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Abstract

The tomographic reconstruction problem is concerned with creating a model of the
interior of an object from some measured data, typically projections of the object.
After reconstructing an object it is often desired to segment it, either automatically
or manually. For computed tomography (CT), the classical reconstruction methods
suffer from their inability to handle limited and/or corrupted data. For many analysis
tasks computationally demanding segmentation methods are used to automatically
segment an object, after using a simple reconstruction method as a first step.

In the literature, methods that completely combine reconstruction and segmentation
have been suggested, but these are often non-convex and have very high computa-
tional demand. We propose to move the computational effort from the segmentation
process to the reconstruction process, and instead design reconstruction methods such
that the segmentation subsequently can be carried out by use of a simple segmenta-
tion method, for instance just a thresholding method.

We tested the advantages of going from a two-stage reconstruction method to a one-
stage segmentation-driven reconstruction method for the phase contrast tomography
reconstruction problem. The tests showed a clear improvement for realistic materials
simulations and that the one-stage method was clearly more robust toward noise. The
noise-robustness result could be a step toward making this method more applicable
for lab-scale experiments.

We have introduced a segmentation-driven reconstruction method which incorporates
information about the main texture direction in an object. We proved that this
method has mathematically desirable properties such as being convex and lower semi-
continuous. We have also demonstrated the practical applicability of the method
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within image denoising, image deblurring and CT reconstruction. In order to use
the proposed method we also proposed efficient and robust methods for estimating
the main direction in either corrupted images or from limited and corrupted CT-
projection data.

For directional object we also proposed two different reconstruction methods that
separates the directional parts in the object from the non-directional parts. These
method could for example be used for objects consisting of fibres and cracks. The
results can be categorized as either completely combined reconstruction and segmen-
tation of the object, or as highly supporting for the following segmentation process.

Computed tomography is used within medical diagnosis, food science, materials sci-
ence, production inspection, quality assessment, etc. Segmentation-driven reconstruc-
tion methods can help to improve both manual and automated segmentation processes
that are used to analyze an object after the scanning. The results in this thesis are
both of theoretical interest within regularization theory and directly applicable for
image denoising, image deblurring and surely within tomographic reconstruction.



Resumé

Det tomografiske rekonstruktionsproblem omhandler dannelse af en model der beskriver
det indre af et objekt ud fra målte data, typisk projektioner af objektet. Efter rekon-
struktion af et objekt er det ofte målet at segmentere det, enten automatisk eller
manuelt. For computer tomografi (CT) lider de klassiske rekonstruktionsmetoder
under deres manglende evne til at håndtere begrænserede og/eller beskadigede data.
For mange analyse formål benyttes beregningstunge metoder til automatisk at seg-
mentere et objekt, efter at en simpel rekonstruktionsmetode er brugt som første skridt.

I litteraturen er der foreslået metoder der fuldstændig kombinerer rekonstruktion of
segmentering, men disse ofte ikke konvekse og er beregningsmæssigt krævende. Vi
forslår at flytte den beregningsmæssige behov til rekonstruktionsmetoden således at
den efterfølgende segmentering kan udføres ved brug af en simpel segmenteringsme-
tode, fx blot en tærskling(thresholding).

Vi har testet fordelene ved at gå fra en to-stadie rekonstruktionsmetode til en et-
stadie segmentering-drevet rekonstruktionsmetode for det fase-kontrast tomografiske
rekonstruktionsproblem. Testene viste en klar forbedring i forbindelse med realistiske
materiale simuleringer og at et-stadie metode var klart mere robust i forhold til støj.
Støjrobustheds-resultatet kan være et skridt i retningen af at gøre denne metode mere
anvendelig et laboratorie-skala eksperimenter.

Vi har introduceret en segmenterings-drevet rekonstruktionsmetode der inkorpor-
erer information om et objekts tekstur-retning. Vi har bevist at denne metode har
eftertragtede matematiske egenskaber såsom konveksitet og lower semi-continuity.
Vi har også demonstreret den praktiske anvendelighed af metoden indenfor billed-
denoising, billed-deblurring og CT-rekonstruktion. For at kunne benytte den fores-
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låede metode har vi også foreslået effektive og robuste metoder til at estimere den
dominerende retning i enten beskadigede billeder eller fra begrænsede og beskadigede
CT-projektionsdata.

For retningsbestemte objekter har vi også forslået to forskellige rekonstruktionsme-
toder der separerer de retningsbestemte dele i objektet fra de ikke-retningsbestemte
dele. Disse metoder kunne for eksempel bruges på objekter bestående af fibre med
sprækker. Resultaterne kan enten kategoriseres som komplet kombineret rekonstruk-
tion og segmentering af objektet, eller som væsentligt forberedende i forhold til den
efterfølgende segmenterings process.

Computer tomografi bliver brugt til medicinske diagnoser, fødevarevidenskab, materi-
alevidenskab, produktionsinspektion, kvalitetsvurdering, osv. Segmenterings-drevne
rekonstruktionsmetoder kan hjælpe med at forbedre både manuelle og automatiske
segmenteringsprocesser der benyttes til at analysere et objekt efter skanning. Resul-
taterne i denne afhandling er både teoretisk interessante indenfor regulariseringsteori
og direkte anvendelige indenfor billed-denoising, billed-deblurring og naturligvis in-
denfor tomografisk rekonstruktion.
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CHAPTER 1
Introduction

The field tomography covers a wide range of methods for non-invasively investigating
the interior of objects. Opposed to methods that are just based on analyzing single
measurements or projections, the tomography methods tries to create a model of the
interior by combining information from several measurements or projections. Within
imaging, tomography has a long history, especially due to the very widely used com-
puted tomography (CT). In this thesis, the work is mainly concerned two tomography
techniques that are very similar, from a measurement set-up perspective, namely: CT
and free-space propagation phase contrast tomography (PCT).

The process of calculating the interior from a set of measurements is usually called
a reconstruction. For CT and PCT the most widely used 2D reconstruction method
is a filtering method called filtered back-projection (FBP). This method well-studied,
and it is efficient and reliable when sufficient data, that is not corrupted by noise
and artifacts, is collected. Whenever the measured data is limited or corrupted, the
filtering methods gives results that can be heavily deteriorated. Other reconstruction
method that has been used a lot for CT reconstruction are the so called algebraic
methods that basically tries to solve the problem as an algebraic system of linear
equations. The tomographic reconstruction problem is fact part of a much larger
class of problems called inverse problems. A lot of theory has been developed within
the field of inverse problems, and since the CT reconstruction problem is a linear
inverse problem, many solution strategies from this field can directly applied and
further developed.

Throughout the last few decades well-established mathematical theory has been de-
veloped within the field of inverse problems. An inverse problem is said to be ill-posed
if existence, uniqueness or stability cannot be shown for the solution of the problem.
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The CT-reconstruction problem is a mildly ill-posed problem. For ill-posed problems
we have to design solution strategies that can overcome the effects of ill-posedness,
if we want to get meaningful results. One widely used way to solve ill-posed inverse
problems is to use variational methods with regularization.

In the inverse problems community two regularization methods are particularly well-
known: Tikhonov regularization and Total Variation regularization. Tikhonov regu-
larization was the first regularization method to be widely used and studied. Total
variation regularization has become a go-to standard for imaging and image process-
ing since it is very good at removing noise, while still preserving edges, which are two
highly desirable features for images. A typical rule for choosing a suitable regulariza-
tion method is to chose it based on what prior we expect the object to follow.

Image segmentation is the task of separating an image into regions of different classes.
Automated segmentation, using computational methods, is frequently using as post-
processing within imaging. Such segmentation methods can either be very simple or
highly computationally demanding. In this work the aim is use the computational
for image reconstruction or image restoration, rather than using it on segmentation.
In order to do so we have developed and tested a series of methods, that like to-
tal variation, produces solutions that ease a subsequent segmentation process, i.e.
segmentation-driven methods.

This PhD thesis is mainly based on scientific articles published, submitted or going to
submitted to peer-review journals or proceedings. The full-length of these articles can
be found in the appendix of this thesis. The rest of the thesis is organized as follows:
In Chapter 2 I review tomography, CT and PCT in greater details. Reconstruc-
tion methods their advantages and disadvantages are also presented. In Chapter 3
a deeper look into inverse problems, and the use of variational methods for solving
them, is given. Some different classical regularization methods are presented together
with their respective priors. After this brief introduction to variational methods, I
give an overview of the numerical aspects for solving such problems in Chapter 4. In
Chapter 5 I review classical and more recent segmentation methods. In this chap-
ter desired features for segmentation is outlined and the idea of aiding a subsequent
segmentation process, through the choice of a reconstruction method, is outlined in
more details. After having established all of these different aspects that relates to
segmentation-driven tomographic reconstruction methods, I review the work from the
enclosed papers in Chapter 6. Finally I briefly sum up the main conclusions of this
thesis and look at the future perspectives of our work.

The notation in the papers might differ from the notation in the chapters of this
thesis. This is due to a goal of having a unified notation in the thesis chapters, where
the papers are just sought to be self-contained.



CHAPTER 2
Tomography

Imaging science covers a wide variety of techniques for non-invasive investigation of
the interior of objects. Tomography is an imaging technique that encompasses meth-
ods where measurements are taken in slices or sections. For some technologies, such
as X-ray computed tomography, each slice or projection could be used for analysis
solely, but the target for a tomographic technique is to combine information from
several measured sections. From the combined measured data, the target is to recre-
ate the object of interest and its interior, such that it can be analyzed.

The list of different tomographic methods is too comprehensive to outline it in its
entirety here, but I highlight some of the most well-established techniques instead. In
Table 2.1, there is a list of some tomography technologies and their electromagnetic
sources. Beside these, classical ultrasound and Magnetic Resonance Imaging (MRI)
should be mentioned as some of the most popular imaging methods, though these
are not tomographic. Each of these imaging modalities have their application that
justifies them and no method is superior for every task, although the modalities do
overlap for some tasks.

Tomographic imaging techniques are highly popular due to their non-invasive nature,
which is why they are now incorporated in conventional medical equipment all over
the world at hospitals, at dentists, etc. Besides usage in the medical industry, to-
mographic methods are used for geophysical and seismic imaging, chemical imaging,
archaeology, paleontology, materials science, in the production industry in general,
e.g. in metrology or for failure and flaw detection, and within many other areas.

In our work we have focused on X-ray Computed Tomography (CT) and a Phase
Contrast Tomography (PCT) method which is highly related to CT. Furthermore
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the objects that are used as examples are all inspired by materials science. Much
more on the use of tomography in materials science analysis can be found in [7].

Technology Source
Computed Tomography (CT) X-rays
Electrical Impedance Tomography (EIT) Electrical current
Ultrasound Tomography (UST) Ultrasound waves
Positron Emission Tomography (PET) Positrons
Single-Photon Emission Tomography (SPECT) Gamma rays
Seismic Tomography Seismic waves
Optical Tomography Light waves
Electron Tomography Electron beam
Acoustic Tomography Sound waves
Photoacoustic Tomography (PAT) Laser
Thermoacoustic Tomography (TAT) Radio waves

Table 2.1: Some tomography technologies and their respective sources.

2.1 Computed tomography
Computed Tomography (CT) was pioneered by G. Hounsfield and A. M. Cormack in
the 60’s. The first X-ray CT scan was carried out in 1969 by Hounsfield [20], followed
by the first clinical scans in 1972. Since the first CT scanner the methodology has
developed into a range of different scanner setups. Common for all of the scanners
is the presence of an X-ray source, a detector, and some sort of rotation either of
the object or of the source and detector. Due to the rotational scanning, the domain
covered by the scanner will be circular, spherical, or cylindrical.

The first types of CT scanners are often referred to as pencil beam since they consist
of a single X-ray source that emits a narrow beam and a single detector placed oppo-
site to the source. The source and the detector are translated simultaneously along
parallel lines, tangent to the circular domain. This series of parallel measurements
are carried out for each discrete measurement angle, until a complete 180◦ rotation
is reached. The method is mostly related to 2D scanning, though layered scans can
be taken, thus making it a very cumbersome 3D method.

The parallel beam method is quite similar to the pencil beam method. For this method
a series of sources and detectors are placed on opposite sides of the object and then
rotated around the object. Therefore no translation is necessary, only the rotation.
This method can both be a 2D and 3D method. A schematic drawing of source,
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detectors, and the circular domain for the 2D version can be seen in Figure 2.1. The
2D parallel beam method will be the method that I consider in this thesis. In paper
A and D the parallel beam methods is also what is used.

Figure 2.1: Schematic of the 2D parallel beam technology setup. Sources, detectors
and circular domain.

Other scanning methods include the 2D Fan Beam method, where one source and a
long array of detectors, in a line or an arch, is used. The Cone Beam and Helical
Beam methods are purely 3D methods, hence the detector has a rectangular shape.
For more on the different types of scanner technologies and their history see [20].

The use of CT in the medical industry has increased a lot over the last 20 years. An
estimate from 2010 said 70 million annual scans in the US and an estimate from 2014
said 5 million annual scans in the UK with 10% annual increase, see [15] for more.
There is no arguing that CT scanners are an enormous business within medical imag-
ing. Within materials science research the use of CT has also been increasing over the
last 20 years, especially due to the high quality scanning facilities called synchrotrones.
At a synchrotron facility electrons are accelerated to a high speed, usually in a large
ring, i.e. >10 m. The accelerated electrons are used to produce very high energy
and highly coherent X-ray beams. This allows these facilities to scan materials which
are not penetrable with a clinical CT setup. Furthermore synchrotrons can, opposed
to standard hospital or lab-scale equipment, reach higher resolution, achieve a nar-
row energy spectrum and minimize the influence from scattering and other undesired
physical effects.

Lambert-Beers law describes the attenuation of X-rays when they interact with matter
if we only focus on the attenuation and disregard scattering and the energy spectrum
of the X-rays. This model is widely used and well-established, see e.g. [97, 49, 69,
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56, 37, 20, 67]. For a two-dimensional continuous function f(x) that represents the
attenuation coefficient at coordinate x = (x1, x2), Lambert-Beer’s law states that the
intensity attenuates exponentially as

I = I0e−
∫

L
f(x) dx

, (2.1)

where I0 denotes the X-ray intensity at the source, I denotes the intensity measured
at the detector and L is the straight line from the source to one detector bin. The
expression (2.1) can be rewritten to∫

L

f(x) dx = log
(
I0

I

)
. (2.2)

For one fixed angle the collection of all the integrals from the source to the detector
bins is called the projection of the function. For each angle, every ray from source to
detector bin is modeled as (2.2) and hence we have an integral equation, where we
want to determine the integrand f(x). If we model the right-hand side as a function,
g, dependent on measurement angle and the detector position, we can define the so
called continuous model as

A(f) = g, (2.3)

where A is a functional that integrates a function as in (2.2) for each angle and de-
tector position.

