, the q = 16.0
limit cycle solution at t = 200 showing
p (upper left), ω (upper right), vx (lower
left), and vy (lower right). p is oscillating
between two different patterns, while ω,
vx, and vy are mostly oscillating in ampli-
tude.
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Figure 3.22. For τ = 0.04, the q = 16
time evolution of the energies P , N , and
F . The solution converges to stable limit
cycle oscillations of P , N , and F . This is
the limit cycle solution.
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3.3.6 Data-based bifurcation diagrams

For τ = 0, simulation data for P , N , and F was generated for q ∈ {0, 0.1, . . . , 10}.
For q > 10 more bifurcations occur, with the first one being a period doubling
bifurcation. The data-based bifurcation diagram shown in Fig. 3.23 is constructed
by approximately identifying the location of all equilibrium points for each
solution. The unstable s-equilibrium is computed from a modified model with
v = 0, the unstable L-equilibrium is estimated from the transient part of the
solution, and the unstable H-equilibrium is extrapolated from the stable part of
the H-equilibrium. Transcritical bifurcations occur at approximately qtc1 ≈ 2.92
and qtc2 ≈ 6.28, while a Hopf bifurcation occurs at qH ≈ 8.15. The s-equilibrium
is stable for 0 ≤ q < qtc1, the L-equilibrium is stable for qtc1 < q < qtc2, the
H-equilibrium is stable for qtc2 < q < qH, and the limit cycle is stable for q > qH.

For τ = 0.04, simulation data for P , N , and F was generated for q ∈ {0, 0.2, . . . , 24}.
The value of q was down-ramped to determine the stability of equilibria for
the ranges of q with two stable solutions. The data-based bifurcation diagram
shown in Fig. 3.24 is constructed by approximately identifying the location of
all equilibrium points for each solution. The unstable s-equilibrium is computed
from a modified model with vx = 0, and the unstable H-equilibrium is intra-
polated from the stable part of the H-equilibrium. Transcritical bifurcations
occur at approximately qtc1 ≈ 3.4 and qtc2 ≈ 20.4, saddle-node bifurcations
occurs at qsn1 ≈ 8.8, qsn2 ≈ 12.3, qsn3 ≈ 22.1, while Hopf-bifurcations occur at
qH1 ≈ 11.3 and qH2 ≈ 19.0. The s-solution is stable for 0 ≤ q < qtc1 and again
for q > qtc2, the L-solution is stable for qtc1 < q < qsn2, the H-mode is stable for
qtsn1 < q < qH1 and again for qH2 < q < qsn3, and the limit cycle is stable for
qH1 < q < qH2.

When a 1D reduced model has been identified we shall compare bifurcation
diagrams for the reduced model with these bifurcation diagrams for the full
model. The level of similarity between the diagrams will be used as one of the
measures of how well the reduced model approximates the full model.
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Figure 3.23. Bifurcation diagram generated from simulation data for τ = 0. Solid
curves are stable equilibrium points, dashed curves are unstable equilibrium points,
while the dotted curves show the amplitude of the stable limit cycle. The transcritical
bifurcations occurring at approximately qtc1 ≈ 2.92 and qtc2 ≈ 6.28 are marked with
dots, while the Hopf bifurcation occurring at qH ≈ 8.15 is marked with asterisks.
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Figure 3.24. Bifurcation diagram generated from simulated data. Solid curves are
stable equilibrium points, dashed curves are unstable equilibrium points, while the
dotted curve show the amplitude of oscillations. The blue curve is the s-equilibrium,
the red curve is the L-equilibrium, and the yellow curve is the H-equilibrium. The
transcritical bifurcations occurring at approximately qtc1 ≈ 3.4 and qtc2 ≈ 20.4 are
marked with dots, the saddle-node bifurcations occurring at qsn1 ≈ 8.8, qsn2 ≈ 12.3,
qsn3 ≈ 22.1 are marked with diamonds, while the Hopf-bifurcations occurring at
qH1 ≈ 11.3 and qH2 ≈ 19.0 are marked with asterisks.
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3.4 Galerkin dimension reduction

For both τ = 0 and τ = 0.04, the solution patterns for p, ω, vx, and vy seem
to be dominated by a single sinusoidal mode. We use a Galerkin method to
approximate the y-dependence with sinusoidal wave functions and thereby reduce
the space-dimension of the system (3.4) from two to one. The approach consists of
two steps: a Reynolds decomposition followed by an Fourier series approximation
and Galerkin projection onto the Fourier basis functions.

First, we rewrite Eq. (3.4) from vector form to a set of scalar equations. The
equations for the fluid velocity (3.4a) and the electrostatic potential (3.4b) are

vx = −∂yφ, (3.13a)
vy = ∂xφ, (3.13b)

∂2xxφ+ ∂2yyφ = ω − τ(∂2xxp+ ∂2yyp). (3.13c)

We rewrite the convective term in Eq. (3.4c) for the evolution of p,

v · ∇p = vx∂xp+ vy∂yp

= ∂x{pvx}+ ∂y{pvy} − vx∂xp− p∂xvx − vy∂yp− p∂yvy + vx∂xp+ vy∂yp

= ∂x{pvx}+ ∂y{pvy} − p(∂xvx + ∂yvy)

= ∂x{pvx}+ ∂y{pvy}.

Similarly, the convective term in Eq. (3.4d) for the evolution of ω can be written

v · ∇ω = ∂x{ωvx}+ ∂y{ωvy}.

Using this, Eqs. (3.4c)–(3.4d) for the evolution of p and ω can be written as

∂tp = −∂x {pvx} − ∂y{pvy}+ κ(∂2xxp+ ∂2yyp) + S(x), (3.13d)

∂tω = −∂x{ωvx} − ∂y{ωvy} − ∂yp+ ν(∂2xxω + ∂2yyω). (3.13e)

We consider the system (3.13) with the boundary conditions (3.5).

3.4.1 Reynolds decomposition

Reynolds decomposition decompose a function into an average and a fluctuating
part. The function can be averaged over time or space. Here, we average over
the y-variable, which we denote with an overline, while a tilde denotes the
fluctuations

f̄(x, t) =
1

Ly

∫ Ly

0

f(x, y, t) dy,

f̃(x, y, t) = f(x, y, t)− f̄(x, t).
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We note that f̃ = 0, ∂xf = ∂xf̄ , f̄g = f̄ ḡ, and that the periodic boundary
conditions (3.5a) cause ∂yf = 0. We decompose each of the variables vx, vy, φ,
p, and ω into an average over y and a fluctuating part

f(x, y, t) = f̄(x, t) + f̃(x, y, t), f = vx, vy, φ, p, ω. (3.14)

Inserting the Reynolds decomposition (3.14) into Eqs. (3.13a)–(3.13c), and using
∂y f̄ = 0 gives

v̄x + ṽx = −∂yφ̃, (3.15a)

v̄y + ṽy = ∂xφ̄+ ∂xφ̃, (3.15b)

∂2xxφ̄+ ∂2xxφ̃+ ∂2yyφ̃ = ω̄ + ω̃ − τ(∂2xxp̄+ ∂xxp̃+ ∂yyp̃), (3.15c)

∂tp̄+ ∂tp̃ = −∂x{p̄ṽx + p̃ṽx} − ∂y{p̄ṽy + v̄yp̃+ p̃ṽy}
+ κ(∂2xxp̄+ ∂2xxp̃+ ∂2yyp̃) + S,

(3.15d)

∂tω̄ + ∂tω̃ = −∂x{ω̄ṽx + ω̃ṽx} − ∂y{ω̄ṽy + v̄yω̃ + ω̃ṽy}
− ∂yp̃+ ν(∂2xxω̄ + ∂2xxω̃ + ∂2yyω̃).

(3.15e)

Averaging Eqs. (3.15) over y yields

v̄x = 0, (3.16a)
v̄y = ∂xφ̄, (3.16b)

∂2xxφ̄ = ω̄ − τ∂2xxp̄, (3.16c)

∂tp̄ = −∂xp̃ṽx + κ∂2xxp̄+ S, (3.16d)

∂tω̄ = −∂xω̃ṽx + ν∂2xxω̄. (3.16e)

Since f̃ = f − f̄ , we obtain the equations for the fluctuations by subtracting the
averaged equations (3.16) from the decomposed equations (3.15):

ṽx = −∂yφ̃, (3.17a)

ṽy = ∂xφ̃, (3.17b)

∂2xxφ̃+ ∂2yyφ̃ = ω̃ − τ(∂xxp̃+ ∂yyp̃), (3.17c)

∂tp̃ = −∂x{p̄ṽx + p̃ṽx − p̃ṽx} − ∂y{p̄ṽy + v̄yp̃+ p̃ṽy}
+ κ(∂2xxp̃+ ∂2yyp̃),

(3.17d)

∂tω̃ = −∂x{ω̄ṽx + ω̃ṽx − ω̃ṽx} − ∂y{ω̄ṽy + v̄yω̃ + ω̃ṽy}
− ∂yp̃+ ν(∂2xxω̃ + ∂2yyω̃).