For measurement angle ϕ and detector bin position t the integral equation we need
to solve corresponds to Radon transform, see [81], which can be written as

[RT f ](ϕ, t) =
∫ ∞

−∞
f(t cosϕ− τ sinϕ, t sinϕ+ τ cosϕ) dτ. (2.4)

The fact that the integral equation we want to solve is similar to a Radon transform
is very fortunate since Radon already proposed a solution for such a problem 100
year ago (1917), see [81]. Unfortunately the exact solution can only be achieved if we
know the Radon transform RT f for continuous ϕ ∈ [0, π) and t ∈ (−∞,∞) which
is impossible to measure practically. For a [0, 1] × [0, 1] square 2D domain, where
f(x) has compact support in the inscribed circle, we ”only” need to know the Radon
transform for continuous t ∈ [0, 1].

Determining f(x) from the measured X-ray attenuation is often referred to as a
reconstruction or a tomographic reconstruction. In practice measurements will be
discrete and therefore a discrete model is a obvious necessity. We discretize the 2D
domain into M×M pixels and model the X-ray source as a finite number of infinitely
thin rays on a line. The measurements are naturally discretized by the finite number of
detector bins Nt and the finite number of discrete measurement angles Nϕ. Collecting
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all the measurement data into a 2D array according to angle and detector position is
usually called a sinogram. The discrete version of the function f is denoted by z and
the discrete sinogram is denoted by b. The discrete CT-model used in this thesis is∑

h

an,hzh = bn, (2.5)

where an,h describes the length of ray n through pixel h. By vectorizing z and b, to
z and b, we can collect an,h in the matrix A and we get the matrix-vector model

Az = b. (2.6)

The continuous CT-model can be discretized in numerous ways, for more insight into
the discretization of the CT-model see [20]. In general, the discrepancy between the
discrete model, the continuous model, and the actual physical process of X-ray trans-
mission is a very interesting topic which is outside the scope of this thesis, but more
information can be found in e.g. [69, 56, 50, 67].

In this thesis all of the topics will be highly related to the reconstruction problem, ei-
ther in the continuous (2.3) form or in the discrete (2.6) form. Before diving into some
reconstruction methods I will present another tomographic technique, that paper A
is concerned with, which is very similar to standard computed tomography.

2.2 Phase contrast tomography
There are many deviations between the classical CT-model presented in the previous
section and actual physical process of X-ray transmission. Among other things the
X-ray energy spectrum and the scattering effects can cause problems when solving
the reconstruction problem. Phase contrast tomography (PCT) aims to account for
some of the scattering effects that happens when X-rays interact with matter, and in
fact utilize this behavior to gain more knowledge about an object.

Phase contrast imaging with X-rays covers a wide variety of measurement techniques
developed by experimental physicists over the last ∼50 years. A few of the more
popular methods are: crystal interferometry, see [13], diffraction enhanced imaging,
see [30], grating based methods, see [31, 75] or propagation based methods, see [2,
61]. For a more thorough introduction to phase contrast imaging and the different
techniques see [61]. Common for all of these techniques is that they utilize the fact
that electromagnetic waves are not only attenuated when they interact with matter,
but the wave-phase is also altered.

All materials have a complex refractive index ni which can be described by the re-
fractive index decrement, δ, and the absorption index, β, as

ni = 1 − δ + ιβ, (2.7)



8 2 Tomography

for complex unit ι. Here β should not be confused with the absorption/attenua-
tion coefficient from Lambert-Beers law which is proportional to the index through
z = 4π

ν β, for X-ray wavelength ν, see [62]. For some objects the refraction contrast
can be much larger than the absorption contrast, dependent on material type and
X-ray energy. The higher contrast can be crucial when we want to distinguish be-
tween different materials, which is the main reason for trying to reconstruct both
the absorption and the refraction for an object. The phase contrast method that
we chose to focus on is the so called propagation method or free-space propagation
method. For this technique the setup is very similar to CT, no further equipment is
needed, the detector is simply just placed further away from the object than for clas-
sical CT. The increased distance ensures a propagation of the phase shift that makes
it detectable. This propagation is illustrated in Figure 2.2 where the measured signal
at a 2D detector is simulated. The simulated object consist of some purely absorbing
cylinders and some purely refractive cylinders. As seen the refractive objects become
visible at when the detector-distance is increased, which is the principle utilized in
the free-space propagation method.

Black = absorp.

White = re f rac .

Contact

R=1e-04 m

Near

R=1e-03 m

Near

R=1e-02 m

Near

R=1e-01 m

Far

R=1 m

Figure 2.2: Simulated projections of cylinders measured at a detector for varying
object-to-detector distance R.

Using the complex refractive index, the model from source to detector goes as follows:
first the spatially dependent absorption index and refractive index decrement are
projected

B(ϕ, t) = 2π
ν

∫
L

β(x) dx (2.8)

ψ(ϕ, t) = −2π
ν

∫
L

δ(x) dx. (2.9)

These projections can be considered as Radon transforms of the refractive and ab-
sorption indexes, scaled by a factor. We call the collection of all the projections the
absorption B and the phase shift ψ. These two signals are not separated inside the
object, and the mixture of the two signals is modelled by transmission

T (ϕ, t) = e−B(ϕ,t)eιψ(ϕ,t). (2.10)

In the Fresnel region, see [2, 62], the Fresnel propagator describes the final propagation
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from the object to the detector

IR(ϕ, t) = |T (ϕ, t) ⋆ P (t)|2, P (t) = − ι

νR
e ιπ

νR |t|2
, (2.11)

where IR is the intensity measured at the detector with distance R to the object, ⋆
is a convolution operator and | · | is the Euclidean norm in 2D.

Taking angular projections, exactly as for parallel beam CT will give sinogram data
that is the same as for standard CT if the object-to-detector distance is small, oth-
erwise, the problem that we have to solve is a phase constant tomographic (PCT)
problem. Classical reconstruction methods for PCT consist of two stages: A phase
retrieval stage where the absorption β and phase shift ψ are retrieved from the in-
tensity measurements followed by a reconstruction stage, where the absorption and
refractive indexes are reconstructed. The reconstruction stage is exactly the same as
for the CT problem and hence similar reconstruction methods can be used. The next
section presents a series of standard reconstruction methods.

2.3 Tomographic reconstruction
In this section I will briefly present some of the most established and widely used
image reconstruction techniques for computed tomography. Common problems that
influences the reconstruction results, such as artifacts and noise, is also presented.
Finally I will discuss advantages and disadvantages of the different reconstruction
methods.

2.3.1 Filtered back-projection
The reconstruction method that is most widely used for solving the CT-reconstruction
problem is also the oldest method. The method was introduced by Johan Radon 100
years ago, see [81], before any tomography techniques were even developed. The
method is most commonly referred to as Filtered Back-Projection (FBP) and consist
of two simple steps: a filtering of the measured signal, in the Fourier domain, and a
back-projection from the sinogram-domain to the object-domain.
The method guaranties an exact reconstruction of the function assuming that we
have continuous projection, t ∈ [0, 1], for every angle in the continuous angle interval
ϕ ∈ [0, π). Given a sinogram function g(ϕ, t) that fulfill the above requirements, the
function is first filtered with a ramp filter

ĝ(ϕ, ω) =
∫ 1

0
g(ϕ, t)e−2πιωt dt,

g̃(ϕ, t) =
∫ ∞

−∞
ĝ(ϕ, ω)|ω|e2πιωt dω,
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and then back-projected

f(x1, x2) =
∫ π

0
g̃(ϕ, x1 cosϕ+ x2 sinϕ) dϕ.

As mentioned previously the actual measured sinogram data will be discrete. With
finely sampled projection data distributed all over the 180◦ the FBP method can
still give very good reconstructions, even though the continuity requirements are not
fulfilled. For the discrete case the filtering can be carried out by use of discrete Fourier
transform and the back-projection by use of numerical integration.

2.3.2 Algebraic methods
The algebraic reconstruction methods essentially aim at solving the discrete linear
problem (2.6). The most popular types of methods are the sequential methods, for
instance the Algebraic Reconstruction Technique (ART), and the simultaneous meth-
ods, for instance the Simultaneous Iterative Reconstruction Technique (SIRT). Com-
mon for these methods is that they are iterative, i.e. we do not get the solution by a
single back-projection, but the solution is sequentially altered until we stop the algo-
rithm. Some kind of stopping criterion must therefore be chosen for these methods.
In the literature there are many ways of choosing such criteeria, see e.g. in [50].
ART, also called Kaczmarz method, is a row-action method, i.e. the algorithm sweeps
over one row of the matrix A at a time as an inner loop of the algorithm. For an
algorithm initialization z0, e.g. a zero-vector, the algorithm simply consist of the
following the solution update

zk+1 = zk + br − ar · zk

∥ar∥2
2

ar , (2.12)

where ar is the r’th row of A.
The simultaneous reconstruction techniques does not include the inner loop that
sweeps through the rows of A one at a time, but uses the entire matrix A and its
transpose. One of the most widely used simultaneous methods is the SIRT method,
see for instance in [52]. The simultaneous methods are known to converge slower than
the sequential methods.
Simple constraints can easily be build into the iterative loop in the algebraic recon-
struction methods, which makes them more flexible than FBP. In [52] one can get a
more detailed introduction to the algebraic reconstruction methods.

2.3.3 Variational methods
Variational methods are widely used for inverse problems and imaging problems in
particular. For an inverse problem, a variational method could be seen as a energy
minimization method that tries to solve A(f) = g for some linear or non-linear opera-
tor A, while incorporating a prior that describes what we expect or desire of f . This
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is most often carried out by use of regularization which will be prensented in greater
depth in Chapter 3. A very nice book on variational methods for imaging problems
is [89] where the topic is elaborated upon with many details.

Using a variational method, with some regularizer R, to solve the continuous CT
reconstruction problem in (2.3) we end up with the following minimization problem

minimizef G(A(f), g) + λR(f), (2.13)

where G is a so called data-fidelity term and λ ∈ R≥0 is the regularization parameter
that balances the two terms. The data fidelity term is typically chosen based on the
expected noise model. For white Gaussian noise the suited data fidelity term would
just be the L2-norm, so

G(A(f), g) = 1
2

∥A(f) − g∥2
L2 , (2.14)

in this case. The regularization term should be chosen based on expectations for f .
Some regularization methods that has been used for the CT reconstruction problem
are Tikhonov regularization, see [69], Total Variation (TV), see e.g. [94, 98, 93],
Mumford-Shah, see [60], sparsity regularization, see e.g. [40, 55].

The advantages of using variational methods for solving the CT reconstruction prob-
lem is the possibility of choosing suitable noise-model while additionally including
priors that can help to diminish undesired e.g. artifacts.

2.3.4 Artifacts and noise
When solving the CT reconstruction problem, one is likely to encounter undesired
artifacts, unless much care is taken. Artifacts are structured elements in the recon-
struction that are unrealistic, based on what we expect to see in an object. The
artifacts mainly comes from the mismatch between the real physical phenomenons
and the mathematical model, or from the reconstruction methods themselves.

Some typical artifacts in CT are ring- and motion-artifacts. Ring-artifacts are typi-
cally caused by mechanical problems such as malfunctioning detector bins or a mis-
calibration. Motion artifacts comes from motion of the object, which is a typical
problem for medical imaging. The mathematical model assumes perfectly calibrated
detector bins and a completely steady object which is why there is a mismatch.

Beam hardening, scatter and metal artifacts are all caused by the fact that an X-ray
source is never completely monochromatic, but to some extend polychromatic. At
synchrotrons it is possible to produce beams which are much more monochromatic
than on laboratory and hospital equipment. Since the attenuation coefficients of dif-
ferent materials are not constant for different X-ray energy, a polychromatic source
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can cause streak artifacts and intensity scaling. Streak artifacts can also be caused
by materials that are so dense that the X-rays can not penetrate them.

Limited data artifacts comes from measurement set-ups where either an insufficient
number of angular projections are taken or where the span of projection angles is less
than 180◦, or both. These artifacts are typically seen as streaks, intensity smearing
and missing edges. Such effects are typically seen in FBP reconstructions, where it
is hard to deal with them, other handling them in post-processing. Limited data
artifacts can also occur for the algebraic and variational methods since a limited data
a measurement set-up will give a non-trivial null-space of the forward operator.

Measurement noise is present within all imaging technologies. For CT problems the
measurements are photon counts for each detector bin, and this process follows a
Possion distribution. For large photon count in the dectector bins the process can be
regarded as following a Gaussian distributions see [39, 53, 64]. Longer exposure-time
will in practice increase the signal-to-noise ratio, but naturally also increase the X-ray
dose and be more time consuming. Small noise perturbations can cause large varia-
tions in the reconstruction due to the CT problem being ill-posed, more on this in
Chapter 3. The FBP method is especially bad at handling this, since high-frequency
signals, such as noise, are amplified. The algebraic methods does not amplify the
noise, but still suffers from the fact that the reconstruction problem is ill-posed.

These are some of the most typical artifacts within CT and there are numerous ways to
handle them suggested in the literature. For a more detailed overview of CT-artifacts
and some ways handling them see e.g. [12, 41].

2.3.5 Picking a reconstruction method
No CT reconstruction method is completely superior to the others and here I briefly
try to outline advantages and disadvantages for the different methods.

The FBP method is very easy to implement and computationally highly efficient since
it is not iterative, and since Fast Fourier Transform (FFT) can be utilized. On the
downside FBP has a hard time handling limited and corrupted data. The method
requires a lot of projection data with low noise, which means increased measurement
time and higher dose exposure. Furthermore it is difficult to include constraints or
any other types of prior information when FBP is used.

The algebraic methods can handle limited data problems and it is possible to include
some simple constraints for these methods. Some of the methods has a fast initial
convergence which makes them very useful for getting a fast, but coarse reconstruc-
tion. Some disadvantages are: The risk of null-space artifacts, limited possibility
of incorporation of more complicated prior information, their ability to handle and
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diminish noise and the computational cost which is significantly higher than FBP if
we want to achieve high resolution reconstructions.

The variational methods can handle both limited and noise-corrupted data, while also
incorporating constraints and priors. But in order to solve the minimization problem,
optimization methods that are much more complicated than FBP and the algebraic
methods, are needed. There is a large risk of slow converge for these methods, and
hence the computational demand is typically higher than for the algebraic methods.
Furthermore the incorporation of prior information through regularization is often
limited by the fact that we desire a convex model.

In order to make a small demonstration of some of the different reconstruction meth-
ods and their performance I show three different simulated sinogram measurements in
Figure 2.3 together with the original object. In Figure 2.4 I then show reconstructions
from these three sinograms using the methods: FBP, SIRT and a discrete version of
L2-TV. The methods are all tuned to perform optimally for this sample. The meth-
ods have been timed for 100 random noise realizations, the FBP reconstructions took
in range of 0.05-0.3 sec, the SIRT reconstructions took 50-120 sec, and the L2-TV
reconstructions took 80-1000 sec. This test does in no way cover the entire complexity
of reconstruction methods for CT, but merely serves as a demonstration of some of
the methods reviewed in this section.
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Figure 2.3: Carbon fibre object borrowed from [85] (top left). Sinogram data from
600 uniformly distributed projections angles (top right). Sparsely sam-
pled sinograms from 142 uniformly distributed projection angles, with
and without noise (bottom).
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Figure 2.4: Reconstructions of the object in Figure 2.3. Horizontal direction: Dif-
ferent reconstruction methods. Vertical direction: Different sinogram
data-sets, see Figure 2.3.
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CHAPTER 3
Regularizing Inverse

Problems

Inverse problems is a broad mathematical topic that, among other things, covers
imaging methods. In this chapter I present and discuss the topic in general terms.
Inverse problems are problems where we can only observe the object we want to an-
alyze indirectly. Inverse problems include problems within medical imaging, see e.g.
[66, 87, 14], geophysics, see e.g. [78], radar and astronomy, see e.g. [6], computer
vision and machine learning, just to mention a few. Detailed mathematical theory
about inverse problems can be found in [59].

A common obstacle for solving inverse problems is ill-posedness. I will elaborate a
bit on this in order to highlight the problem, and to explain why we need a way to
handle it. A common strategy for overcoming ill-posedness is by use of regularization.
I review this strategy in more details together with some of the currently most used
regularization techniques within imaging.

3.1 Inverse problems
Knowing a structural parameter for an entire object and a model, in form of some
operator, the forward problem is going from the structural parameter to some obser-
vations trough the model. The inverse problem is the opposite; determining some
structural parameter based on a number of observations and some or all knowledge
about the model. An example is the CT problem presented in the previous chapter.
For this problem we go from the sinogram data, see Figure 2.3, to the reconstruction,
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see Figure 2.4. For many inverse problems the forward model is assumed to be known
and it is also assumed to be the case in this thesis. Whether or not this model is
accurate for underlying the physical problem is an entirely different question which
lies beyond the scope of this thesis.

A general inverse problem can be stated as follows: Determine function f , that de-
scribes some structural property of an object, based on

A(f) = g, (3.1)

where the forward model A and the observed function g are known. Here g is often
corrupted by some sort of noise.

Hadamard introduced the definition of a well-posed problem in 1923 in [48]. It is
stated that a well-posed problem should fulfill three criteria:

• the problem should have a solution,

• the solution should be unique,

• and the solution should depend continuously on the data.

Related to these criteria are the well-known mathematical concepts of existence,
uniqueness and stability. The opposite of a well-posed problem is indeed called an
ill-posed problem. In the field of inverse problems ill-posedness is very common. Dif-
ferent magnitudes of ill-posedness exist and these are some times referred to as slightly
ill-posed opposed to strongly ill-posed. The CT reconstruction problem is for example
slightly ill-posed, see for instance [70].

These concepts are related to classical linear algebra matrix properties. For a linear
discrete inverse problem on the form

Az = b, (3.2)

where A is the matrix representation of the forward operator, z is the unknown object
and b is a noisy measured signal, no solution would exist if A has full rank while being
overdetermined. If A is underdetermined then the null-space will be non-trivial and
infinitely many solutions will exist. Finally if A has a large condition number, the
system is ill-conditioned, and a relatively small amount of noise in the measured signal
can therefore lead to large changes in the solution, hence it is unstable.

3.2 Variational formulation with regularization
Overcoming ill-posedness by regularization is elaborated upon in great details in e.g.
[100, 35, 89, 50]. Some of the most widely used regularization techniques within



3.2 Variational formulation with regularization 19

imaging are presented here together with their respective priors. Iterative methods,
as the algebraic methods presented in Section 2.3.2, or the Krylov subspace methods,
are also considered to be regularization techniques, see [35, 50], but in this thesis I
introduce regularization through a variational formulation. It is difficult to discuss
regularization through variations method without mentioning the data fidelity term.
I will therefore also touch upon the choice of data-fidelity term, which can be as im-
portant as the choice of the regularizer.

Variational methods were previously reviewed for solving the CT reconstruction prob-
lem in 2.3.3. Here I elaborate a bit more on these methods for inverse problems in
general. A variational formulation for solving an inverse problem on the form (3.1)
can be posed as the following minimization problem

minimize
f

G(A(f), g) + λR(f) (3.3)

The first term is the data fidelity term, the second term is the regularization term
and λ is the regularization parameter balancing the influence of two terms. Here G,
typically a norm, measures the difference between A(f) and g. The data fidelity term
is typically designed to fit the expected forward model. Since noise is inevitable in
real life measurements, G should be designed to accommodate the type of noise likely
to be present in the measurements.

For expected additive Gaussian noise the squared L2-norm fits the distribution, so
for such a case we should choose

G(A(f), g) = ∥A(f) − g)∥2
L2 .

The squared L2-norm is the most widely used data-fidelity term choice, especially if
the noise-model is unknown. We use this data-fidelity term in the papers A, B and D.

For impulse noise the L1-norm should be chosen:

G(A(f), g) = ∥A(f) − g)∥L1 .

We use this norm in paper C. Minimizing the L1-norm is usually also used to remove
outliers from signal measurements, see [17]. More on the L1-norm data-fidelity term
for removing impulse noise can be found in [72].

If the noise is expected to follow a Poisson distribution, the data-fidelity term should
be a generalized Kullback-Liebler divergence measure

G(A(f), g) =
∫

Ω
A(f) − g log(A(f)) dx where A(f) ≥ 0.

Where Ω ⊂ RN . Further detail about Possion noise and the data-fidelity term above
can be found in [8, 38, 91, 103].
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For more details and methods for handling other non-Gaussian noise models, such as
Rician noise, multiplicative noise and Cauchy noise, see [90].

The main goal for using regularization in a variational formulation is to handle and
reduce the undesired ill-posedness effects. These effects could for example be intro-
duction of artifacts or magnification of measurement noise. As indicated in (3.3)
regularization methods often targets the unknown function f , or some order deriva-
tive of f , but regularization methods that targets for example A(f) also exist. In
this brief introduction to regularization I stick to regularization methods on the form
R(f).

The choice of regularization method should, from a Bayesian point of view, be moti-
vated by the features that we expect our unknown object to express. We usually say
that the choice of regularization method should fit our prior for the unknown function.

The most widely used regularization method is also one of the first to be introduced.
Like the most widely used data fidelity term, this regularization method is also based
on the L2-norm. The L2-regularization method is typically referred to as Tikhonov
regularization, see [79, 99] for the original works on this regularizer. Tikhonov regu-
larization usually refers to a squared and weighted L2-norm

R(f) =
∫

Ω
|w(x)f(x)|2 dx, (3.4)

where w(x) is a weight function, often just chosen to be w(x) = 1. Tikhonov regular-
ization also refers to the squared L2-norm on the gradient of f :

R(f) =
∫

Ω
|∇f(x)|2 dx. (3.5)

It is very advantageous to use Tikhonov regularization together with the L2 data
fidelity term, since for this comibination the variational problems has a closed form
solution that can be determined using very efficient algorithms, see [51]. Tikhonov
regularization is related to a prior that f or ∇f is smooth. The smoothing effect
of Tikhonov regularization helps to suppress artifacts and noise, but for this prior is
rarely satisfied by the objects we want to examine using imaging techniques.

Within imaging science and image processing a specific regularization method has
gotten a lot of attention over the last two decades. That is the Total Variation (TV)
regularization method introduced in [86]. The reason that this regularization method
is so popular within imaging and image processing, is that it preserves edges and at
the same time surpresses noise and artifacts. The prior for this regularization method
is that f is piecewise constant. This prior fits to a much larger range of problems
within imaging and within inverse problems in general. See [101, 32, 28, 33, 54, 84] for
some applications of TV regularization for denoising, deconvolution, and tomographic
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reconstruction problems. The dual formulation of TV is given as

R(f) = TV(f) = sup
{∫

Ω
f div v dx

∣∣∣∣ v ∈ C1
c (Ω,R2),v(x) ∈ B2(0) ∀x ∈ Ω

}
, (3.6)

where v is the dual variable and B2(0) is the closed Euclidean unit ball centered at
the origin. Another very typical way of introducing TV is by its primal formulation,
though this requires f ∈ C1(Ω). If that requirement is satisfied the regularizer can
be written as

R(f) =
∫

Ω
|∇f(x)|2 dx,

where | · |2 is the Euclidean norm.

Several modifications of TV has been proposed for various applications, I will men-
tion a few of them here. A common drawback of TV is the so called stair-caising
effect that occurs when regularizing with TV, while f is not piecewise constant, but
piecewise affine or piecewise smooth. Higher order methods have been suggested to
overcome this, see [88, 29, 92, 19]. Here most notably Total Generalized Variation
(TGV), see [19], which has been the basis for regularization method that we have pro-
posed and analyzed in paper B. Other examples of TV modifications are anisotropic
TV [46], nonlocal TV [44], spectral TV [43], and structure tensor TV [63].

Another regularization method that is very popular within signal processing in general,
is sparsity regularization. The great interest is related to the compressed sensing
results that states that a signal can be recovered with less sampling than usually
required, given knowledge about the sparsity of the signal, see more about this in [34,
22, 23]. Sparsity of a signal refers to the signal having few non-zero coefficients or
being sparse through some transformation, e.g. in another basis or by a dictionary
representation. In terms of regularization method, this method is mainly related to
discrete problems, so I refer to the discrete inverse problem (3.2) when presenting this
regularization method. The simplest sparsity regularizer is the so called 0-norm. For
discrete signal z the 0-norm is usually denoted ∥z∥0 although it is not a norm. ∥z∥0
counts the number of non-zero elements in z. Solving the problem

∥z∥0 s.t. Az = b (3.7)

is unfortunately not so easy, it is in fact NP-hard, see e.g. [18]. Therefore the 0-norm
is usually relaxed to a 1-norm to achieve a solvable problem. A typically considered
sparsity regularizer is therefore

R(f) =
∫

Ω
|f | dx (3.8)

Within image processing sparsity regularization on a transformed version of f is also
very typical, it could for example be a sparsity of f represented in a frame-basis such
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as wavelets, see e.g. [47]. Other sparse regularization methods seek to find a sparse
solution in a dictionary representation, which could be learned from expected object
samples, see e.g. [95]. Total variation can also be seen as a regularization method
that enforces sparsity of the gradient. In [55] sparsity regularization in general, and
specifically for the CT reconstruction problem, is reviewed with a lot of analysis of
sampling and recoverability guaranties.

Some of the regularization methods mentioned in this chapter are demonstrated for
two simple denoising problems. The two phantoms, with and without noise, can
be seen in Figure 3.1. The regularization methods are tuned to perform the best,
according to the peak-signal-to-noise ratio, for the individual problems. The noise, in
both cases, is simulated additive Gaussian noise, 10%, hence a L2 data-fidelity term is
used. In Figure 3.2 results of using different regularizers can be seen. The Tikhonov
method is seen to be inferior to the other two methods for the grain phantom, whereas
both Tikhonov and TV are inferior to TGV for the blob-phantom.

Figure 3.1: On top: Grain phantom from Airtools [52]. Bottom: Blob-phantom.
Phantoms without noise to the left and phantoms with 10% additive
Gaussian noise to the right.
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Figure 3.2: Denoising results of the two noisy images seen in Figure 3.1, using dif-
ferent regularization methods.
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CHAPTER 4
Numerical Aspects

All of the enclosed papers of this thesis makes use of variational methods and reg-
ularization. Using these methods requires solving an optimization problem. In this
chapter I will discuss the requirements and choices of optimization methods that are
necessary to consider when using variational methods for solving inverse problems.
A recent and very thorough overview of optimization method for imaging problems
is given in [27], which I will recommend for an in-depth introduction and discussion
of important and recent work within this field. The optimization methods discussed
in this chapter are based on solving discrete inverse problems on the form (3.2). For
such a problem the corresponding discrete variational formulation is denoted as

argmin
z

J (z) (4.1)

for J (z) = G(Az, b) + λR(z), (4.2)

where G measures the difference between Az and b, and R represents the choice of
regularization method. In the enclosed papers the practical problems we solve are
denoising, deblurring and CT reconstruction, I will in general refer to all of these
problems as reconstruction problems.

Choosing the optimal value of the regularization parameter is an essential ingredient
of variational methods. I will briefly review issues and methods related to the regu-
larization parameter choice.

When comparing reconstruction methods it is highly useful to have a reference recon-
struction that can be used for benchmarking. One way to achieve this is to simulate
the measured data and the noise. In this thesis PCT/CT reconstruction, denoising,
and deblurring are the inverse problems handled in the contributing papers. I briefly



26 4 Numerical Aspects

discuss how the measurement data is simulated for these problems.

Having a ground truth, the next question that arise is how to quantify which recon-
struction is ”closest” to the ground truth. I present a few methods which are often
used for measuring the similarity between two images.

4.1 Optimization
Optimization algorithms for solving variational problems comes in many forms, depen-
dent on the properties of the specific minimization problem. Some important things
to consider are: The size of the problem, i.e. the size of the matrix A. Whether or
not the problem is convex and whether or not it is smooth. And the convergence rate
of the algorithm is also significant for several applications.

For smooth problems, i.e. continuously differentiable, some classical and popular op-
timization methods are: Gradient descent, trust-region, conjugate-gradient, interior-
point, etc. These methods has applicability for a large range of problem. More on
these methods can for instance be found in [17, 73].

For non-smooth problems I will highlight the Primal-Dual method, see [3, 25, 71] and
the Alternating Direction Method of Multipliers (ADMM) method, see [16]. Some
popular fast methods for large systems are limited memory BFGS, see [21], the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA), see [10], and the Primal-Dual-
Hybrid-Gradient (PDHG) method, see [36, 26]. FISTA, ADMM and PDHG have
gotten a lot of attention in the inverse problems community, and they are often used
since they are adaptable, relatively fast, and relatively easy to implement.

All of the previously mentioned methods are aimed at convex problems. For non-
convex problems the internal proximal algorithm (iPiano), see [74], and ADMM are
often used.

4.1.1 Requirements and choice of optimization method
Here I list some considerations and requirements for optimization method choice in
relation to variational methods.