(3.17e)

The Reynolds decomposition is exact, meaning no approximations have been
made to rewrite the set of equations (3.13) into the set of averaged equations
(3.16) with no y-dependence and the set of equations (3.17) for the fluctuations.
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3.4.2 Galerkin projection

To reduce the set of equations (3.16)–(3.17), we approximate the fluctuation
variables with their truncated Fourier series,

f̃(x, y, t) =

N∑
k=−N

fk(x, t)eikay, a =
2π

Ly
, f = vx, vy, φ, p, ω.

Here, fk, k = 0, 1, . . . , N are the Fourier coefficients, and f−k = f∗k , where the
asterisk denotes the complex conjugate. To simplify the equations as much as
possible, we truncate the series at N = 1. Since these variables are zero on
average, f0 = 0, and we obtain the truncation

f̃(x, y, t) = f1(x, t)eiay + f∗1 (x, t)e−iay, f = vx, vy, φ, p, ω. (3.18)

Eqs. (3.16a)–(3.16c) contain no fluctuation terms and require no rewriting. In
Eq. (3.16d), the expression p̃ṽx enters as the flux of p̄. Inserting the truncated
expansions (3.18) into this expression yields

p̃ṽx = (p1eiay + p∗1e
−iay)(vx,1eiay + v∗x,1e

−iay)

= p1vx,1e2iay + p1v
∗
x,1 + p∗1vx,1 + p∗1v

∗
x,1e

−2iay

= p1v
∗
x,1 + p∗1vx,1,

where we have used that e±2iay = 0 due to Ly-periodicity of that function.
Similarly, for the flux of ω̄ in Eq. (3.16e) we get

ω̃ṽx = ω1v
∗
x,1 + ω∗1vx,1.

Inserting the truncated series (3.18) into Eq. (3.17a) gives

vx,1e
iay + v∗x,1e

−iay = −iaφ1eiay + iaφ∗1e
−iay. (3.19)

We now project Eq. (3.19) onto eiay by taking the inner product of each term
with eiay. In the current notation the inner product 〈·, ·〉 of two functions f and
g is

〈f, g〉 = fg∗.

Hence, the projection of Eq. (3.19) onto eiay is

vx,1 = −iaφ1. (3.20a)

Similarly, inserting the truncated expansions (3.18) into Eqs. (3.17b)–(3.17c)
and projecting onto eiay gives

vy,1 = ∂xφ1, (3.20b)

∂2xxφ1 = a2φ1 + ω1 − τ
(
∂xxp1 − a2p1

)
, (3.20c)

∂tp1 = −∂x{p̄vx,1} − ia(p̄vy,1 + v̄yp1) + κ(∂2xxp1 − a2p1), (3.20d)

∂tω1 = −∂x{ω̄vx,1} − ia(ω̄vy,1 + v̄yω1)− iap1 + ν(∂2xxω1 − a2ω1). (3.20e)
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To summarize, the reduced model is

v̄y = ∂xφ̄, (3.21a)

∂2xxφ̄ = ω̄ − τ∂2xxp̄, (3.21b)

∂tp̄ = −∂x
{
p1v
∗
x,1 + p∗1vx,1

}
+ κ∂2xxp̄+ S, (3.21c)

∂tω̄ = −∂x
{
ω1v
∗
x,1 + ω∗1vx,1

}
+ ν∂2xxω̄, (3.21d)

vx,1 = −iaφ1, (3.21e)
vy,1 = ∂xφ1, (3.21f)

∂2xxφ1 = a2φ1 + ω1 − τ(∂2xxp1 − a2p1), (3.21g)

∂tp1 = −∂x {p̄vx,1} − ia(p̄vy,1 + v̄yp1) + κ
(
∂2xxp1 − a2p1

)
, (3.21h)

∂tω1 = −∂x{ω̄vx,1} − ia(ω̄vy,1 + v̄yω1)− iap1 + ν(∂2xxω1 − a2ω1). (3.21i)

The pressure source is

S(x) = qe−
x2

2σ2 . (3.21j)

For the averaged pressure p̄ and the fluctuation Fourier coefficient p1, we apply a
Neumann boundary condition at the left boundary, and a zero Dirichlet boundary
condition at the right boundary,

∂xp̄(0, t) = ∂xp1(0, t) = 0, p̄(Lx, t) = p1(Lx, t) = 0. (3.22a)

For the averaged electrostatic potential and perturbed vorticity, and the fluctua-
tion Fourier coefficients of the electrostatic potential and perturbed vorticity, we
apply Dirichlet boundary conditions at both the left and right boundaries,

f̄(0, t) = f̄(Lx, t) = 0, f1(0, t) = f1(Lx, t) = 0, f = φ, ω. (3.22b)

As initial condition, each of the averaged system variables is set to zero at t = 0,

f̄(x, 0) = 0, f = p, ω, φ. (3.23a)

Some of the fluctuation Fourier coefficients must have nonzero initial values to
be allowed to grow. The initial conditions for these coefficients are

p1(x, 0) = 10−3 cos
(
πx
2Lx

)
, ω1(x, 0) = 10−3 sin

(
2πx
Lx

)
, φ1(x, 0) = 0.

(3.23b)

Utilizing the approximation (3.18), the three energies (3.12) can be written as

P = 〈xp̄〉, N = 〈|vx,1|2 + |vy,1|2〉, F =
1

2
〈v̄2y〉. (3.24)
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Figure 3.25. For τ = 0.00 and q(t) =
30t/400, the time evolution of the ener-
gies P , N , and F for the solution to the
reduced model.
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Figure 3.26. For τ = 0.02 and q(t) =
30t/400, the time evolution of the ener-
gies P , N , and F for the solution to the
reduced model.

3.4.3 Solution examples

To compare the reduced problem (3.21)–(3.23) with the full problem (3.4)–(3.6),
we again show plots of some solutions where q increases linearly in time from
zero to 30.

Figures 3.25–3.28 show the solutions for τ = 0.00, τ = 0.02, τ = 0.04, and
τ = 0.06, respectively. These solutions look very similar to the corresponding
solutions for full model in Figs. 3.3–3.6. For τ = 0, the solution to the reduced
model qualitatively identical to the solution to the full model, but the transitions
between states occur at slightly different times. For τ = 0.02, the solution to
the full model converges to an equilibrium in the second phase, but the reduced
model replaces this phase with an additional oscillating phase. For τ = 0.04, the
solutions to the reduced model is again qualitatively identical to the solution to
the full model, but the transitions occur at slightly different times. For τ = 0.06,
the solutions to the full and reduced models are visually identical.

Solution comparisons for other parameter values are shown in the appendix of
this chapter, Section 3.A.
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Figure 3.27. For τ = 0.04 and q(t) =
30t/400, the time evolution of the ener-
gies P , N , and F for the solution to the
reduced model.

0

5

10

P

0

0.005

0.01

N

0 100 200 300 400
t

0
0.1
0.2
0.3

F

Figure 3.28. For τ = 0.06 and q(t) =
30t/400, the time evolution of the ener-
gies P , N , and F for the solution to the
reduced model.

3.4.4 Data-based bifurcation diagrams

For τ = 0, simulation data for P , N , and F was generated for q ∈ {0, 0.1, . . . , 10}
by solving the reduced model (3.21)–(3.23). By approximately identifying the
location of all equilibrium points for each solution, the data-based bifurcation
diagram shown in Fig. 3.29 was generated. This bifurcation diagram is very
similar to the data-based bifurcation diagram for the original PDE problem
in Fig. 3.23: The same types of bifurcations occur, but they occur at slightly
different shifted values of q.

Similarly, for τ = 0.04, simulation data for P , N , and F was generated for
q ∈ {0, 0.2, . . . , 24} by solving the reduced model (3.21)–(3.23). By approximately
identifying the location of all equilibrium points for each solution, the data-based
bifurcation diagram shown in Fig. 3.30 was generated. This bifurcation diagram
is similar to the data-based bifurcation diagram for the original PDE problem
in Fig. 3.24: The same types of bifurcations occur, but they occur at slightly
different shifted values of q.