One major reason for using variational methods is that they can be used to overcome
the undesired effects of ill-posedness and noise. Minimizing a data-fitting term, in-
stead of trying to find the exact solution to (3.2), is a way ensuring that the problem
we are trying to solve has at least one solution. Choosing convex data-fitting and reg-
ularization terms are useful since uniqueness of the solution is desirable. Introduction
of a regularization term can also fix instability issues and reduce the noise, though
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some popular regularization terms are not smooth, e.g. total variation. Optimization
methods that can handle non-smooth objective functions can therefore be desirable.
Incorporation of constraints is also a valuable feature for an optimization algorithm,
since additional constraints often occur when solving inverse problems. Finally a
practical, but also very important, requirement is efficiency, related to both conver-
gence within a desired time and reasonable memory allocation.

In all of the contributing papers of this thesis one specific algorithm has been used,
and that is the PDHG algorithm from [26], sometimes called the Chambolle-Pock
algorithm. The choice of this method is based on several considerations. First of all
CT-reconstruction problems are in practice very large scale problems, for example
for a 2D CT-reconstruction problem with a 256×256 reconstruction domain, 256
detector bins and 256 projections, the matrix A has more than 4 · 109 elements, and
that is actually a relatively small 2D problem. This fact made us avoid second-order
methods and also approximate second-order methods. Moreover, in the enclosed
papers of this thesis we have proposed or used convex data-fitting and regularization
terms to ensure necessary conditions for getting a unique solution. Several of the
regularization terms we work with are non-smooth and hence we needed a method
that could handle this. Another typical way to handle this is to smooth the functional,
but this typically introduces another parameter, which we decided to avoid. For the
FISTA method, incorporation of constraints are not that easy, and we therefore ruled
out this method, which led to the choice of the PDHG mehod. The PDHG method
is also easy to implement and to adapt to different types of variational formulations.
The convergence rate for the PDHG method is reasonably good, but ADMM could
seem to be faster for some types of problems according to [27].

4.1.2 Regularization parameter and stopping criteria
The regularization parameter plays a very important role for the solution of a varia-
tional problem. There is a certain point, a certain value of λ, that gives the ’optimal’
solution. Of course that point depends on what ’optimal’ means, and this is the first
reason that picking the optimal λ is not a simple task. Regularizing an inverse prob-
lem too little, i.e choosing a too small λ, can result in a solution corrupted by noise
and artifacts. Regularizing a problem too much and the solution can loose features
that are otherwise important for the further analysis.

Picking the exactly right regularization parameter will correspond to picking the pa-
rameter that gives exactly the solution we seek, the ’ground truth’, which we obviously
do not know in practice. Most of the strategies for picking the optimal λ are based
on solving the problem (3.2) for a range of λ-values, and from these different solu-
tions picking one that is most optimal based on some criteria. Methods that states
how to define such criteria are for example the L-curve method and generalized cross
validation. If we have some knowledge about the noise-level it can be utilized to de-
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termine the optimal λ using Morozov’s discrepancy principle. In general, no method
is superior to all others for arbitrary problem types. It is not the focus of the work
in this thesis to test and compare different methods for picking the regularization
parameter. In all of the contributing papers the regularization parameter has been
chosen by comparing the results with the ground truth or by choosing visually prefer-
able solutions. More on picking the optimal regularization parameter can be found
in [50].

Another parameter to consider is the tolerance related to the stopping criterion. Iter-
ative optimization method has be stopped at some point when a reasonable solution
is reached. If we just stop after a fixed number of iterations, we have no guarantee
that the solution has converged. Typical stopping criteria are based on the objective
function that we are minimizing J . In the simplest case it could be to stop the al-
gorithm when the objective goes below some tolerance. Otherwise when the relative
change of J or the gradient of J in some norm goes below a tolerance. The stopping
criterion could be based to the first order optimality conditions or, due to simplicity,
based on the relative change of the actual solution z. For the PDHG methods the
primal-dual gap can be calculated, see [17], and therefore this is often used to stop
this algorithm.

4.1.3 Implementation
When implementing a chosen optimization algorithm there is also some choices to
consider.

First of all, discretization of domains, functions and operators, such as the gradient
and the divergence operators, can influence the final result. Since the papers of this
thesis are related to denoising, deblurring and tomography problems the object do-
main is discretized into equidistant square pixels. In all of the enclosed papers the
gradient and divergence operators are discretized using first order finite differences
with symmetric boundary conditions.

Memory issues are still important, even though hardware improvement in computers
has been increasing massively the last decades. As mentioned previously the matrix
A can be enormous for tomography problems, and hence we do not want to store
this on the hardware in its entirety. Fortunately this matrix is sparse and this can
help for some types of problems, although some problem are so large that this is
still a problem. Another solution to this problem, is to use a so called matrix-free
implementation where the application of A on z is calculated when it is needed in
the algorithm. We used a matrix-free implementation of the CT forward operator in
paper A and D. See more about the ASTRA toolbox that we used for this in [1].

Efficiency of the implementation is very important, especially for real practical prob-
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lems. There are many ways of increasing the efficiency of an implementation. The
ASTRA toolbox provides increased speed by use of GPU’s when calculating projec-
tions, and this we have utilized. Parallelization will in many cases increase the speed
of an algorithm. Other ways to achieve increased speed of an optimization algorithm
is to use preconditioning, a qualified initialization or a so-called warm start.

In the contributing papers of this thesis, efficiency of the implementations has only
been an aspect to the extend that it was possible to conduct experiments within
reasonable time. For the large scale problems that would be solving one minimization
problem in a matter of minutes.

4.2 Simulated experiments and quantification
In the papers of this thesis two aspects has been very important for the numerical
experiments conducted: First and foremost, we strive to demonstrate new methods
in best-case experiments with respect to simulation and parameter choices. We do
this in order to avoid any bias of the results caused by the parameter choices, the
noise simulations, etc. In order to make a fair comparison with respect to other re-
construction methods we did the same for these methods. Second, we always strive
to demonstrate how failed assumptions and disadvantages of a method can influence
a solution.

Simulating the reconstruction problems and the noise ourselves, gives us the advan-
tage that we have a ground truth that we can compare our results to. Since we
use variational methods, simulated experiments can also ensure that we choose the
data-fidelity terms optimally, such that when we are testing the influence of a regu-
larization method, the tests are not biased by the choice of the data-fidelity term.

Judging the quality of a reconstruction can be done by visual inspection or by quanti-
tative measures. Given a ground truth z∗ and reconstruction z a typical quantitative
measure could be the relative 2-norm error, i.e

∥z∗ − z∥2

∥z∗∥2
. (4.3)

Another typically used error-measure, is the root means square error (rmse)

rmse(z∗, z) = 1√
(M)

∥z∗ − z∥2, (4.4)

where M is the number of elements in z.
Within the image processing community two error-measures are very often used, the
peak-signal-to-noise (psnr) ratio and the structure similarity index (SSIM). The psnr
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measure is a scaling of the rmse measure depending on the dynamic range of the
pixels in z∗. For maximum possible pixel intensity H the psnr measure is

psnr(z∗, z) = 20log10

(
H

rmse(z∗, z)

)
The SSIM measure is an attempt to make an image quality measure that better
describes what we as observers visually favor, opposed to e.g. psnr. This method
depends on several tunable parameters, see more in [102].

A problem with these quantitative error-measures is that they are not really compara-
ble across different images, but using them to compare different methods for a single
image is still a relevant tool. We have used the psnr measure in the contributing
papers of this thesis.

Having a ground truth and a quantitative error measure can also be used to exclude
test-bias caused by parameter choices. We used the psnr measure to determine the
optimal regularization parameter in the contributing papers, when possible. In this
way we avoided choosing between the different regularization parameter picking meth-
ods mentioned above, since we base our λ-choice on ground truth comparison.

Some images with different types of simulated noise can be seen in Figure 4.1. I listed
the different error-measures below the images and I also included a zoom on a region
of the noisy images.
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Figure 4.1: Comparison of different noise types and different error-measures. On
top are noisy images with a description of noise-type above. In the
middle error measures are written, where r denotes the relative 2-norm
error, p denotes the psnr error measure and s indicates SSIM. On the
bottom row, zoom-ins of the noisy images images are shown..
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CHAPTER 5
Segmentation-Driven

Reconstruction
Methods

Image segmentation methods refers to a group of methods that aim to computation-
ally partition images into two or more segments or classes. Historically segmentation
methods have advanced from simple thresholding and clustering methods to much
more complicated methods based on growing regions, active contours and variational
methods.

Segmentation is a big topic within imaging science, but it covers a much larger range
of practical applications. Segmentation technology becomes more and more popular
in the industry. Today it is used in almost any kind of automation where cameras
are involved. This could be within robot technology, medical diagnosis, production
automation, surveillance, quality control, biometrics authentication, self-driving cars,
etc. The range of applications is vast, and development of new mathematical methods
in this field has also been increasing in the last few decades. In this chapter I will
review a few segmentation methods and elaborate on the requirements for segmenta-
tion methods in general.

Pre-processing images before using a segmentation method is a very typical process,
in fact many image segmentation methods include or suggest that denoising, e.g. by
filtering, is carried out before using the segmentation method. This step is sometimes
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referred to as image enhancement. Usually this segmentation aiding step is done by
use of very simple methods that either does not remove all of the noise or leave arti-
facts, both of which can influence the quality of the subsequent segmentation.

Combining image reconstruction methods with image segmentation is an obvious idea
that follows from pre-processing and segmentation preparing steps. I will mention
some methods that has combined the segmentation and reconstruction into a single
solvable problem in this chapter. I will also highlight some disadvantages that this
strategy can have.

5.1 Image segmentation
The simplest image segmentation method is consist of thresholding an image based
on the pixel-intensity information. The thresholding levels are parameters that can
either be manually or automatically chosen, for instance from the histogram, or oth-
erwise naturally given for some applications. Every pixel in the image is assigned to
a class from the intensity solely. Otsu’s method, see [77], is one of oldest methods for
picking a thresholding level for an image. Otsu’s method only separates an image into
two segments, and in fact Otsu’s method corresponds to K = 2 in K-means cluster-
ing, see [65]. Other classical segmentation methods are: The watershed method and
region growing. The watershed method is presented in [11], and it separates regions
by watershed lines based on an estimate of the local minima in an image. Region
growing is similarly initiated by some seed point that are then grown, based on a
specific criterion. These classical segmentation methods are relatively simple both
in term of requirements and models, but also when considering their computational
demand.

More advanced segmentation methods are for instance based on the use of Markov
Random fields, see e.g. [42, 18]. These methods are graph based and they use
neighborhood connectivity of the pixels. The level set methods are very popular seg-
mentation methods and a lot of mathematical theory has been developed for these
methods since they were first introduced in [76]. Active contour methods are based
on deforming an initial contour around an object in the image, based on minimizing
a specifically designed functional, see more in [57, 24].

Several variational methods have also been used for image segmentation, see [4] for
an overview. Among these I will highlight the Mumford-Shah method introduced
in [68]. This method regularizes an image by Tikhonov regularization, except along
contours boundaries that are regularized by minimizing their length. In practice this
model is difficult to minimize and instead many different relaxations of this model
exist, e.g. [80]. The 0-norm regularization method mentioned in (3.7) is some times
called the Potts-model, see [18], and can be regarded as a segmentation method. The
Potts-model is related to the Mumford-Shah model, in fact it is sometimes called a
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piecewise constant version of the Mumford-Shah model. As mentioned in Section 3.2
solving the Potts-model problem is NP-hard and therefore a significant computational
difficulty.

A great disadvantage of several of the above mentioned segmentation methods is that
they are non-convex and hence uniqueness of the results are not guaranteed. Several
of the methods, especially the simpler ones, also require some pre-processing for the
methods work properly. Moreover, the segmentation methods has to deal with the
typical mathematical modeling balance between complex and computationally heavy
models and faster, but also inferior and sometimes insufficient models.

5.1.1 Requirements
The most basic requirement for segmentation methods is the intensity, which is typ-
ically given along with an image as it is. Another basic requirement for several
segmentation methods is gradient information. If an image is corrupted, e.g. by
noise, simply calculating a finite difference approximation of the gradient, and using
this information for segmentation, could result in a highly unreliable segmentation.
Neighborhood connectivity of pixels can also be a requirement. This is relatively
simple to set-up, when a rule for how to choose a neighborhood is decided.

Initialization of the methods, e.g. of seed locations, can be crucial to final segmenta-
tion, especially when the methods are non-convex. Sometimes heuristic methods are
used to initialize a segmentation method and the choice of the heuristic method can
therefore have an essential impact on the segmentation result.

Another requirement, which is essential in some segmentation methods, is knowledge
of the number of segments that is represented in an image, e.g. how many different
materials types. Such information is not always naturally given, and it could cause a
segmentation method to fail if it is specified wrongly.

5.2 Combined methods
Methods where segmentation is combined with other tasks, such as image reconstruc-
tion, are relatively new. The idea is to build a single model that connects the data
directly to the segmented object, and solves the segmentation problem directly in this
way. A typical reason for combing segmentation methods with other methods is to
reduced segmentation errors due to propagation of artifacts. If a denoising method
introduces an artifact in an image the subsequent segmentation could suffer from this,
whereas a combined model problem could circumvent that the artifact was created
in the first place. Reduced computational time can also be achieved by only having
a single problem to solve. A disadvantage of the combined methods is that we might
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not get the intermediate solution, which is also desired in some cases.

In the image processing community it was suggested to combine denoising and deblur-
ring tasks with segmentation in [58]. Later structure-texture decomposition combined
with denoising was introduced in [5, 45].

Within tomographic methods, manual segmentation is a typical pre-analysis step, and
automation of this process is a big topic within segmentation. Therefore it is not sur-
prising that several ways to combine segmentation and tomographic reconstruction is
suggested in the literature. A combination of the Mumford-Shah segmentation with
the CT-reconstruction method was suggested in [82]. A CT-reconstruction method,
that only reconstructs a limited number discrete classes of an object is called the Dis-
crete Algebraic Reconstruction Technique (DART), see more in [9]. A more recent
method based on a combination of CT-reconstruction and the Potts segmentation
model was introduced in [96]. Furthermore a method that reconstructs and segments
the image simultaneously using Hidden Markov Radon Fields was introduced in [83].

The problem with these more advanced segmentation method is that they often be-
come highly complex, and solving them requires a high computational cost, even
considering parallelization and other efficiency improving techniques. Another disad-
vantage is that when we combine an otherwise convex reconstruction method with a
non-convex segmentation method, we loose the desired uniqueness property.

5.3 Aiding segmentation
Thinking about image segmentation as a last step in a pipeline consisting of the steps:
Image reconstruction, pre-processing and finally image segmentation, the idea of aid-
ing the segmentation is similar to the idea behind the combined method. Instead of
combining all of the steps, the first two steps, reconstruction and pre-processing, are
combined while the computational effort is also moved from the segmentation to the
reconstruction, but still having two separate steps. By doing so, the segmentation
step could be reduced to a very simple step, possibly just a thresholding.