For these chosen parameter values, the reduced model approximates the full
model well.
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Figure 3.29. Bifurcation diagram generated from simulation data for τ = 0. Solid
curves are stable equilibrium points, dashed curves are unstable equilibrium points,
while the dotted curves show the amplitude of the stable limit cycle. The transcritical
bifurcations occurring at approximately qtc1 ≈ 2.90 and qtc2 ≈ 5.87 are marked with
dots, while the Hopf bifurcation occurring at qH ≈ 7.80 is marked with asterisks.
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Figure 3.30. Bifurcation diagram generated from simulated data for τ = 0.04.
Solid curves are stable equilibrium points, dashed curves are unstable equilibrium
points, while the dotted curve show the amplitude of oscillations. The blue curve
is the s-equilibrium, the red curve is the L-equilibrium, and the yellow curve is the
H-equilibrium. The transcritical bifurcations occurring at approximately qtc1 ≈ 3.4 and
qtc2 ≈ 20.6 are marked with dots, the saddle-node bifurcations occurring at qsn1 ≈ 8.8,
qsn2 ≈ 12.8, qsn3 ≈ 22.1 are marked with diamonds, while the Hopf-bifurcations
occurring at qH1 ≈ 10.7 and qH2 ≈ 19.9 are marked with asterisks.
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3.5 Conclusion

A convection problem with a pressure source centered at the left boundary
models the plasma dynamics at the edge of a magnetically confined plasma. The
vorticity is perturbed by a term directly proportional to the pressure curvature.
The introduction of this perturbation is inspired by the generalized vorticity in
the HESEL model [44]. The perturbation of the vorticity generates an additional
zonal flow in the plasma.

The solution to the convection problem is characterized by three state variables:
the potential energy related to the pressure gradient, P , the fluctuation energy,
N , and the zonal flow energy, F . Depending on the strength of the pressure
source, q, we identified four different types of solutions to the convection problem.
Three of these solution types corresponded to equilibrium points and the fourth
type corresponded to a limit cycle in the (P,N, F )-state space. For perturbed and
unperturbed vorticity, simulation data was generated for multiple fixed values
of q by computing and saving the three energy variables P , N , and F at each
output time step while solving the convection problem. Data-based bifurcation
diagrams were constructed for the convection model with the unperturbed
vorticity and with the perturbed vorticity. The perturbation of the vorticity
alters the bifurcation diagram significantly, resulting in phenomena such as
dual-stability and hysteresis.

By carrying out a Reynolds decomposition of each state variable in the 2D
convection model, followed by a Fourier series approximation and Galerkin
projection, we derive a reduced convection model, which requires significantly
less computational resources to solve. The data-based bifurcation diagrams
for the reduced model reveal that the reduced model has the same bifurcation
structure as the full model.

We have demonstrated an approach to derive 1D reduced models from 2D plasma
models. For the set of investigated parameter values, the reduced model contains
the same physics as the full model. In comparison to the full 2D model, the
less computationally demanding 1D model allows easier analysis of parameter
dependence and the connection of specific terms to specific physics.
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3.A Appendix: Solution comparisons for other
parameter values

This section contains comparisons of solutions to the full model (3.4)–(3.6) and
the reduced model (3.21)–(3.23) for parameter values different from the ones
listed in Table 3.1. In all cases the source strength ramps up as linearly in time
as q(t) = 30t/400, and the solution is obtained for t ∈ [0, 400].

Figures 3.31–3.38 show comparisons for Ra = 625 corresponding to ν = κ = 0.04
for τ = 0, 0.02, 0.04, and 0.06. For the same set of parameter values, the exact
solutions to the full model and the reduced model differ visibly, but qualitatively
the solutions seem to be follow the same pattern of transitions between different
modes as q increases.

Figures 3.39–3.42 show comparisons for Ra = 2500 corresponding to ν = κ = 0.02
for τ = 0 and τ = 0.02. For the same set of parameter values, we see again the
same qualitative transitional behavior for the full model and the reduced model.

Figures 3.43–3.48 show comparisons for Ly = 1.2 for τ = 0, 0.02, and 0.04. For
the same set of parameter values, the same solutions are qualitative similar for
the full model and the reduced model.

Figures 3.49–3.50 show comparisons for Ly = 1.4 for τ = 0. Here, no zonal
flow is generated in the full model, while the solution to the reduced model is
qualitatively similar to the Ly = 1.2 solution. Accordingly, the solutions to the
full model and the reduced model are qualitatively different for Ly = 1.4.



3.A Appendix: Solution comparisons for other parameter values 67

0
2
4
6
8

P

0

0.1

0.2

N

0 100 200 300 400
t

0
0.2
0.4
0.6

F

Figure 3.31. For Ra = 625, the τ = 0
solution to the full problem for q(t) =
30t/400.
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Figure 3.32. For Ra = 625, the τ = 0
solution to the reduced problem for q(t) =
30t/400.
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Figure 3.33. For Ra = 625, the τ = 0.02
solution to the full problem for q(t) =
30t/400.
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Figure 3.34. For Ra = 625, the τ = 0.02
solution to the reduced problem for q(t) =
30t/400.
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Figure 3.35. For Ra = 625, the τ = 0.04
solution to the full problem for q(t) =
30t/400.
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Figure 3.36. For Ra = 625, the τ = 0.04
solution to the reduced problem for q(t) =
30t/400.
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Figure 3.37. For Ra = 625, the τ = 0.06
solution to the full problem for q(t) =
30t/400.
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Figure 3.38. For Ra = 625, the τ = 0.06
solution to the reduced problem for q(t) =
30t/400.
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Figure 3.39. For Ra = 2500, the τ = 0
solution to the full problem for q(t) =
30t/400.
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Figure 3.40. For Ra = 2500, the τ = 0
solution to the reduced problem for q(t) =
30t/400.
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Figure 3.41. For Ra = 2500, the τ =
0.02 solution to the full problem for q(t) =
30t/400.
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Figure 3.42. For Ra = 2500, the τ =
0.02 solution to the reduced problem for
q(t) = 30t/400.
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Figure 3.43. For Ly = 1.2, the τ = 0
solution to the full problem for q(t) =
30t/400.
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Figure 3.44. For Ly = 1.2, the τ = 0
solution to the reduced problem for q(t) =
30t/400.
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Figure 3.45. For Ly = 1.2, the τ = 0.02
solution to the full problem for q(t) =
30t/400.
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Figure 3.46. For Ly = 1.2, the τ = 0.02
solution to the reduced problem for q(t) =
30t/400.
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Figure 3.47. For Ly = 1.2, the τ = 0.04
solution to the full problem for q(t) =
30t/400.
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Figure 3.48. For Ly = 1.2, the τ = 0.04
solution to the reduced problem for q(t) =
30t/400.
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Figure 3.49. For Ly = 1.4, the τ = 0
solution to the full problem for q(t) =
30t/400.
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Figure 3.50. For Ly = 1.4, the τ = 0
solution to the reduced problem for q(t) =
30t/400.
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Chapter 4
Sparse identification of a

predator-prey system from
simulation data of a

convection model

The use of low-dimensional dynamical systems as reduced models for
plasma dynamics is useful as solving an initial value problem requires
much less computational resources than fluid simulations. We utilize a
data-driven modeling approach to identify a reduced model from simulation
data of a convection problem. A convection model with a pressure source
centered at the inner boundary models the edge dynamics of a magnetically
confined plasma. The convection problem undergoes a sequence of bifurca-
tions as the strength of the pressure source increases. The time evolution
of the energies of the pressure profile, the turbulent flow, and the zonal
flow capture the fundamental dynamic behavior of the full system. By
applying the sparse identification of nonlinear dynamics (SINDy) method,
we identify a predator-prey type dynamical system that approximates the
underlying dynamics of the three energy state variables. A bifurcation ana-
lysis of the system reveals consistency between the bifurcation structures,
observed for the simulation data, and the identified underlying system. An
attempt to identify a reduced model from simulation data of a perturbed
vorticity convection problem was unsuccessful.
The results in this chapter are published in Physics of Plasmas [23].
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4.1 Introduction

The perpendicular edge transport of a magnetically confined plasma is largely
governed by convective plasma flows. The plasma flows can be decomposed into
a non-zonal (turbulent, fluctuating) flow and a zonal flow. The non-zonal flow
increases the radial transport and generates a Reynolds stress that drives the
zonal flow. The zonal flow is in the poloidal direction along the magnetic flux
surfaces and varies radially. This sheared poloidal flow constitutes a transport
barrier that decreases the radial transport of plasma. While the zonal flow is
turbulence-driven, it also suppresses the turbulent flow. This type of interaction
between the turbulent energy and the zonal flow energy resembles mathematically
the interaction between populations of predators and preys. The interaction
between turbulent flow and zonal flow has therefore been modeled by predator-
prey systems, where the zonal flow acts as the predator and the turbulent flow
acts as the prey [38, 62]. The creation of an edge transport barrier formed
by a sheared zonal flow is closely related to the L–H transition [69]. Ordinary
differential equation (ODE) models for the L–H transition are based on the
predator-prey relationship between zonal flow and turbulent flow, and incorporate
a potential energy related to the pressure profile as an additional state variable [6,
8, 22, 46, 56, 68, 78–80]. Miki et al. [60] and Wu et al. [77] have both suggested
1D partial differential equation (PDE) models for the L–H transition based on
this predator-prey relationship.