For such segmentation aiding, or segmentation-driven, methods, one can already in-
clude variational methods using TV-related regularizers. Also the Mumford-Shah
combined with reconstruction can be seen as a segmentation-driven method. The
segmentation-driven methods should drive the reconstruction in direction of the seg-
mentation methods and hence supply one or more of the requirements listed in Sec-
tion 5.1.1. Other desired features of a segmentation-driven method are: Clear edges
between regions and regions of constant intensity. In all of the papers contributing to
this thesis, TV or TV-related regularization methods are proposed and used, therefore
they can all be regarded as being segmentation-driven.



CHAPTER 6
Contributions

In this thesis, segmentation-driven reconstruction methods have been studied for dif-
ferent practical problems: tomographic reconstruction, image denoising and image
deblurring. The proposed methods are segmentation-driven in the way that they re-
construct or restore objects and images such that the results have features that are
desirable for simple segmentation methods.

The contributions of this thesis can be divided into three parts: The first part is
related to phase contrast tomography. In this work we experimented and tested the
advantages of going from a two stage reconstruction method to a one stage recon-
struction method, in terms of the materials in the object and the amount of noise in
the measurements. The reconstruction methods were regularized by total variation
and hence most of the reconstruction results can be easily segmented using simple
methods.

The main work of the second part is the proposal of a new regularization method
that takes an offset from total generalized variation. The new method, directional
total generalized variation, incorporates directional information about an object. We
proved that this regularization method has the same desirable theoretical features as
total generalized variation, and we furthermore demonstrated the advantages of using
this segmentation-driven regularization method for deblurring and denoising different
kinds of directional objects.

The third part of the contributions is based on decomposing or splitting a directional
object simultaneously with a tomographic reconstruction. We proposed two recon-
struction methods that directly segment or highly aid the segmentation process. We
demonstrated how the two reconstruction methods perform and compare their on a
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realistic sample consisting of fibres and cracks.

The articles that documents the work of this thesis are enclosed in the appendix. In
this chapter I will give the context that is the foundation for our work for each of the
three projects. After this I will describe the main outcomes and result and explain
the impact of these results.

6.1 Phase contrast tomography

6.1.1 Context
Phase-Contrast Tomography (PCT) is an imaging method which in addition to the
attenuation of X-rays utilizes the phase shift information of these electromagnetic
waves. The extra information can be obtained in several ways, but the simplest
method, free-space propagation, is very similar to CT. The only practical difference
between free-space propagation PCT and CT is an increased object-to-detector dis-
tance.

PCT can provide a better contrast between materials that have very similar attenu-
ation coefficients, i.e. that are usually difficult to distinguish from each other using
standard CT. This is highly useful for many non-destructive materials science inves-
tigations. The contrast enhancing ability could also be used to reduce the X-ray
dose, since a higher contrast can be attained from the phase shift information. PCT
experiments has usually been restricted to synchrotron facilities, due to coherency re-
quirements, but recent developments has made lab scale experiments possible, though
with increased measurement noise and artifacts.

Reconstructing an object from phase contrast measurements is classically based on
two stages. The first stage is a phase retrieval stage and the second stage is a tomo-
graphic reconstruction stage. In the phase retrieval stage the absorption and phase
fields are retrieved for each projection from the measured intensity. The phase re-
trieval is typically carried out by linearizing the physical model and solving it by a
simple inversion. The tomographic reconstruction is typically carried out by a filtered
back-projection method.

Instead of having two separate stages, it has been suggested to combine these into
a single stage. Furthermore using a segmentation-driven reconstruction method is
also beneficial for many materials science experiments. Kostenko et al proposed to
combine phase retrieval and reconstruction into a single problem, to be solved simul-
taneously by use of a TV-regularized variational method. This method was tested on
simulated materials with artificial material indicies and the combined method was not
seen perform better than the two-stage method for noisy data. Therefore we found
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it interesting to provide a rigorous test of this segmentation-driven reconstruction
method for different realistic material types and of varying noise levels.

6.1.2 Relevant paper
Paper A: Noise robustness of a combined phase retrieval and reconstruction method
for phase-contrast tomography

6.1.3 Outcome
In this work we carefully planned a comparison of the combined reconstruction
method versus the two-stage method in physically realistic simulated experiments.
The main goal of the comparison was to rule out as many influencing factors as pos-
sible, such that we could conduct a clear comparison between the two stage method
and the combined one stage method.

The outcome of this work is threefold: First of all we demonstrated the performance
of using PCT for low, medium and high absorbing phantoms, with material parts that
have similar absorbing properties. The result of this test was a good performance for
low to medium-low absorption. For highly absorbing objects the reconstructions were
corrupted by artifacts and they had low distinguishability, which was expected since
the linearization is only valid for low absorbing objects. Secondly we demonstrated
that the combined method delivers results with less artifacts and better contrast
between materials that have similar absorption properties. Finally we also demon-
strated a very clear advantage of using the combined method for noisy data, where
this reconstruction method was highly robust toward increasing noise.

In general, the combined method was seen to be as good or better for all the empirical
tests, regardless of materials or the amount of noise. We believe that the artifacts
that occur in the two-stage methods, and not in the combined method, were caused
by errors introduced in the phase retrieval stage, but more investigation within this
area is needed to bring more clarity.

The simulations with realistic material indicies validates for which experiments phase
contrast tomography is useful, and shows that a combined reconstruction method
further enhances the reconstruction result. The noise robustness result of this work
result could be of critical importance for pushing lab scale PCT experiments to real
applications usage, since more artifacts and higher noise levels are typical there. Fur-
thermore, the segmentation-driven regularization ensures reconstructions that are
easily segmented by a simple thresholding.
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6.2 Directional total generalized variation

6.2.1 Context

Regularization of inverse problems is a very useful technique for improving recon-
structions within e.g. imaging science. Dozens of regularization methods has been
developed from very general and widely applicable methods, to more specific and
application-driven methods.

The choice of regularization method is typically based on prior information about
the object that we regularize. Total variation (TV) is a very popular regularization
method within image processing and imaging science and it is connected to a prior
of piecewise constant objects. An extension to the TV regularization method is to-
tal generalized variation (TGV). The second order version of TGV is connected to
a prior of piecewise affine objects. TGV of second order is more favorable than TV
for natural images, and since piecewise constant objects are in fact also piecewise
affine objects, second order TGV is superior to TV, though more computationally
demanding. Moreover TV and TGV are convex and lower semi-continuous, which,
from a variational problem perspective, are highly useful properties.

For many different practical applications directional texture is present. Seismic im-
ages and fibre materials are widely used and often have clear uni-directional texture.
Applications of fibre materials are for example fuel cells with ceramic fibres, high
speed communication cables with optical fibres and wind turbine blades constructed
of glass fibres. This common feature of uni-directional texture is attainable and this
can therefore be utilized by designing a regularization method that incorporates it.

Directional information has been incorporated in regularization methods such as TV
in some cases by introducing an anisotropy in the discrete formulation of TV. The
properties of corresponding continuous problem is interesting from a perspective of
regularization theory and variational methods in general, but it has not yet been
analyzed. Furthermore, advantages of incorporating directional information in higher-
order derivatives have not been identified and documented.

6.2.2 Relevant papers

Paper B: Directional Total Generalized Variation Regularization
Paper C: Directional Total Generalized Variation Regularization for Impulse Noise
Removal
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6.2.3 Outcome

In this work the main focus is development of a new regularization method, direc-
tional total generalized variation (DTGV), that incorporates directional information
as the name implies. We wanted to establish the mathematical theory of the func-
tional itself and the theory related to using this as a regularizer. Moreover we wanted
to demonstrate the improvement of using this regularizer for practical problems by a
series of empirical experiments.

In paper B we have proposed a continuous extension of TV that incorporates di-
rectional information. This functional we have further generalized to any arbitrary
integer order, by following steps similar to those that Bredies et al used to extend
TV to TGV.

We have shown that DTGV possess the same properties as TGV, besides being
isotropic. In paper B we have also shown that, based on some requirements of the
noisy image and the forward operator, a unique solution exist for the variational
problem consisting of an L2 data-fitting term and second order DTGV as the regu-
larization term.

In paper C we have proposed a robust and efficient method for estimating the main
direction in images corrupted by Gaussian or impulse noise. The method is also
demonstrated to work for images corrupted by both noise and blurring.

We proposed a discretized version of DTGV up to the second order, which is neces-
sary in order to make the functional practically applicable for numerical experiments.
Based on the discrete DTGV formulation we have conducted some empirical image
restoration tests. In paper B we demonstrate the improvement of regularizing with
DTGV opposed to TGV for denoising and deblurring directional objects corrupted
by Gaussian noise. In paper C we show similar improvements when denoising and
deblurring images corrupted by impulse noise.

The results of this work is a new regularization method, that has the same useful
properties as well-established regularization methods for imaging problems. This
regularization method delivers results that aid a subsequent segmentation, since it
enforces objects that are directional and piecewise affine. We have given some exam-
ples of practical problems where this method can be useful and also empirically shown
the significant improvements for several types of image restoration problems. This
method is applicable for many other types of practical inverse problems and could,
due to the desirable properties, also be useful within other fields where regularization
is used, e.g. control.
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6.3 Tomographic reconstruction of directional objects

6.3.1 Context
The use of computed tomography (CT) for non-invasively investigating the interior of
objects has become omnipresent within technical sciences. Within materials science
and product development there has been as increase in the use of CT for investigation
and analysis.

The reconstruction process from X-ray attenuation measurements to a reconstructed
object has been investigated a lot within the mathematics community. In the most
basic case with a parallel beam measurement set-up, with a monochromatic X-ray
source the problem is a mildly ill-posed linear inverse problem. This means, that not
only filtered back-projection type methods are applicable for this problem, but in fact
all kinds of methods for solving inverse problems.

Variational methods are widely used for solving inverse problems and they typically
incorporate regularization as part of the method. Regularization methods are quite
flexible and should be chosen according to what attainable prior information we have
for the object. TV and TGV type regularization method has been shown to be highly
useful for many different practical problems. Furthermore the directional regulariza-
tion method mentioned above has been shown to be useful for objects with directional
texture in general, for instance fibre materials.

Decomposition methods are examples of variational methods that aim to separate
an object into different components according to different properties, for example it
could be desirable to split oscillating texture parts from piecewise constant regions
in an image. Infimal convolution is a way of decomposing a an objects into different
parts using two, or more, functionals, e.g. some prior enforcing regularization terms.
The idea is to choose two functionals that are different in terms of their connected
priors such that each component will represent the part of the solution that best
fits with each prior, and therefore also with the corresponding regularization method.
Decomposition methods have previously been used for image denoising combined
with simultaneous texture-cartoon decomposition. Decomposing of an object simul-
taneously with reconstruction it could be argued to be a highly segmentation-driven
method.

Microlocal analysis of the CT problem has revealed that singularities in the object
only propagate to the measured sinogram data if an X-ray is tangent to the singularity.
This result is especially relevant for limited angle problems, where some singularities
will be lost and some artificial singularities created, due to the limited scanning angles.
This singularity propagation result could also be utilized to exclude singularities we
do not want in a reconstruction.
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Many different fibre materials are analyzed using CT, e.g. carbon fibre, glass fi-
bres and optical fibres. A typical aim of non-destructive testing of fibres is crack-
propagation investigation. In fibre materials, the cracks are often distinctive from
the fibres and splitting these two components apart is an example of a practically
useful decomposition challenge.

6.3.2 Relevant paper
Paper D: Tomographic Reconstruction Methods for Decomposing Directional Compo-
nents

6.3.3 Outcome
We propose two CT reconstruction methods for reconstructing objects with texture
along one main direction, but with parts that does not follow this prior. The aim of
these methods are to handle both the object-parts that follow the main direction and
also object parts the does not fulfil this prior. As a consequence of building a model
that fulfill these requirements we propose to handle these different object parts by
using different regularization terms for each of them.

The one method we proposed is based on the same strategy that has previously
been used for combined image restoration and decomposition. We propose to decom-
pose the object in two parts linearly and solve the minimization problem for both
of these components simultaneously. The one component represents the directional
texture and the prior for this component fits with a directional regularization method,
e.g. directional total variation (DTV). The other component represents object parts
that does not follow the main direction and in order to get a significant split of the
components we make the assumption that this component follows the direction per-
pendicular to the main direction. If the first regularizer is DTV our empirical tests
show that the difference between of using DTV in the perpendicular direction or just
standard TV for the second regularizer are very similar. This means that the method
is robust with respect to the width-parameter in the second DTV regularizer term,
as long as the weight parameter is chosen according to the suggested bound. For fi-
bres with cracks the regularizers should of course be chosen fittingly, but applications
of this model goes beyond that example, since it could be applied to other direc-
tional object with non-directional parts. We desired that the model was convex and
we therefore did not experiment with any non-convex regularizers for the second term.

The other reconstruction method we proposed, is based on splitting a directional
object into a uni-directional part versus other all other parts in the object. For this
method we split the data into two, according to measurement angles, and solve each
part individually. The split is determined by the main direction of the object which
should be known or estimated prior to using the method.
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The advantage of this sinogram splitting method is that the we leave out some data for
each solution part, such that the we only use data that include the singularities that
we want to see. Since the problem is linear, the computational need is not increased
by the split, but on the other hand it leaves us with two limited angle problems that
we now have to handle. For such problems we typically need regularization in order
to avoid artifacts, but we also tested with FBP for comparison. For the fibre-part we
expected an object that is piecewise constant with texture along one main direction,
so we used a DTV-regularized method to reconstruction it. For the example where
we are looking for cracks in fibres, we chose to put no prior on the crack direction and
therefore reconstructed it using a TV-regularized method. Furthermore we expected
the cracks to be sparse and therefore we included L1-regularization on the crack part,
besides TV-regularization.

For both methods the main texture direction is an essential parameter. We previously
developed a method for determining the main direction in images, but we cannot use
this on the sinogram data. In this work we therefore extended the idea to the CT-
problem and proposed a noise-robust and efficient method for estimating the main
direction in an object, only based on the sinogram data. We demonstrated the pro-
posed direction estimation method and showed the noise robustness of this method
for two different samples. We also demonstrated how DTV-regularization is advan-
tageous to use for reconstruction of directional objects without the decomposition as
an extra feature.

For both the sinogram splitting method and decomposition method we have shown
different regularization results for an idealized fibre-crack-phantom. We used these
tests to demonstrate how parameter choices of the two methods influences the solu-
tion. For the idealized phantom, the sinogram splitting method shows very promising
results that clearly splits the fibre and all of the cracks in two parts. The results of
using the decomposition method on the phantom are also very promising; The quality
of the entire object reconstructions are better than the results achieved without the
decomposition, and many of cracks are present in the crack-component.