Reduced ODE models, describing the interaction between zonal flow and turbu-
lent flow, are very useful. ODE models require much less computational resources
to solve and they are much easier to analyze than the corresponding fluid equa-
tions. When building a mathematical model, there are basically two different
approaches to choose among. The first one is physical modeling, where the
model is derived from theory. The second approach is system identification [53],
where observed data from the real system is used to model the system. System
identification is a large and diverse field and many methods exist for determining
the governing equations of a system from data. The choice of an identification
method depends on the desired model type, prior knowledge about the model
structure, and other model assumptions.

Most current predator-prey models for the interaction between zonal flow and
turbulent flow are obtained by physical modeling with many approximations
and assumptions. The Ball-Dewar-Sugama model [8] is loosely derived from ap-
proximate resistive magnetohydrodynamics momentum and pressure convection
equations, and the Kim-Diamond model [46] is loosely derived from the linearized
wave-kinetic equation. Even though these models reproduce qualitative dynamics
similar to experimental observations, they fail to be quantitatively predictive.
Kobayashi, Gürcan, and Diamond [48] use an identification approach, where
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they assume that a Lotka-Volterra model describes the interaction between zonal
flow and turbulent flow, and fit the model coefficients to data obtained from
full gyrokinetic simulations. However, this simple model fails to describe the
dynamics away from the limit cycle attractor.

This chapter demonstrates an alternative approach for building ODE models
for plasma dynamics. We extract a model from data instead of obtaining the
model using physics-based arguments. Specifically, we determine the underlying
structure of a nonlinear dynamical system from simulations of a convection
problem with a pressure source centered at the left boundary. The convection
problem undergoes a sequence of transitions as the strength of the pressure
source increases. These transitions are similar to the ones observed in more
accurate plasma models. The time evolution of the energies of the pressure
profile, the turbulent flow, and the zonal flow captures the bifurcating behavior of
the full convection problem. We model these three energy state variables with a
continuous deterministic dynamical system and assume no prior knowledge about
the structure of the dynamical system. For the system identification process
we apply the sparse identification of nonlinear dynamics (SINDy) method [17]
and aim to build a model that quantitatively reproduces the dynamics and
bifurcations observed in the simulation data. The method is general enough
that the same approach can be used if the simulation data were replaced by
measurement data.

4.2 Sparse identification of nonlinear dynamics
(SINDy)

System identification is a modeling approach where observed data from a real
system is used to built a model of the system [54]. System identification is a
large and diverse field and many methods exist for determining the governing
equations of a system from data [53]. Which identification method to choose
depends on which type of model we want, how much prior knowledge we have
about the model structure, and which other assumptions we make about the
model. In the present case, we assume no prior knowledge about the structure
of the dynamical system, and we want to model the system with a continuous
deterministic nonlinear dynamical system. To obtain this we choose to use the
method called SINDy (Sparse identification of nonlinear dynamics) [17].

In their paper, Brunton, Proctor, and Kutz [17] describe thoroughly the SINDy
algorithm. Here, we give a summary of the algorithm, followed by a test of our
implementation of the algorithm in Matlab.
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4.2.1 The SINDy algorithm

SINDy [17] is a method that seeks to identify an underlying dynamical system
from time-series data. We give here a brief summary of the algorithm description.
Based on a set of data we seek a dynamical system,

ẋ = f(x), x ∈ Rn. (4.1)

Here, x(t) =
[
x1(t) x2(t) · · · xn(t)

]ᵀ is the state variable vector and f =[
f1(x) f2(x) · · · fn(x)

]ᵀ is the vector field. We want to determine the
function f from data. In the data-collection process, we sample a time-series
of the state x(t) and either measure the derivative ẋ(t) or approximate it
numerically from the time-series of x(t). The data x(t`) and ẋ(t`), ` = 1, . . . ,m
is arranged into two matrices

X =


xᵀ(t1)
xᵀ(t2)

...
xᵀ(tm)

 =


x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
...

. . .
...

x1(tm) x2(tm) · · · xn(tm)

 ,

Ẋ =


ẋᵀ(t1)
ẋᵀ(t2)

...
ẋᵀ(tm)

 =


ẋ1(t1) ẋ2(t1) · · · ẋn(t1)
ẋ1(t2) ẋ2(t2) · · · ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)

 .
We construct an augmented library Θ(X) consisting of candidate functions of
the columns of X. The candidate functions could be a constant, polynomials,
trigonometric terms, etc. Here, we will be using polynomial terms as candidate
functions,

Θ(X) =
[
1 X XP2 XP3 · · ·

]
,

where XPi are ith order polynomials of X. Each column of Θ(X) represents
a candidate function for the vectorfield f(x). We assume that only a few of
these terms are active in each row of f(x). We can then write f(X) = Θ(X)Ξ,
where Ξ =

[
ξ1 ξ2 · · · ξn

]
is a sparse matrix of coefficients. The coefficients

matrix Ξ can be determined from the sparse regression problem

Ẋ = Θ(X)Ξ. (4.2)

Each column ξk of Ξ is a sparse vector of coefficients and determines which terms
are active in the right-hand side of the corresponding row equation ẋk = fk(x)
in (4.1). Once Ξ has been determined, each row of f may be determined by

ẋk = fk(x) = Θ(xᵀ)ξk, k = 1, . . . , n.
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To solve for Ξ in (4.2), we implement the algorithm described in Ref. [17]. Let
Θ(X) have dimensions m× p where p is the number of candidate functions and
m the number of time samples. We assume m� p since there are many more
time samples of data than there are candidate functions. Since both X and Ẋ
are generally contaminated with noise, (4.2) does not hold exactly. Instead

Ẋ = Θ(X)Ξ + ηZ, (4.3)

where Z is a matrix of independent identically distributed Gaussian entries with
zero mean, and η is the noise magnitude. We seek to solve for Ξ in (4.3). To
ensure the restricted isometry property holds, we normalize the columns of Θ(X)
to a length of 1 by dividing each column by the `2-norm of that column [74].
Let l2 denote the vector of `2-norms of the columns of Θ(X). We use that
diag(1/l2) = [diag(l2)]−1 to define a scaled coefficients matrix such that the
structure of (4.3) is unchanged,

Θ(X)Ξ = Θ(X)diag(1/l2)︸ ︷︷ ︸
Θsc(X)

diag(l2)Ξ︸ ︷︷ ︸
Ξsc

= Θsc(X)Ξsc.

The implementation in Matlab for the normalization of Θ(X) is

l2 = sqrt(sum(Theta.^2,1))'; % The l2−norm of each column of Theta
% Arrange 1/l2 in a sparse diagonal matrix of size p x p
l2diaginv = spdiags(1./l2,0,p,p);
Theta = Theta*l2diaginv; % Normalize each column of Theta to 1

The normalized coefficient matrix Ξsc is now computed with the sequential
thresholded least-squares algorithm

%% compute Sparse regression: sequential least squares
Xi = Theta\dXdt; % initial guess: Least−squares
% lambda is our vector of sparsification knobs.
for k=1:10

smallinds = (abs(Xi)<ones(p,1)*lambda); % find small
coefficients

Xi(smallinds)=0; % and threshold
for ind = 1:n % n is state dimension

biginds = ~smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi
Xi(biginds,ind) = Theta(:,biginds)\dXdt(:,ind);

end
end

In the algorithm, Ξsc is initialized as the least-squares solution. In each column
of Ξsc, all elements in the coefficient vector ξk,sc, smaller than a threshold value
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λk, are set to zero. Then, a new least-squares solution for Ξsc is obtained for
the remaining non-zero indices. These new coefficients are again set to zero if
they are smaller than their column’s threshold value, λk, and the procedure
is continued until the non-zero elements of Ξsc converge. Finally, the non-
normalized coefficient matrix is given by Ξ = diag(1/l2)Ξsc. The implementation
code in Matlab for this is

Xi = l2diaginv*Xi; % The non−normalized Xi

The algorithm is easily adjusted to include dependence on a parameter, i.e., to
consider systems on the form

ẋ = f(x;µ), x ∈ Rn. (4.4)

The parameter µ is simply treated as an additional state variable with zero time
derivative in the algorithm. The identification must then be based on a collection
of time series of the state variables obtained for multiple fixed values of the
parameter. The algorithm also allows time-dependence and external forcing of
the vector field, i.e., systems on the form

ẋ = f(x,u(t), t), x ∈ Rn. (4.5)

Here, the time variable t and the external forcing u(t) are just added in the
algorithm as additional variables.

4.2.2 Algorithm test

To test the implementation of the algorithm in Matlab, we use simulation data
collected from a known dynamical system, to test whether the algorithm can
identify the dynamical system from the data alone. We consider the following
model, which is a modification of the Ball-Dewar-Sugama L–H transition model
[5, 8] to include only polynomial terms of the state variables P , N and F :

Ṗ = q − χP − γPN, (4.6a)

Ṅ = γPN − βN2 − αNF, (4.6b)

Ḟ = αNF − aPNF. (4.6c)

We use the parameter values listed in Table 4.1. We collect simulation data from
t = 0 to t = 50 with a time step of ∆t = 0.05. A plot of the resulting solution is
shown in Fig. 4.1. The time-derivatives are calculated by inserting the solution
(P (t), N(t), F (t)) into the right-hand side of Eq. (4.6).
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q χ γ β α a

0.5 0.1 5.0 20.0 200 280

Table 4.1. Parameter values for Eqs.
(4.6) and (4.8).

ϕ b

0.05 0.4

Table 4.2. Parameter values for the non-
polynomial terms in Eq. (4.8).

We choose the augmented library Θ(X) to consist of candidate polynomials up
to third order,

Θ(X) =
[
1 P N F P2 · · · F2 P3 · · · F3

]
. (4.7)

The SINDy algorithm rediscover all the right terms and the values of the six
parameters are determined with high precision. This shows that the algorithm
works exactly as intended.

For this test, we included candidate polynomials up to third order. If the order of
polynomials included becomes too high, a degeneracy in the sparse identification
algorithm occurs, where the low-order polynomials are being approximated by
high-order polynomials. This can be avoided by initially running the SINDy
algorithm with only low-order terms, and then subsequently include higher order
terms until the algorithm either converges or diverges.

The paper by Brunton, Proctor, and Kutz [17] includes a demonstration of how
well the algorithm works when the data is contaminated with noise. The data, we
will be working with, is simulated and represents a true solution to the problem.
However, it is very likely that the data can not be represented by a polynomial
dynamical system.

To test how well the algorithm works when we attempt to identify a non-
polynomial dynamical system by using only polynomial candidate functions, we
consider the Ball-Dewar-Sugama model [5, 8] for the L–H transition given by
Eqs. (4.6a), (4.6b) and

Ḟ = αNF − µF + ϕF 1/2, (4.8a)

µ = bP−3/2 + aPN. (4.8b)

Compared to the polynomial model (4.6), the equation for F now has two
additional non-polynomial terms. For the polynomial terms, we again use the
parameter values listed in Table 4.1, and for the non-polynomial terms, we use
the parameter values listed in Table 4.2. The parameter values are chosen such
that the dynamics is still dominated by the polynomial terms. Simulation data
is collected following the same procedure as in the previous case.
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Figure 4.1. Solution example of the dy-
namical system (4.6) with the parameter
values listed in Table 4.1 and initial con-
dition P (0) = N(0) = F (0) = 10−20.
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Figure 4.2. Solution example of the mo-
del (4.6a)–(4.6b) and (4.8) with the para-
meter values listed in Table 4.1–4.2 and
initial condition P (0) = 10−3, N(0) =
F (0) = 10−20.

Figure 4.2 shows a plot of the simulation data. We use the same augmented
library (4.7) as before with candidate polynomials up to third order. The
coefficients in the equations for P and N , i.e. Eqs. (4.6a) and (4.6b) are again
identified with high precision. The equation for F is identified to be on the form

Ḟ = α2NF − aPNF

with α2 = 189.7377, a = 268.1396. In this case, where the polynomial terms are
dominating, the two non-polynomial terms are identified as modifications to the
coefficients of the correctly identified polynomial terms.

When working with data generated by non-polynomial systems, the sparsity
coefficients λk in the SINDy algorithm must be chosen by the trial and error
method until SINDy identifies a satisfactory number of active terms. The number
of desired terms is a modeling choice that must be made based on a combination
of prior knowledge about the model structure and by computing test solutions
to the different possible models, to see which model most accurately reproduces
the data.
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4.3 Simulation data generation

We consider viscous plasma flow in a rectangular domain at the edge of a
magnetically confined plasma in the plane perpendicular to the magnetic field
B = B0ez. The flow is described using Cartesian coordinates (x, y) ∈M , where
M = [− 2

5Lx,
3
5Lx]× [− 1

2Ly,
1
2Ly].

We again model the plasma dynamics with the convection model (3.4) and use
the parameters in Table 3.1. The different states the solutions approach and the
data-based bifurcation diagrams for the solutions to the model with τ = 0 and
τ = 0.04 are shown in Section 3.3.5.

For each time step, we store the potential energy related to the pressure profile
P , the turbulent energy N , and the zonal flow energy F , defined by

P = 〈xp〉, N =
1

2
〈ṽ2x + ṽ2y〉, F =

1

2
〈v̄2y〉. (4.9)

In addition, we save for each time step the numerically computed time-derivatives
Ṗ , Ṅ , and Ḟ .

For τ = 0, the time-derivatives of the energies (4.9) for the system (3.4) can be
written as

Ṗ = q
σ2

Lx

(
1− e−

L2
x

2σ2

)
+ κ〈x∂2xxp〉+ 〈vxp〉, (4.10a)

Ṅ = −〈vxp〉 − ν〈Ω2〉 − ν〈v̄y∂2xxv̄y〉+ 〈v̄y∂xṽxṽy〉, (4.10b)

Ḟ = −〈v̄y∂xṽxṽy〉+ ν〈v̄y∂2xxv̄y〉. (4.10c)

A physical modeling approach would use this set of equations as a starting point.
In Eq. (4.10a), the source term, which is proportional to q, causes an increase in
P . The diffusion term dampens P . The last term in Eq. (4.10a) and the first
term in Eq. (4.10b) is the pressure energy flux that transfers energy between
the potential energy and the turbulent flow energy. The first viscosity term in
Eq. (4.10b), ν〈Ω2〉, suppresses N , while the two last terms are equal to −Ḟ .
The last term in Eq. (4.10b) and the first term in Eq. (4.10c) derive from the
Reynolds stress, ṽxṽy. The Reynolds stress is generated by the turbulent flow
and drives the zonal flow. The last term in Eq. (4.10c) dampens the zonal flow
energy due to viscosity.
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4.4 Identification of transition dynamics for the
unperturbed model

This section considers simulation data from the convection model with τ = 0.
As shown in Fig. 3.23, the simulation data transitions between four qualitatively
different types of solutions when q varies in [0, 10]. We identify the governing
system by modeling the four states of the system stepwise to progressively include
more complicated dynamics in the model. We restrict the candidate polynomials
of the model to be up to second order. It is observed that the inclusion of third
order polynomials fails to improve the model further.

4.4.1 Modeling the s-state

When q < qtc1, the solution converges to the static equilibrium, where P > 0,
N = F = 0. In the s-state, v = 0 and Ω = 0, and the Reynolds decomposition
(3.16) of the convection model reduces to

∂tp̄ = S + κ∂2xxp̄.

Hence, the time-derivative of P = 〈xp̄〉 is

Ṗ = 〈xS〉+ κ〈x∂2xxp̄〉.

Assuming ∂2xxp̄ is proportional to p̄, we expect Ṗ to depend linearly on P and q.

We apply the SINDy algorithm to identify the governing equation for the time
evolution of P . For this we use simulation data generated by solving Eq. (3.4)
for q ∈ {0.0, 0.1, . . . , 2.9} such that the data includes 30 time series of P (t) and
Ṗ (t) at increasing q-values. We choose as candidate functions a linear function
of q, and first and second order polynomial terms of P :

Θ(q,P ) =
[
q P P 2

]
.

From the simulation data, SINDy identifies the following sparse model:

Ṗ = rq − χP, (4.11)

with r = 4.311× 10−2 and χ = 0.1031. Comparing Eq. (4.11) with Eq. (3.4c),
we see that the first term on the right-hand side of Eq. (4.11) derives from the
source term S and the second term derives from the diffusion term, κ∇2

⊥p. The
model (4.11) has the unique equilibrium point

Ps =
r

χ
q.
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Figure 4.3. The static equilibrium value Ps as a function of q for the data (circles)
and the model (solid line).

The plot in Fig. 4.3 compares the values of Ps as a function of q for the simulation
data and the model. The position of the s-equilibrium is accurately described
by the model. Figure 4.4 shows comparisons of the time series data for P
and solutions to the model (4.11) with initial condition P (0) = 0 for three
different values of q. Figure 4.5 shows the corresponding comparisons of the
time-derivative Ṗ . The model solutions approximate the dynamics of the
simulation data sufficiently well that we will be using this model to describe the
s-state.