Finally we compared the two method for a real phantom where we simulated the
noisy measurements. For this carbon fibre sample the decomposition method was
superior to the sinogram splitting method. Using the decomposition, opposed to
the sinogram splitting, resulted in sharper edges, for both the fibres and the cracks,
and furthermore the crack-part of the solution has a homogeneous background which
makes subsequent crack-segmentation very easy.

The methods introduced in this work can be used in various types of testing where
CT is used. Materials science is an obvious field where the outcome of our work can
become highly useful tools. The demonstrations outline a fibre-crack sample where
this for example could be used. Using any of the two reconstruction method that we
have proposed can be seen either as a directly combined reconstruction and segmenta-
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tion or as highly segmentation-driven. The decomposition method is presented here
in terms of CT-reconstruction, but it is not limited to this field, it could e.g. be used
for image restoration or for a broad range of other inverse problems where directional
objects are analyzed.
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CHAPTER 7
Conclusions and

Perspectives

Here I will sum up the most important results of this thesis and give some perspec-
tives on a few interesting research topics that follows from our work.

For phase contrast tomography we demonstrated a clear advantage of going from a
two-stage reconstruction method to a one-stage segmentation-driven reconstruction
method. The one-stage combined method was seen to outperform the two-stage
method in a series of realistic material simulations. Moreover, the combined method
was seen to be significantly more robust toward high noise, which could be a big step
toward making this technique more useful in lab-scale experiments.
In order to verify the results from these simulated experiments, real experiments, in
either a synchrotron or using a special laboratory set-up, is needed. Furthermore,
theoretical clarification that can explain why the combined one-stage reconstruction
method outperforms the two-stage method could give a lot more insight and also be
relevant for many other combined reconstruction methods. For the low photon count,
i.e. high noise, problems it would be interesting to see if a more suitable data-fidelity
term would further improve the results.

We proposed a regularization term that incorporates detectable directional informa-
tion and can be used for segmentation-driven reconstruction methods. We demon-
strated that this functional has desirable mathematical properties such as convexity
and lower semi-continuity. This regularization method has been shown to be highly
useful for directional objects, we demonstrated this in simulated experiments, where
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images were corrupted by blurring and different types of noise. Incorporating the di-
rectional information improves the results significantly for denoising, deblurring and
tomographic reconstruction tasks. We also proposed methods for detecting the main
direction, both in images and directly from tomographic data.
Two extensions of this regularization method could be very interesting: An extension
to locally varying directions, e.g. pixel-wise direction could make this method applica-
tion for a much wider range of objects. Furthermore, a generalization of this technique
to 3D would also be of use for many different practical problems. Incorporating di-
rectional information is not limited to the segmentation-driven total variation type
methods. As we have shown the directional information can be incorporated through
the divergence and gradient operators, and it can therefore easily be incorporated in
e.g. Tikhonov regularization. In general, directional regularization has applicability
for many other practical problems than the ones tested in this thesis, e.g. other image
processing tasks such as inpainting and super-resolution or for other types of inverse
problems.

The two reconstruction methods that we have proposed for computed tomography
could be classified as either combined segmentation and reconstruction, or as highly
segmentation-driven reconstruction methods. These reconstruction methods splits
a directional object in two parts, according to the main texture-direction, simulta-
neously with reconstructing it. Based on the direction, estimated by our proposed
method, either the data is split in two sets, or the object is split by an infimal-
convolution type decomposition method. A clear application for this method could
be splitting cracks from fibres. This is a typical analysis task for different types of
fibre materials and our simulated experiments has shown very promising results for
this application.
An extension of this method to 3D and real experiments with a ground truth phan-
tom for comparison could be very interesting to verify the practical usefulness of
the methods. Reducing the number of tunable parameter can highly improve these
methods, but requires some analysis or some assumptions on the object. Both of the
introduced reconstruction methods have advantages and disadvantages, so combining
the best parts from each method, and creating a completely superior method, can be
a very interesting future investigation.
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1. INTRODUCTION

With upcoming high-brilliance x-ray sources, new phase-
contrast tomography (PCT) methods have gained widespread
use [1]. Among these is the free-space propagation method
[2,3], with the advantage that no additional optical elements
such as analyzer crystals or gratings are required. Compared
with conventional absorption contrast, phase contrast may
provide adequate contrast at lower dose rates, thus allowing
segmentation of objects comprising two or more materials
with nearly the same electron density (e.g., [4]). For a compari-
son of variants of free-space propagation methods in general,
see [5].

First experiments were performed using holo-tomography,
requiring the combination of measurements from several
sample-to-detector distances [6], but today highly successful re-
constructions are often possible using a single distance, e.g., in
the area of paleontology [7]. This is experimentally convenient
but also remarkable, as the information content is obviously
reduced. In fact, reconstruction with the single-distance setup
is typically based on the work by Paganin et al. [8], assuming
proportionality between the absorption and the phase shift.
Research into the limitations of this so-called duality method
will benefit experimental planning.

The standard approach to PCT reconstruction is a two-stage
procedure. In the first stage, the phase and absorption fields are
determined for each projection using a phase-retrieval algo-
rithm. In the second stage, a classical algorithm is used to com-
pute reconstruction based on the projection fields.

Recently, Kostenko et al. proposed a combined approach
[9,10], which, in several of their simulated experiments with
noise-free data, performs better in terms of reconstruction error.
However, for simulated noisy data the combined method is
outperformed by the two-stage method. Both methods are
tested on simulated data with artificial material indices; there-
fore, it is unclear if the combined method performs better than
the two-stage method for realistic samples, for different material
types, and for varying noise levels.

In this paper, we provide a careful numerical simulation
study of the combined duality method, comparing it with the
two-stage approach. The use of regularization is key to
obtaining high-quality reconstruction, and we focus on the use
of total variation (TV) [11] as the regularizer. Many samples in
materials science and geoscience comprise discrete objects
(grains, fibers, cracks), and edges naturally lead to high phase
contrast in the free-space propagation method. Using a poly-
crystal with small density variations as a phantom and with
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simulated noise, our simulations aim to carefully compare the
reconstruction capabilities of the two methods.

After a review of a classical PCT reconstruction method
and the combined method, we present our numerical
implementation. In simulations with realistic material param-
eters, we perform a comprehensive comparison of the two
methods with respect to different material parameters of in-
creasing difficulty and to the robustness toward noise.

Our results show that the combined method produces
improved reconstructions across the range of low to high-
absorption materials with small absorption contrast.
Furthermore, as the simulated noise level is increased, recon-
structions from the combined method show much greater
robustness to the noise. This could be of critical importance
in practical applications where noise is always a concern.

2. DEFINITIONS AND FORWARD MODEL

In this section, we briefly review the underlying definitions and
models. To simplify the presentation and the numerical experi-
ments, we consider only 2D problems.

Scalar functions are denoted with italic, e.g., u, B or φ.
Vectors are denoted with subscript v, e.g., xv or Bv. Matrices
are denoted with bold uppercase, e.g., A or F, and operators
with uppercase calligraphic letters, e.g., A and F .
Throughout, ‖ · ‖ denotes the vector 2-norm.

A. Definitions

The Fourier transform F of a 1D signal f is denoted with ·̂:

f̂ �ω� � F �f �x�� �
Z

∞

−∞
f �x�e−2πι̂ωxdx: (1)

The independent frequency variable is ω, and the complex unit
is denoted as ι̂ � ffiffiffiffiffi

−1
p

. The Radon transformR of a 2D signal
f �x1; x2� is defined by

�Rf ��t; θ� �
Z

∞

−∞
f �t cos�θ� − τ sin�θ�; t sin�θ�

� τ cos�θ��dτ: (2)

Here, θ is the angular variable and t is the translational variable,
perpendicular to line integration direction, in other words, the
coordinate variable on the 1D detector.

A discrete linear inverse problem can be formulated for ab-
sorption-based computed tomography (CT) by discretizing a
2D object into N by N square pixels with pixel values stacked
into a vector uv. The Radon transform is discretized using the
line-intersection method and represented using a system matrix
A with elements amn of the path length of x-ray m through pixel
n. Letting bv denote the discrete projection data, the discrete
linear inverse problem can be written

Auv � bv: (3)

For more details, see [12].

B. Free-Space Propagation Model

Different experimental PCT setups exist (see [1] for an over-
view). In the present work, we focus on the free-space propaga-
tion method, Fig. 1, which, in some sense, is the simplest
because it does not require analyzer crystals, gratings, or likewise.

The setup is similar to the standard CT scanning setup, with the
added requirement that the x-ray source is partly coherent.

In free-space propagation PCT, phase shifts of x-ray waves
are magnified as the object-to-detector distance increases. Based
on intensity measurements at the detector, the task is to recon-
struct the absorption index and the refractive index decrement
of the object.

For free-space propagation PCT, the measured intensity
data in the Fresnel region is related to the material properties
through a nonlinear propagation model. For a 2D object with
absorption index δ�x1; x2� and refractive index decrement
β�x1; x2�, the corresponding projections B�t; θ� and φ�t; θ�,
here called absorption and phase shift, can be modelled as line
integrals along the x-ray propagation [5]:

Bθ�t� �
2π

λ
�Rβ��t; θ�; (4)

φθ�t� � −
2π

λ
�Rδ��t; θ�: (5)

Here, λ is the x-ray wavelength and R is the Radon transform.
Based on the absorption and phase shift, the measured intensity
IRθ is modeled as the squared absolute value of the convolution
of the transmittance T θ and the Fresnel propagator PR :

T θ�t� � exp�−Bθ�t� � ι̂φθ�t��; (6)

PR�t� � −
ι̂

λR
exp

�
ι̂π

λR
jtj2

�
; (7)

IRθ �t� � jT θ�t�⋆PR�t�j2: (8)

Here, R is the object-to-detector distance, j · j the absolute
value and ⋆ the convolution operator.

Discretization of the domain, and, hence, the object of
interest into N × N pixels, gives us discrete versions of the
material parameters β and δ. A single index notation is
introduced, n � i � �N − 1�j, for i; j � 1; 2;…; N , so
n � 1; 2;…; N 2, which gives two column vectors, βv and
δv, with element index n. Using the discrete Radon transform
in Eq. (3), we define discretized versions of Bθ and φθ:

Bv �
2π

λ
Aβv; (9)

Fig. 1. 2D sketch of free-space propagation setup. The intensity
profile is shown as function of increasing detector distance R. In
the contact plane R � 0, only absorption contrast is visible. In the
near-field region of interest here, both absorption and phase contrast
contribute to the intensity.
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φv � −
2π

λ
Aδv: (10)

This leads to discrete versions of the transmittance and the
Fresnel propagator and from those the intensity IRv :

T v � exp�−Bv � ι̂φv�; (11)

PR
v � −

ι̂

λR
exp

�
ι̂π

λR
jtvj2

�
; (12)

IRv � jT v⋆PR
v j2: (13)

Here, exp and j · j2 denote element-wise operations and ⋆ de-
notes the discrete convolution. In practice, the discrete convo-
lution is done in Fourier space.

3. RECONSTRUCTION METHODS

In this section, we review the two methods that we compare,
namely, a classical two-stage method and a combined method
presented by Kostenko et al. Both methods are equipped with
TV regularization, which is described last.

A. Two-Stage Method

For absorption CT, the measured intensity data can be directly
related to the material properties, i.e., the attenuation coefficient,
by Lambert–Beer’s law [12]. For PCT, the intensity measure-
ments are related to the material properties through the nonlin-
ear propagation model Eqs. (4)–(8). The standard reconstruction
process for PCT is a two-stage procedure, consisting of a phase
retrieval stage and a tomographic reconstruction stage.

Different phase retrieval methods have been suggested and
investigated in the literature. An introduction to, and a com-
parison of, some of them can be found in [5,13,14]. Following
the work by Kostenko et al. [9,10,15], we focus on the contrast
transfer function (CTF) method, which is based on an
assumption of low absorption and which is derived from the
expression of the intensity given in Eq. (8). Based on a Taylor
expansion of the transmittance function Eq. (6), a CTF model
that is linear in B and φ can be derived in Fourier space [6].

For the case of a single detector distance and the so-called
duality version of the CTF model with proportionality constant
σ � −δ∕β, we havebIR�ω� ≈ �2σ sin�πλRjωj2� − 2 cos�πλRjωj2��B̂�ω�

� δDirac�ω�: (14)

Here, δDirac is the Dirac delta function and ω denotes the
spatial frequency. For p being the physical size of a detector
pixel, the sampling distance becomes F s � 1∕p and, hence,
ω ∈ �− F s

2 ;
F s
2 �. Introducing discrete frequency values ωm, the

CTF method can be formulated as a discrete linear inverse
problem: bIRv � WTSDB̂v; (15)

WTSD � −2CR � 2σSR; (16)

where CR and SR are diagonal matrices with mth diagonal
elements cos ψm and sin ψm, respectively, with

ψm � πλRjωmj2; m � 1; 2;…; M: (17)

For the two-stage method based on the CTF duality method,
we use the name TSD.

The phase-retrieval stage of this method consists of solving
Eq. (15) for B̂v, followed by an inverse Fourier transform and
then solving Eq. (9) for βv. Because βv is assumed to be propor-
tional to δv for this method, we can easily find δv afterward.

Following the phase-retrieval stage is a stage where a CT
reconstruction method is used to compute the object of inter-
est. Typically, CT reconstructions are carried out by using
classical methods such as filtered backprojection (FBP) [12]
or the algebraic reconstruction technique (ART) [16].

B. Algebraic Combined Method

Methods that combine the phase-retrieval stage and the
reconstruction stage have been proposed with different aims.
In [17] a filtered backprojection type algorithm is derived and
tested while in [9] an algebraic combined model is presented
and tested, showing promising preliminary results.

In [9], Kostenko et al. also suggested that the standard
phase-retrieval techniques could benefit from using the redun-
dancy within an entire sinogram rather than just being based on
the individual projections.

The term “algebraic combined” in [9] refers to a combina-
tion of the linear operators, A, describing the discrete Radon
transform, F, the discrete Fourier transform, and WTSD of the
linear phase retrieval method, i.e.,

WACD � 2π

λ
WTSDFA: (18)

The discrete Fourier transform is introduced because it is com-
putationally convenient to formulate the phase-retrieval model
as a matrix multiplication in Fourier space. The algebraic com-
bined method based on the duality version of the CTF method
works on the resulting linear system:

bIRv � WACDβv: (19)

This combined reconstruction method is called the algebraic
combined duality method (ACD).

C. Total Variation Regularization

In absorption CT, TV regularization has been shown to be
advantageous for objects with piecewise constant material
parameters [18,19]. TV regularization preserves edges while
smoothing away noise inside homogeneous regions. For the
discrete linear problem in Eq. (3), we formulate TV regulari-
zation with regularization parameter α ∈ R� as

zαv � argmin
uv

�
‖Auv − bv‖2 � α

XN 2

n�1

‖Dnuv‖
�
: (20)

Here, n is the pixel index, N 2 is the total number of pixels,
assuming a square domain, and Dnuv is the local finite differ-
ence gradient at pixel n.