4.4.2 Modeling the L-state

When qtc1 < q < qtc2, the solution converges to the L-equilibrium, where
P,N > 0 and F = 0. We apply the SINDy method to identify the underlying
system for the time evolution of P and N . For this we use simulation data for
q = {0.0, 0.1, . . . , 6.2}. We restrict the equations for Ṗ and Ṅ to be up to second
order polynomials:

Θ(q,P ,N) =
[
q P N P 2 PN N2

]
.

To pass on the parameter values determined, we model Ṗ − rq + χP with the
values of r and χ determined in Section 4.4.1.
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Figure 4.4. The time evolution of P as given by the simulation data and as described
by the model for three different values of q.
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Figure 4.5. The time evolution of Ṗ as given by the simulation data and as described
by the model for three different values of q.
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With these settings, the SINDy algorithm identifies the following model:

Ṗ = rq − χP − η1N − η2N2 + η3NP, (4.12a)

Ṅ = N(γP − β1 − β2N) (4.12b)

with r = 4.311× 10−2, χ = 0.1031, η1 = 7.317, η2 = 41.13, η3 = 4.700,
γ = 1.953, β1 = 2.422, β2 = 17.72. The model (4.12) for the L-state reduces to
the model (4.11) for the s-state when N = 0 as intended. In Eq. (4.12a), three
additional terms have been added when compared with Eq. (4.11).

When the L-equilibrium becomes stable and N converges to the positive value
NL, then P converges to PL, which is smaller than Ps. So the fluctuating
energy N causes a decrease in P . This effect is modeled by the two terms with
coefficients η1 and η2. When N initially begins to increase, the value of P also
increases temporarily, resulting in a little bump on the curve of P (t). This effect
is described by the term with coefficient η3.

Equation (4.12b) describes the evolution of the fluctuation energy N . When the
pressure gradient becomes sufficiently steep, the constant profile characterizing
the s-solution becomes unstable and a fluctuating flow is generated. This effect
is modeled in Eq. (4.12b) by the term with coefficient γ. Dissipation causes the
fluctuation energy N to be self-damped. This is described by the terms with
coefficients β1 and β2.

The L-equilibrium becomes stable at a transcritical bifurcation at qtc1 = β1χ/(γr) =
2.967, which is close to the data-derived value of qtc1 ≈ 2.92. The plots in Fig. 4.6
compare PL and NL as functions of q for the simulation data and the model.
The model approximates the position of the L-equilibrium well.

Figure 4.7 shows comparisons of the simulation data and solutions to the mo-
del (4.12) for three different values of q. As initial conditions for system (4.12),
we used P (0) = 0, while N(0) was chosen to make the initial increase in N fit the
corresponding simulation data: N(0) = 1× 10−9 for q = 4, N(0) = 2× 10−11

for q = 5, and N(0) = 2.5× 10−12 for q = 6. The plots in Fig. 4.7 show that
the small bump in the curve of P (t) created by the sudden increase in N(t) is
captured by the model. The fast increase in N and the subsequent monotonic
decrease to the equilibrium value NL is also contained in the model.

Since the model captures the position of the L-equilibrium and approximately
reproduces the time series data quantitatively correct, we will use this model to
describe the L-state.
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Figure 4.6. PL (top) and NL (bottom) as functions of q for the data (circles) and
the model (solid lines).
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by the simulation data and for the model solution for different values of q.
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4.4.3 Modeling the H-state and the limit cycle state

When qtc2 < q < qH, the solution converges to the H-equilibrium, where
P,N, F > 0. For q > qH, the H-equilibrium is unstable and the solution
converges to a limit cycle.

We apply SINDy to identify the governing equations for both of these states
simultaneously. The system is identified in the space of polynomials (P,N, F )
up to the second order:

Θ(q,P ,N ,F ) =
[
q P N F P 2 PN · · · F 2

]
.

We again restrict the model to contain the previously found terms, i.e., instead
of identifying equations for Ṗ and Ṅ directly, we identify equations for Ṗ − rq +
χP + η1N + η2N

2 − η3NP and Ṅ − N(γP − β1 − β2N) with the previously
determined coefficients.

In this case, SINDy identifies different models depending on which values of q
we include data for. This indicates that the dynamics can not be accurately
described in terms of the candidate polynomials. In the data-based bifurcation
diagram in Fig. 3.23, we see that when the H-equilibrium is stable, PH and FH
are increasing as functions of q, while NH is slightly decreasing as a function of
q.

When including data for q ∈ {0.0, 0.1, . . . , 9.2}, SINDy identifies the equation for
the time evolution of F as Ḟ = F (α2N − µ). This expression makes NH = µ/α2

independent of q. When including data for q ∈ {0.0, 0.1, . . . , 10.0}, SINDy
identifies the equation for the time evolution of F as Ḟ = F (α2N − µP ). This
gives a linear relationship between NH and PH , and both PH and NH are
increasing as functions of q.

None of these expressions describe the NH -dependency of q qualitatively correct.
However, the first expression for Ḟ approximates the behavior better than the
second expression, so we retain that. For the equations for Ṗ and Ṅ , we use the
result obtained when including data for q ∈ {0.0, 0.1, . . . , 10.0}. This results in
the model

Ṗ = rq − χP − η1N − η2N2 + η3PN

− ϕ1F − ϕ2F
2 + ϕ3PF,

(4.13a)

Ṅ = N(γP − β1 − β2N − α1F ), (4.13b)

Ḟ = F (α2N − µ). (4.13c)

The coefficients identified by SINDy result in a poor approximation of the
position of the H-equilibrium as a function of q. Instead, the ratio µ/α2 is chosen
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r χ η1 η2 η3 γ β1

4.311× 10−2 0.1031 7.317 41.13 4.700 1.953 2.422

β2 ϕ1 ϕ2 ϕ3 α1 α2 µ

17.72 70.50 1151 34.12 63.32 33.00 2.023

Table 4.3. The parameter values for the system (4.13). q ∈ [0, 10] is a bifurcation
parameter.

to reproduce the data-derived value of qtc2 in the model. The value of α1 is
determined by a linear fit to a plot of γPH−β1−β2NH as a function of FH . The
value of α2 is chosen to approximately reproduce the frequency of the oscillations.
Finally, ϕ1, ϕ2, and ϕ3 are computed to obtain the best possible approximation
of FH as a function of q and to reproduce the data-derived value of qH in the
model. Table 4.3 lists the parameter values for system (4.13).

In Eq. (4.13a), the zonal flow energy enters into the equation for Ṗ similarly to
the turbulent flow. In Eq. (4.13b), the zonal flow suppresses the turbulent flow
and in Eq. (4.13c), the turbulent flow drives the zonal flow. This predator-prey
type coupling between the zonal flow and the turbulent flow is attributable to
the Reynolds stress. The zonal flow energy is linearly self-damping due to the
viscocity term. Near the H-equilibrium the zonal flow dampens P , but the zonal
flow also dampens N , which causes a decrease in the damping of P , so the overall
effect is that P increases when F increases.

The plots in Fig. 4.8 compare PH , NH , and FH as functions of q for the simulation
data and the model. The model approximates the value of FH accurately, since
the parameter values were chosen to obtain the best possible fit of FH as a
function of q for the model. The model also approximates PH and NH within a
small relative error.

The plots in Figs. 4.9–4.12 compare the simulation data and the model solutions
for q = 7, q = 8, q = 9, and q = 10, respectively. The initial conditions were
chosen such that N and F begins to increase at about the same time as in the
corresponding data.

For q = 7, the initial condition for the model solution shown in Fig. 4.9 was
(P (0), N(0), F (0)) = (0, 1× 10−12, 1× 10−28). For the model solution, F increa-
ses a little faster than the corresponding data, but otherwise the model solution
approximates the data very well both qualitatively and quantitatively.

For q = 8, the initial condition for the model solution shown in Fig. 4.10
was (P (0), N(0), F (0)) = (0, 1× 10−12, 1× 10−38). The solution spirals into
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Figure 4.8. PH (top), NH (middle), and FH (bottom) as functions of q for the data
(circles) and the model (solid lines).
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Figure 4.9. Comparison of the time evolution of P (top), N (middle), and F (bottom)
for the simulation data and for the model solution for q = 7.
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Figure 4.10. Comparison of the time evolution of P (top), N (middle), and F
(bottom) for the simulation data and for the model solution for q = 8.
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Figure 4.11. Comparison of the time evolution of P (top), N (middle), and F
(bottom) for the simulation data and for the model solution for q = 9.
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Figure 4.12. Comparison of the time evolution of P (top), N (middle), and F
(bottom) for the simulation data and for the model solution for q = 10.

the H-equilibrium, while the corresponding data approaches the H-equilibrium
monotonically. Otherwise the model solution approximates the data very well.

For q = 9, the initial condition for the model solution shown in Fig. 4.11
was (P (0), N(0), F (0)) = (0, 1× 10−13, 1× 10−44). The solution converges to a
stable limit cycle like the data. The model fails to reproduce the amplitude and
frequency of the oscillations.

For q = 10, the initial condition for the model solution shown in Fig. 4.12 was
(P (0), N(0), F (0)) = (0, 1× 10−13, 1× 10−53). The model solution still converges
to a stable limit cycle like the data. The model solution now correctly reproduces
the frequency of the oscillations, but it fails to reproduce the amplitude of the
oscillations. The mean value of P during the oscillations is lower for the model
solution than for the data. This might indicate that we are approaching the
maximum value of q for which the model is valid. The failure to reproduce the
correct amplitude of the oscillations is expected, since amplitude fitting was not
chosen as a criterion during the modeling process.

Overall, the final model (4.13) reproduces the simulation data very well both
qualitatively and quantitatively for q ∈ [0, 10].
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4.5 Bifurcation analysis

Using the SINDy algorithm, we have derived the model (4.13) with the parameters
listed in Table 4.3 for the time evolution of the three energies P , N , F computed
from solutions to the convection problem (3.4). We now carry out a bifurcation
analysis for the model (4.13) and summarize the results in a bifurcation diagram.

4.5.1 Equilibrium points

Nullclines are the surfaces in state-space on which a single component of the
vector field defining a dynamical system vanishes. The nullclines of the system
(4.13) are given by

NP = {rq = χP + η1N + η2N
2 − η3PN + ϕ1F + ϕ2F

2 − ϕ3PF},
NN = {N = 0} ∪ {γP = β1 + β2N + α1F},
NF = {F = 0} ∪ {α2N = µ}.

We note that {N = 0} and {F = 0} are invariant manifolds of the system.
This prevent N and F from becoming negative when they are initialized as
being strictly positive. However, the model does not generally prevent P from
becoming negative. The intersections of all three nullclines gives the equilibrium
points. The system has a total of five equilibrium points, but we list and name
only the three equilibrium points which are stable for some value of q ∈ [0, 10].
The s-equilibrium is

(Ps, Ns, Fs) =

(
r

χ
q, 0, 0

)
, q > 0. (4.14)

The L-equilibrium enters the physical domain in a transcritical bifurcation at
q = qtc1 = β1χ/(γr). Define

aPL = γ(β2η3 − γη2),

bPL = −(β1β2η3 + β2
2χ+ β2γη1 − 2β1γη2),

cPL = β2
2rq + β1β2η1 − β2

1η2

and

aNL = β2η3 − γη2,
bNL = −(β2χ+ γη1 − β1η3),

cNL = γrq − β1χ.
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Then, the components of the L-equilibrium (PL, NL, FL), q > qtc1 are

PL =
1

2aPL

(
−bPL −

√
b2PL − 4aPLcPL

)
, (4.15a)

NL =
1

2aNL

(
−bNL −

√
b2NL − 4aNLcNL

)
, (4.15b)

FL = 0. (4.15c)

The H-equilibrium enters the physical domain in a transcritical bifurcation at
q = qtc2, where

qtc2 =
1

γr

(
β1χ− bNL

µ

α2
− aNL

µ2

α2
2

)
.

We define

aPH = α2
2γ(γϕ2 − α1ϕ3),

bPH = −α2

(
α2
1η3µ− α2

1α2χ− α1α2β1ϕ3 − α1α2γϕ1

− α1β2µϕ3 + 2α2β1γϕ2 + 2β2γµϕ2

)
,

cPH = −(α2
1α

2
2rq − α2

1α2η1µ− α2
1η2µ

2 + α1α
2
2β1ϕ1

+ α1α2β2µϕ1 − α2
2β

2
1ϕ2 − 2α2β1β2µϕ2 − β2

2µ
2ϕ2)

and

aFH = α2
2(γϕ2 − α1ϕ3),

bFH = α2(α1α2χ− α1η3µ− α2β1ϕ3 + α2γϕ1 − β2µϕ3),

cFH = −
(
α2
2γrq − α2

2β1χ+ α2β1η3µ− α2β2χµ− α2η1γµ+ β2η3µ
2 − η2γµ2

)
.

Then, the H-equilibrium can be written as (PH , NH , FH), q > qtc2 with

PH =
1

2aPH

(
−bPH +

√
b2PH − 4aPH cPH

)
, (4.16a)

NH =
µ

α2
, (4.16b)

FH =
1

2aFH

(
−bFH +

√
b2FH − 4aFH cFH

)
. (4.16c)

Figure 4.13 shows a plot of the three nullclines for q = 10 within a rectangular
cuboid region of the phase space. At the intersections of all three nullclines
are shown the s-, L-, and H-equilibrium points. For this value of q, all three
equilibrium points are unstable and the solution converges to the limit cycle.
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Figure 4.13. The nullclines for q = 10: NP is blue, NN is red, and NF is yellow.
Only NP depend on q. The positions of the s-, L-, and H-equilibrium are marked at
the intersection points of all three nullclines. The black closed curve is the stable limit
cycle.
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4.5.2 Stability of equilibrium points

The stability type of the equilibrium points are determined by the eigenvalues of
the Jacobian matrix of system (4.13) evaluated at the equilibrium point. The
Jacobian matrix in a general point is

Df =

−χ+ η3N + ϕ3F −η1 − 2η2N + η3P −ϕ1 − 2ϕ2F + ϕ3P
γN γP − β1 − 2β2N − α1F −α1N
0 α2F α2N − µ

 .

(4.17)

We will here determine the stability of each of the three equilibrium points
sequentially.

4.5.2.1 Stability of the s-equilibrium

The Jacobian matrix (4.17) evaluated at the static equilibrium is

As =

−χ −η1 + η3Ps −ϕ1 + ϕ3Ps
0 γr

χ q − β1 0

0 0 −µ

 .

This is a upper triangular matrix, so the eigenvalues are given by the diagonal
elements

λ1 = −χ, λ2 =
γr

χ
q − β1, λ3 = −µ.

All three eigenvalues are real. Figure 4.14 shows a plot of the three eigenvalues
as functions of q. λ1 and λ3 are negative constants, while λ2 is negative for
q < qtc1 and positive for q > qtc1. Consequently, the s-equilibrium is a stable
node for q < qtc1 and a saddle for q > qtc1.

4.5.2.2 Stability of the L-equilibrium

The Jacobian matrix (4.17) evaluated at the L-equilibrium is

AL =

−χ+ η3NL −η1 − 2η2NL + η3PL −ϕ1 + ϕ3PL
γNL −β2NL −α1NL

0 0 α2NL − µ

 .
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Figure 4.14. The eigenvalues of As as functions of q. λ2 changes sign at q = qtc1,
while λ1 and λ3 are negative constants.

Define

bL = β2NL + χ− η3NL,
cL = −NL((β2η3 − 2γη2)NL + γη3PL − β2χ− γη1).

Then, the eigenvalues of AL are

λ1 = −1

2

(
bL −

√
b2L − 4cL

)
,

λ2 = −1

2

(
bL +

√
b2L − 4cL

)
,

λ3 = α2NL − µ.

Figure 4.15 shows a plot of the real and imaginary parts of the eigenvalues of
AL. Re(λ1) is positive for q < qtc1 and negative for q > qtc1, Re(λ2) is negative
for all q. Re(λ3) is negative for q < qtc2 and positive for q > qtc2. consequently,
the L-equilibrium is a saddle for q < qtc1, it is a stable node or focus-node for
qtc1 < q < qtc2, and an unstable saddle-focus or node for q > qtc2.
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Figure 4.15. The real part (top) and the imaginary part (bottom) of the eigenvalues
of AL as functions of q. Re(λ1) changes sign at q = qtc1, λ3 changes sign at q = qtc2,
while Re(λ2) is negative everywhere.
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4.5.2.3 Stability of the H-equilibrium

The Jacobian matrix (4.17) evaluated at the H-equilibrium is

AH =

−χ+ η3NH + ϕ3FH −η1 − 2η2NH + η3PH −ϕ1 − 2ϕ2FH + ϕ3PH
γNH −β2NH −α1NH

0 α2FH 0

 .

Let τ = tr(AH) be the trace, σ the sum of principal minors, and δ = det(AH)
the determinant of AH ,

τ = −χ+ η3NH + ϕ3FH − β2NH ,
σ = NH(α1α2FH + β2χ− β2η3NH − β2ϕ3FH + γη1 + 2γη2NH − γη3PH),

δ = α2NHFH(−α1χ+ α1η3NH + α1ϕ3FH − γϕ1 − 2γϕ2FH + γϕ3PH).