Many objects from materials science, which would be
desirable to analyze with PCT, have the property that they have
approximately piecewise constant material parameters, e.g., in
the form of grains. With this motivation Konstenko et al. pro-
posed to incorporate TV regularization into both the TSD and
ACD methods, i.e., in Eqs. (15) and (19).
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In the present work, we also consider TV regularization for
both methods, and in the remainder of the article by TSD and
ACD, we refer to the TV-regularized problems. In a direct assess-
ment of the effect of combining linear operators in ACD, and
not the effect of TV regularization itself, we find it most appro-
priate to employ TV regularization also in TSD. We note that
one motivation for ACD is precisely the use of regularization,
which, through the combination of linear operators, regularizes
the entire reconstruction problem including the phase-retrieval
step. This is in contrast to the TV regularized two-stage method
where only the latter reconstruction step is regularized, leaving
the sensitive phase-retrieval stage unregularized.

4. OUR CONTRIBUTIONS

In [9], Kostenko et al. compared TV-regularized ACD and
TSD and demonstrated improvements obtained by ACD in
terms of root-mean-square error in most of their simulation
experiments.We find that their pioneering results indicate a large
potential for ACD; however, we also point to several aspects
in which the provided numerical evidence of reconstruction
improvements by ACD may be improved:

1. The positive results for ACD are for test images with
one specific choice of material parameters that appears to
not be motivated from physical materials. Thus, it remains
open whether clear improvements can be seen for test images
with physical material parameters.

2. The positive results for ACD are for noise-free data. In
fact, in a simulation study with noisy data, Kostenko et al. find
the TSD to be superior. Only one noise level is considered; thus,
it remains unclear whether the combination of phase retrieval
and reconstruction stages leads to a more noise-robust method.

3. In their implementation of the optimization algorithm
to solve the TV-regularized problem, Kostenko et al. [9] de-
scribe that they stop the iterative algorithm when the relative
change in the objective function value from one iteration to the
next is smaller than 10−5. This is an intuitive choice, however
well-known in the field of optimization to be heuristic and not
guarantee closeness to the solution. This is because the iterative
algorithm may occasionally take short steps while still far from
the solution. This means that we cannot be sure that the shown
reconstructions are indeed accurate TV solutions but may be
arbitrary intermediate images produced by the iterative algo-
rithm. In fact, this problem might affect their conclusion that
TSD is more robust to noise than ACD.

In the present work, we address all of these three problems.
Regarding the third problem, we implement in our optimiza-
tion algorithm a stopping criterion that does ensure conver-
gence to the TV-regularized reconstruction, thereby removing
any doubt whether the numerical solution returned by the
algorithm is in fact the sought-after TV-regularized solution.

We address the first and second problems by providing two
sets of carefully designed simulation experiments. The first set
compares TSD and ACD on test images with a range of physi-
cal material parameters, while the second compares TSD and
ACD with respect to increasing amounts of noise.

To make the most direct and fair comparison between TSD
and ACD, we employ TV regularization for both and apply the
same optimization algorithm with the same stopping criterion.

Before proceeding to the results of the comparisons, we de-
scribe in the next section our implementation details.

5. IMPLEMENTATION

The system matrix A in Eqs. (9) and (10) is large and sparse.
This means that it can often be stored in the memory of a stan-
dard modern laptop. For the ACD method, the dense matrix F
makes the combined system matrix dense, thus making it not
feasible to store in memory. We circumvent the problem by a
matrix-free implementation, in which the applications of the
forward operator and its conjugate transpose are done without
explicitly forming the matrices.

When solving the reconstruction problems in Eqs. (9), (10),
and (19), we impose TV-regularization in Eq. (20). Solving
such large-scale problems requires efficient algorithms. We
chose to implement the Chambolle–Pock (CP) algorithm
[20,21] because it was shown to converge faster than, e.g.,
the FISTA method [21], when solving problems of the form
Eq. (3). Moreover, the CP algorithm can be well suited in
the context of CT [22].

Our implementation is mainly based on algorithm 4 in [22],
modified by the adaptive parameter approach presented in al-
gorithm 2 in [23]. This modified approach introduces a primal
residual p�k� and a dual residual d �k� for iteration k. As men-
tioned in [23], these residuals can also be used to define a stop-
ping criterion because, for the CP algorithm, we have that

lim
k→∞

‖p�k�‖2 � ‖d �k�‖2 � 0: (21)

We implemented a stopping criterion of the form

‖p�k�‖2 � ‖d �k�‖2 < τ�‖p�1�‖2 � ‖d �1�‖2� (22)

for a user-defined tolerance τ. In all of our numerical experi-
ments, τ was set to 10−6.

The reconstruction stage of TSD involves multiplication
with A and its transpose in each iteration. The ACD method
requires, in each iteration, additional FFTs and multiplications
with the diagonal matrixW, but both operations are much less
computationally demanding than the multiplications with A
and, hence, the computational overhead in an ACD iteration,
compared with TSD, is small.

All implementations and simulations are carried out in
MATLAB, and the implemented code is available for download
at [24]. We also use the function phantomgallery from the AIR
Tools package, Version 1.3 [25], and the function parbeam
from the Projector-Pack package, Version 0.2 [26].

6. SIMULATION RESULTS

We compare the TSD and ACD methods across different
material parameters and increasing noise levels. The compari-
sons rely on simulated data, carefully modelled to resemble data
from a real physical setup. Reconstructions are assessed in terms
of achievable quality, compared with the ground truth and
between the methods.

A. Experimental Setup

The simulated experiments are inspired by materials science
where mappings of structures on a micrometer scale are desired.
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For polycrystalline materials, the structures are made up of
grains; to mimic this, we use a phantom that resembles grain
structure consisting of three different materials. The phantom,
which is shown in Fig. 2, consists of one background material
and grains of two different materials, all of which are described
by indices β and δ. Indices of the used materials are listed in
Table 1. If nothing else is mentioned, polycarbonate is used for
the background material.

Our setup allows us to simulate free-space propagation PCT
experiments and compare reconstruction methods. In our
simulations, we choose specific settings that are realistic for real
physical experiments on a laboratory x-ray CT scanner. The
chosen parameters are presented in Table 2. To make the
simulated data more realistic, Poisson distributed noise is used
to perturb the measured intensity.

In addition to the settings in Table 2, the duality method
requires a qualified guess on the proportionality constant σ
between β and δ. This has, for all simulations, been chosen
as the exact proportionality for the grain material with the
smallest β, e.g., for the first row in Fig. 3 σ � −1.95 · 104.
Experimental testing with different choices of σ have shown
that the impact of changing σ, within �20% from the exact
value, was negligible.

In our simulations, we want to make a fair comparison be-
tween all the methods; therefore, the regularization parameter
was always chosen empirically. The regularization parameter
was chosen for each of the simulations in order to achieve
the “best” possible reconstruction. The “best” reconstruction
is in this work is measured by two different means: A relative
error measure,

E � ‖u − u	‖∕‖u	‖; u	 � original; (23)

and a visual comparison where sharp edges are favored. In
the figures with the reconstructions, we list the specific regu-
larization parameter choices. Parameter-choice methods purely
based on the data are well described in the literature (see,
e.g., [28]).

The reconstructions are visualized as images using gray-scale
color range �0.9 ·min�u	�; 1.1 ·max�u	��; intensity values
outside are truncated to this range.

B. Effects of Material Properties

The simulated phantom is varied with materials ranging from
low-absorbing material to higher absorbing material, i.e., from
low β to higher β. The two-grain materials are chosen such that
they have indices numerically close to each other because dis-
tinction between similar materials is the more challenging case
in practical applications. Increasing the absorption will violate
the low absorption assumption, which is part of the CTF model
derivation; thus, higher absorption is also expected to increase
the difficulty of the reconstruction problem. The reconstruc-
tions from our simulated experiments with materials of increas-
ing absorption index are presented in Fig. 3.

For these four experiments the ACD method is generally
seen to produce as good or better reconstructions than the
TSDmethod, in terms of the error measure E . The TSD results
are all visually more blurry and with less sharp edges compared
with the ACD results, even though both methods utilize the
same TV-regularization method. In the process of choosing the
“best” regularized reconstruction from a series of reconstruc-
tions (not shown here), it became clear that the TSD recon-
structions were corrupted by artifacts and/or noise to a higher
degree than the ACD reconstructions. Of the four TSD recon-
structions in Fig. 3, this is what causes the reconstructions to
be more blurred because we gave more emphasis on the regu-
larization term in order to compensate for noise and artifacts.
We believe that the artifacts are due to the errors introduced in
the phase retrieval stage.

For the experiments with low absorption, in the first row of
Fig. 3, distinction between the different materials is clear for
both methods. The ACD reconstruction has sharper edges
and a lower error measure than the TSD reconstruction.

For the silicon-magnesium and the silicon-aluminium ex-
periments, in the second and third row, materials with similar
chemical structures are seen to be more difficult to distinguish,
as expected. The ACD method again produces reconstructions
with sharper edges and a lower error measure. For the silicon-
aluminium reconstructions in row three, distinguishing
between silicon and aluminium is difficult for both methods,

Fig. 2. 2D phantom with a background material (black) and two
different grain materials (gray and white).

Table 1. Absorption Index β and Refractive Index
Decrement δ for 40 keV X Rays for the Simulated
Materials. From [27]

Material β δ

Polycarbonate (C16H14O3) 8.43 · 10−12 1.64 · 10−7
Carbon (diamond) 1.90 · 10−11 4.55 · 10−7
Magnesium 1.15 · 10−10 2.22 · 10−7
Aluminium 2.32 · 10−10 3.37 · 10−7
Silicon 2.68 · 10−10 3.01 · 10−7
Iron 6.42 · 10−9 9.54 · 10−7
Copper 9.96 · 10−9 1.06 · 10−6

Table 2. Parameters Used in Simulations

Parameters Settings

Object 2D and 200 × 200 pixels, pixel size 1 μm
X ray Energy 4 keV
Source Wavelength λ � 0.31 Å
Photons N 0 � 105 photons incident on object,

average, per pixel, per projection
Distance R � 0.5 m
Detector Pixel size of 1 μm, 572 pixels
Projections 360 angles θ ∈ �0°; 180°�
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and alternative methods using measurements from two more or
more distances could improve these results.

In the experiments with high absorbing materials, the recon-
structions are highly affected by artifacts, such that distinction
among background, grain, and artifact is difficult. In addition,
the edges in the reconstructions are more blurry. Error measures
of the form of Eq. (23)—no matter which norm is used—are

not well suited for measuring the quality of edges in a recon-
struction (for example, a reconstruction with blurred edges can
still have a low error E if the background is correctly recon-
structed). For this reason, we also need the visual inspection
of the reconstructions.

The ACD method is computationally more demanding
than the TSD method because a larger number of iterations
is needed to achieve the same solution accuracy. In the cases
studied here, 1.4–6.5 times more iterations were needed for

Fig. 3. Simulations with different materials. First row: nonabsorb-
ing and nonrefracting background, grains of polycarbonate and carbon
in diamond form (highest β) and regularization parameters αTSD �
0.01, αACD � 120. Second row: grains of silicon (highest β) and
magnesium and regularization parameters αTSD � 0.1, αACD � 110.
Third row: grains of silicon (highest β) and aluminium and regulari-
zation parameters αTSD � 0.12, αACD � 112. Fourth row: grains of
copper (highest β) and iron and regularization parameters αTSD � 6,
αACD � 5. The error measure E is defined in Eq. (23).

Fig. 4. Simulations for increasing data noise, i.e., decreasing number
of photonsN 0. Nonabsorbing and nonrefracting background. Grains of
polycarbonate and carbon in diamond form (highest β). First row
N 0 � 5 × 104, second row N 0 � 104, third row N 0 � 5 × 103,
and fourth row N 0 � 103, photons per pixel. Regularization parameter
α for the TSDmethod from top to bottom were [0.03, 0.05, 0.08, 0.14]
and for the ACD method [100, 140, 170, 300].
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the ACD method when using the stopping criterion in
Eq. (22).

C. Effect of Noise

The reconstructions from simulated experiments with a de-
creasing number of recorded photons, and hence increasing
noise levels, are presented in Fig. 4. The error measure E is
plotted for increasing N 0 (cf. Table 2) in Fig. 5. Using Otsu’s
simple thresholding segmentation method [29] on the recon-
structions, the segmentation errors,

Es � #misclassified pixels∕#pixels; (24)

are calculated and plotted against N 0 in Fig. 6.
The TSD reconstructions are seen to deteriorate as N 0 de-

creases (and the relative noise increases), where the grains of the
lowest absorbing material closest to the object center become
indistinguishable from the background (cf. the bottom row in
Fig. 4). The edges become blurrier, and misclassification of the
grains is likely to occur. The error measure increases drastically
to a limit where the reconstructions are unreliable. We believe
that errors, such as artifacts, from the first stage causes the
second stage to produce these deteriorated results.

ACD reconstructions show much greater robustness to the
noise: edges remain sharp, materials can be distinguished, and
the error varies slowly with N 0. For the problems with higher
relative noise (smaller N 0), the polycarbonate grains can be vis-
ually difficult to distinguish from the background in the chosen

gray scale; though, numerically, the difference is still distinct as
validated by the low segmentation errors in Fig. 6.

7. CONCLUSION

The simplicity of the geometry in the free-space propagation,
one sample-detector distance approach makes it attractive for
many experiments, including those where speed of data acquis-
ition or dose is a limitation. Likewise, experience has shown
that total variation (TV) regularization works well for absorp-
tion or phase contrast tomography on a large class of materials
comprising disjunct phases, cracks, pores, etc.

The outcome of the simulations performed here is that the
number of photons required to compute a reconstruction of a
certain quality can be reduced substantially, and the combined
reconstruction method is therefore of general interest to the
x-ray (and neutron) imaging community. We emphasize that
the suggested combined method is more computationally de-
manding than the classical two-stage method and, hence, less
suitable for on-line or real-time processing.
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Abstract

In inverse problems, prior information and a priori-based regulariza-
tion techniques play important roles. In this paper, we focus on image
restoration problems, especially on restoring images whose texture mainly
follow one direction. In order to incorporate the directional information, we
propose a new directional total generalized variation (DTGV) functional,
which is based on total generalized variation (TGV) by Bredies et al. [SIAM
J. Imaging Sci., 3 (2010)]. After studying the mathematical properties of
DTGV, we utilize it as regularizer and propose the L2-DTGV variational
model for solving image restoration problems. Due to the requirement of the
directional information in DTGV, we give a direction estimation algorithm,
and then apply a primal-dual algorithm to solve the minimization prob-
lem. Experimental results show the effectiveness of the proposed method
for restoring the directional images. In comparison with isotropic regulariz-
ers like total variation and TGV, the improvement of texture preservation
and noise removal is significant.