Then the characteristic polynomial is given by

p(λ) = λ3 − τλ2 + σλ− δ.

The eigenvalues are obtained as the three complex solutions to p(λ) = 0. Fi-
gure 4.16 shows plots of the real and imaginary parts of the eigenvalues of AH

as functions of q. Inserting λ = iω and solving p(iω) = 0 shows that a Hopf
bifurcation occurs when στ = δ. By numerically solving this equation for q we
obtain qH = 8.152. The eigenvalue λ1 is positive for q < qtc2 and negative for
q > qtc2. Re(λ2) and Re(λ3) are negative for q < qH and positive for q > qH.
consequently, the H-equilibrium is a saddle or a saddle-focus for q < qtc2, it is a
stable focus-node for qtc2 < q < qH, and it is a saddle-focus for q > qH.

4.5.3 Bifurcation diagram

The positions and the stability of the equilibrium points for system (4.13) as
functions of q are summarized in the bifurcation diagram in Fig. 4.17. A compa-
rison of the bifurcation diagram for the model with the data-based bifurcation
diagram in Fig. 3.23, demonstrates that the model approximates the positions of
the three equilibrium points and three bifurcation points very well. The average
position and amplitude of the limit cycle oscillations differ between the two
bifurcation diagrams, but these were not expected to be fully identical.
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Figure 4.16. The real part (top) and the imaginary part (bottom) of the eigenvalues
of AH . Re(λ1) is positive for q < qtc2 and negative for q > qtc2. Re(λ2) and Re(λ3)
are negative for q < qH and positive for q > qH.
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Figure 4.17. Bifurcation diagram for the model. Solid curves are stable equilibrium
points, dashed curves are unstable equilibrium points, while the dotted curve show
the amplitude of the limit cycle solution. The transcritical bifurcations occurring at
approximately qtc1 = 2.967 and qtc2 = 6.281 are marked with dots, while the Hopf
bifurcation occurring at qH = 8.152 is marked with asterisks.
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4.6 Identification of transition dynamics for the
perturbed model

This section considers simulation data from the convection model with τ = 0.04.
As shown in Fig. 3.24 the simulation data transitions between four qualitatively
different types of solutions when q varies in [0, 24]. Unlike the τ = 0 case, for
some ranges of q the system has two stable states, and which of these states the
solution converges to depends on the initial conditions.

We attempt to identify the governing system by modeling the four states of
the system stepwise to progressively include more complicated dynamics in the
model. However, we only succeed in modeling the static state. The quality of
the model is determined by visually comparing how well the model describes the
position of equilibrium points and how well solutions to the model reproduce
the simulated time series data.

4.6.1 Modeling the s-state

When q < qtc1, the solution converges to the s-equilibrium, where P,N > 0 and
N = 0. In the s-state, vx = 0 and ω = 0, and the Reynolds decomposition (3.16)
of the convection model reduces to

∂tp̄ = S + κ∂2xxp̄, (4.18a)
v̄y = −τ∂xp̄. (4.18b)

Hence, the time derivative of v̄y is

∂tv̄y = −τ∂x∂tp̄
= −τ(∂xS + κ∂3xxxp̄),

and the time derivative of v̄2y is

∂tv̄
2
y = 2v̄y∂tv̄y

= 2τ2
(
(∂xp̄)(∂xS) + κ(∂xp̄)(∂

3
xxxp̄)

)
.

Since P = 〈xp̄〉 and F = 1
2 〈v̄

2
y〉, the derivatives of P and F are

Ṗ = 〈xS〉+ κ〈x∂2xxp̄〉,
Ḟ = τ2〈(∂xp̄)(∂xS)〉+ τ2κ〈(∂xp̄)(∂3xxxp̄)〉.
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r χ µ b1 b2 b3

4.311× 10−2 0.1031 0.9401 2.408× 10−4 1.250× 10−3 2.705× 10−3

Table 4.4. The parameter values for the system (4.19). q ∈ [0, 3.4] is a bifurcation
parameter.

This suggest that Ṗ does not depend on F , and it is appropriate to approximate
Ṗ with first order polynomials of P and q. Assuming the spatial derivatives
of p̄ are proportional to p̄, we should approximate Ḟ with up to second order
polynomials in P , F , and q.

We apply SINDy to identify the governing equations for the time evolution of
P and N . We use simulation data for q ∈ {0.0, 0.2, . . . , 3.4}. We choose as
candidate functions to be up to second order polynomials in q, P , and F

Θ(q,P ,F ) =
[
q P F q2 qP qF P 2 PF F 2

]
.

From the simulation data, SINDy identifies the system

Ṗ = rq − χP, (4.19a)

Ḟ = −µF + b1q
2 − b2qP + b3P

2 (4.19b)

with the parameters listed in Table 4.4. The system has the equilibrium point

(Ps, Ns, Fs) =
(
r
χq, 0,

1
µ (b1 − b2 rχ + b3

r2

χ2 )q2
)
.

Figure 4.18 compares the values of Ps and Fs as functions of q for the simulation
data and the model. The position of the s-equilibrium is accurately described by
the model.

Figure 4.19 shows comparisons of the time series data for P and F and solutions
to the model (4.19) with initial condition (P (0), F (0)) = (0, 0) for three different
values of q.

The model solutions approximate the dynamics of the simulation data well.
However, in the model (4.19), Ṗ is independent of F , which is inconsistent with
the model (4.13) identified for τ = 0, where Ṗ depends explicitly on F . This
suggests that the model (4.13) needs a modification. The inconsistency could
also originate from the choice of state variables: The energy of the flow generated
by the pressure curvature might need to be treated separately as a mean flow
energy, instead of being included as part of the zonal flow energy.
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Figure 4.18. The static equilibrium values Ps (top) and Fs (bottom) as functions of
q for the data (circles) and the model (solid lines).
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Figure 4.19. The time evolution of P and F as given by the simulation data and by
the model for different values of q.
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4.6.2 Attempt to model the other states

For qtc1 < qsn1, the L-equilibrium is the only stable equilibrium. However, all
three variables are positive in the L-equilibrium, and there are no more additional
variables to add new dynamics after this: The model for the L-equilibrium must
be the full model. According to the data-based bifurcation diagram in Fig. 3.24,
the system has for qsn1 < q < qsn2 four equilibrium points, which should be
included in the identified model. We tried unsuccessfully to have SINDy identify
a model directly from sets of data.

For τ = 0, we identified the dynamics of the system to be given by Eq. (4.13).
Combining the system (4.13) with the system (4.19) gives

Ṗ = rq − χP − η1N − η2N2 + η3NP, (4.20a)

Ṅ = N(γP − β1 − β2N − α1F ), (4.20b)

Ḟ = F (α2N − µ) + b1q
2 − b2qP + b3P

2. (4.20c)

Solving this model with the parameter values listed in Tables 4.3–4.4 did not
give good approximations to the simulation data. Hence, the perturbation of the
vorticity adds a lot more complexity to the system than just an increased zonal
flow. More research is needed to determine a system that models the dynamical
behavior of P , N , and F when τ = 0.04.

4.7 Conclusion

The solution to a convection problem with a pressure source centered at the left
boundary can be characterized by three state variables: the potential energy
related to the pressure gradient, P , the fluctuation energy, N , and the zonal flow
energy, F . Depending on the strength of the pressure source, q, we identified four
different types of solutions to the convection problem. Three of these solution
types corresponded to equilibrium points and the fourth type corresponded to
a limit cycle in the (P,N, F )-state space. Simulation data was generated for
multiple fixed values of q ∈ [0, 10] by computing and saving the three energy
variables P , N , and F and their time derivatives at each output time step while
solving the convection problem.

Purely based on the simulation data we used SINDy [17] and some data fitting to
identify a nonlinear dynamical system that models the time evolution of the three
state variables. This approach revealed a predator-prey relationship between the
zonal flow energy and the turbulent flow energy. We investigated the quality of
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the model by comparing positions of equilibrium points, bifurcation points, and
solutions with the corresponding data from which the model was extracted. The
model proved to be very accurate for each of these parameters.

We introduced a perturbation to the vorticity in the convection problem. For the
perturbed vorticity convection problem, we attempted to use SINDy to identify
the underlying dynamics of the three energy variables P , N , and F . We only
succeeded in making a model for the static state.

We have demonstrated an approach to recover reduced models for plasma
dynamics, which serves as an alternative to the physical modeling approach.
This modeling approach could ultimately also be applied to derive models from
experimental data. A model for the convection model with perturbed vorticity
might possibly be obtained by replacing the SINDy algorithm with the more
advanced implicit-SINDy algorithm [57], which extends SINDy to allow rational
functions. By defining the energy state variables differently, a model for the
energies of the convection model with perturbed vorticity might also be obtainable
with SINDy. More research is needed to identify such a model.
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