1 Introduction

In the field of inverse problems, regularization techniques have been introduced
to overcome the ill-posedness in order to obtain reasonable and stable solutions.
For many image processing problems incorporating prior information through
regularization techniques has attracted much attention. In this paper, we will
study directional regularization for image restoration problems.

The image is given in the domain Ω, a connected bounded open subset of
R2 with Lipschitz boundary, and given by a real-valued function û : Ω → R.
The image is degraded through an operator A ∈ L(L2(Ω)) and by additive white
Gaussian noise η, and thus the degraded image f is given by

f = Aû+ η. (1)

We consider A as the identity operator (denoising problem) and A having the
form of a blurring operator (deblurring problem). The analysis is based on the
variational model for image restoration

min
u

1

2
‖Au− f‖2L2(Ω) + λR(u), (2)

∗Department of Applied Mathematics and Computer Science, Technical University of Den-
mark, 2800 Kgs. Lyngby, Denmark (rara@dtu.dk, yido@dtu.dk, kiknu@dtu.dk .
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Figure 1: Left: A CT scan of uni-directional glass fibre (obtained from [26], see
more in [25]). Right: A CT scan and 3D-model of an optical fibre with a cavity
(obtained from [34]).

where R is the regularization term, which incorporates prior information on û,
and λ > 0 is the regularization parameter, which controls the trade-off between
the fit with the data f and the regularization.

Due to its capability of preserving sharp edges, total variation (TV) regular-
ization proposed in [33] has been used for many image processing problems, e.g. in
image denoising [42, 14, 15, 36], in blind deconvolution [12], in tomographic recon-
struction [13, 27], etc. Although TV regularization is very effective for restoring
piece-wise constant images, it has some shortcomings, and the most notable one
is the appearance of staircasing artifacts in slanted regions [30, 32]. To overcome
staircasing artifacts, higher-order derivatives have been used, see [35, 11, 37, 39].
In [8], total generalized variation (TGV) of order h, was proposed, which incor-
porates the first up to the h-th derivatives. When h equals 1, it yields the TV
regularization.

In many applications related to fibers, the textures in images have very clear
directionality. Examples include glass fibres in wind-turbine blades, optical fibres
for communication, and ceramic fibres in fuel cells; see fig. 1. Another appli-
cation with clear directional textures is seismic imaging. We call images with
textures oriented mainly along one certain direction directional images. Achiev-
ing high-quality images is crucial for the analysis of these fibre materials, therefore
imposing the directional information of the texture is highly desirable.

Directional regularization has been introduced for standard TV in [17, 5, 41,
19, 20] and in terms of shearlet-based TV in [16]. In [3] a type of directional
TV is introduced for image denoising based on images with one main direction.
This method is further developed to be spatially adaptive in [46] via pixel-specific
angle-estimates. Moreover, the directional information through the structure ten-
sor, defined in [43, 44], has been used to extend TV regularization. This new regu-
larization method is called structure tensor total variation (STV), which has been
applied in different imaging problems, see [28, 18]. The structure tensor has also
been combined with second-order-derivative regularization in [23]. In [31, 21],
anisotropic diffusion tensor has been applied only on the first-order-derivative
term in the second-order TGV. All these directional regularization techniques are
introduced for discretized problems, but the underlying continuous problems are
not studied. Furthermore, it is in these previous work not clear if directional
information can be incorportaed in higher-order derivatives, e.g. through TGV
regularizer.

The first goal of this paper is to formulate in a continuous setting regular-
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ization terms that incorporate directionality. We first define the directional TV
(DTV) functional and generalize it to higher orders, the so-called directional
TGV (DTGV). We construct this generalization to higher orders such that the
directional information is also incorporated in higher-order derivatives, which is
different from the anisotropic TGV proposed in [31, 21]. Under the continuous
setting we study the mathematical properties of the DTGV functional. Further,
we utilize the DTGV functional as a regularizer in (2) and derive existence and
uniqueness results for the minimization problem in (2). The second goal of the
paper is to give a numerical implementation based on the primal-dual algorithm
proposed in [10] to solve the minimization problem in (2), and through numeri-
cal experiments evaluate its performance. Since DTGV requires the input of the
main direction we also propose a direction estimation algorithm.

The rest of the paper is organized as follows. In section 2 we define the
directional total variation (DTV) functional. Through two equivalent definitions
of DTV, we obtain a hint of how to incorporate directional information into
TGV. In section 3, we propose the second order directional total generalized
variation (DTGV2

λ) functional, and extend it to higher orders. We study the
mathematical properties of DTGV in section 4, and in section 5 we apply it as
regularization in (2) to propose a new L2-DTGV2

λ model. The existence and
uniqueness results for the L2-DTGV2

λ model is also provided. In section 6 we
introduce a direction estimation algorithm in order to obtain the required main
direction from the degraded images, and then apply a primal-dual algorithm for
solving the minimization problem in our restoration model based on the work
proposed in [10]. The numerical results shown in section 7 demonstrate the
effectiveness of the direction estimation algorithm, the influence of the parameters
in DTGV, and the performance of our restoration method. Finally, conclusions
are drawn in section 8.

2 Directional Total Variation

The definition of total variation (TV) for u ∈ BV(Ω), the space of functions of
bounded variation over the domain Ω, can be written as [2, 33]

TV(u) = sup

{∫
Ω

u div v dx

∣∣∣∣v ∈ C1
c (Ω,R2),v(x) ∈ B2(0) ∀x ∈ Ω

}
, (3)

where v denotes the dual-variable and B2(0) denotes the closed Euclidean unit
ball centered at the origin. In this section, we will introduce directional informa-
tion into TV and define directional total variational (DTV). The idea of DTV was
first proposed in [3] in the discrete case. Following a similar idea we will give the
DTV definition in the continuous case. Through examples we demonstrate the
differences between TV and DTV. More mathematical properties will be derived
based on the extension to total generalized variation (TGV) in section 3.

TV is rotational invariant. In order to allow rotational variation, we restrict
the dual variable v in an ellipse instead of the unit ball. Define the closed elliptical
set, Ea,θ(0), centered at the origin with the major semi-axis 1 oriented in direction
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(cos θ, sin θ) and the minor semi-axis a ∈ (0, 1] by

Ea,θ(0) =

{(
x1

x2

)
∈ R2

∣∣∣∣∣
(
x1 cos θ + x2 sin θ

1

)2

+

(
−x1 sin θ + x2 cos θ

a

)2

≤ 1

}
.

(4)

In fig. 2 the elliptical set Ea,θ(0) is depicted. We are now ready to define DTV:

Figure 2: Sketch of the elliptical set Ea,θ(0). Here it is shown for a = 0.5 and
θ = −π4 .

Definition 2.1. The directional total variation (DTV) with respect to (a, θ) of
a function u ∈ BV(Ω) is defined as

DTV(u) = sup

{∫
Ω

u div ṽ dx

∣∣∣∣ ṽ ∈ C1
c (Ω,R2), ṽ(x) ∈ Ea,θ(0) ∀x ∈ Ω

}
.

Introduce the rotation matrix Rθ and the translation matrix Λa by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
and Λa =

(
1 0
0 a

)
.

Then

ṽ(x) = RθΛav(x) ∈ Ea,θ(0) ⇔ v(x) = Λ 1
a
R−θṽ(x) ∈ B2(0). (5)

Further, we define the directional divergence for v(x) ∈ B2(0)

d̃ivv(x) = divRθΛav(x) = divṽ(x). (6)

Using the relations in (5) and the definition in (6) we give another equivalent
definition for DTV.

Definition 2.2. For a function u ∈ BV(Ω), its DTV is defined as

DTV(u) = sup

{∫
Ω

u d̃ivv dx

∣∣∣∣v ∈ C1
c (Ω,R2),v(x) ∈ B2(0) ∀x ∈ Ω

}
.

This definition is very similar to the one for TV in (3); the only difference
is the change on the divergence operator in the integral. Here we provide three
examples on comparisons of DTV with TV:
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Example 2.3. For u ∈ C∞c (Ω) we have using integration by parts

TV(u) = ‖∇u‖L1(Ω),

DTV(u) =

∥∥∥∥( Dθu
aDθ⊥u,

)∥∥∥∥
L1(Ω)

where Dθu denotes the directional derivative of u in the direction (cos θ, sin θ)
and θ⊥ = θ + π/2.

The above example shows that DTV(u) is an anisotropic total variation func-
tional. The next example demonstrates the difference between DTV and TV.

Example 2.4. Define u1 = χ
B2(0), the characteristic function of the unit disk.

The total variation of such a characteristic function is given by the length of
the perimeter, i.e. TV(u1) = 2π. The calculation of DTV(u1) is according to
definition 2.2: by using the divergence theorem with n denoting the outward unit
normal vector we have for any v ∈ C1

c (Ω,R2)∫
Ω

u1 d̃ivv dx =

∫
B2(0)

divRθΛav dx

=

∫
∂B2(0)

(RθΛav) · n ds

=

∫
∂B2(0)

v · (ΛaR−θn) ds.

The integrand is maximized among unit vector fields for v = (ΛaR−θn) /|ΛaR−θn|
thus yielding

DTV(u1) =

∫
∂B2(0)

|ΛaR−θn|ds (7)

=

∫ 2π

0

(cos2(τ − θ) + a2 sin2(τ − θ))1/2dτ

=

∫ 2π

0

(cos2 ω + a2 sin2 ω)1/2dω,

which is by the way the length of the perimeter of the elliptical set Ea,θ(0).

Example 2.5. Take now instead the characteristic function u2 = χ
pEb,0(0) of the

elliptical set pEb,0(0) with 0 < b < 1. By choosing p such that

p

∫ 2π

0

(b2 cos2 τ + sin2 τ)1/2dτ = 2π

the length of the ellipse perimeter is TV (u2) = 2π as before.
Let us compute DTV(u2) for the two different orientations given by θ = 0 and

θ = π/2. First fix θ = 0 and 0 < a < 1. The outward unit normal to pEb,0(0) at
point (p cos τ, pb sin τ) is

n(τ) =
1

(b2 cos2 τ + sin2 τ)1/2

(
b cos τ
sin τ

)
(8)
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Figure 3: For u2 with b = 0.2. Left: DTV(u2) as a function of a and three choices
of θ. Right: DTV(u2) as a function of θ and a = 0.5.

and then with θ = 0 calculate∫
∂pEb,0(0)

(RθΛav) · n ds =

∫ 2π

0

(v · ΛaR−θn)|x′(τ)| dτ (9)

= p

∫ 2π

0

(
v ·
(
b cos τ
a sin τ

))
dτ.

The integrand is maximized with the unit vector field

v(τ) =
1

(b2 cos2 τ + a2 sin2 τ)1/2

(
b cos τ
a sin τ

)
and thus we obtain

d0 = DTV(u2) = p

∫ 2π

0

(
b2 cos2 τ + a2 sin2 τ

)1/2
dτ (10)

By using Maple to estimate the integration numerically, we compare (7) and (10),
and find that while TV(u1) = TV(u2), DTV(u2) < DTV(u1).

Next, we compute DTV(u2) with θ = π
2 and 0 < a ≤ 1. In this case, according

to (9) by using (8) we get∫
∂pEb,0(0)

(RθΛav) · n ds = p

∫ 2π

0

(
v ·
(
− sin τ
ab cos τ

))
dτ.

Its maximum is reached at

v(τ) =
1

(sin2 τ + a2b2 cos2 τ)1/2

(
− sin τ
ab cos τ

)
and we obtain

dπ/2 = DTV(u2) = p

∫ 2π

0

(
sin2 τ + a2b2 cos2 τ

)1/2
dτ (11)

By using Maple to estimate the integration numerically, we compare (10) and
(11), and find d0 ≤ dπ/2.

In example 2.5 we illustrate the dependency of DTV on θ and a. The left plot
shows that for fixed θ, DTV(u2) is monotonically incresing with a. Moreover,
independent of the value of a, a smaller and more correct choice of θ, i.e. closer
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to the main direction of the object, gives a lower DTV(u2). However, for a = 1 the
values of DTV(u2) agree, since in that case DTV is equivalent to the rotationally
invariant TV. The right plot suggests that DTV(u2) depends as a scaled and
translated sine function with a minimum obtained when the rotation angle θ in
DTV coincides with the main direction of the object (i.e. θ = 0).

As a side remark we note that the extension of TV to DTV is based on
knowledge (or estimates of) one global direction. Extensions of the presented
work to the important case of spatially dependent directions is left for future
work.

In imaging problems a common artifact caused by TV regularization is stair-
casing, which is a classical example of a mismatch between prior knowledge and
the reality, i.e., smooth regions are approximated by piece-wise constant regions.
One way to overcome the staircasing effect is to use higher order derivatives in
the regularization; this is the topic of the next section.

3 Directional Total Generalized Variation

Total Generalized Variation (TGV) is a generalization of TV to a functional,
which takes derivatives of order h > 0 into account, and the first order TGV, i.e.,
h = 1, is identical to TV. It turns out that for natural images, TGV regularization
for denoising is often superior to TV regularization, and the staircasing effect is
well avoided [8].

For a 2-by-2 symmetric matrix-valued function

V (x) =

(
v11(x) v12(x)
v12(x) v22(x)

)
∈ Sym2(R2)

define

(div V )> =

(
∂v11
∂x1

+ ∂v12
∂x2

∂v21
∂x1

+ ∂v22
∂x2

)
, div2 V =

∂2v11

∂x2
1

+
∂2v22

∂x2
2

+ 2
∂2v12

∂x1∂x2
.

Define further the second order unit sphere B2×2(0) consisting of matrices V =
(vi,j)

2
i,j=1 with rows (vi1, vi2)> ∈ B2(0) and columns (v1i, v2i)

> ∈ B2(0) for i =
1, 2. We write W ∈ λ0B2×2(0) if W/λ0 ∈ B2×2(0) with λ0 > 0, leaving ‖W‖2 ≤
λ0. Then we can for a function u ∈ L1(Ω) define the second order TGV for
λ = (λ0, λ1) by

TGV2
λ(u) = sup

{∫
Ω

u div2W dx

∣∣∣∣ (12)

W ∈ C2
c (Ω,Sym2(R2)),W (x) ∈ λ0B2×2(0), (divW (x))> ∈ λ1B2(0) ∀x ∈ Ω

}
.

(Note that in [8] higher order TGV is defined equivalently using the Frobenius
norm.)

In order to include directional information in TGV2
λ we replace higher order

balls by higher order elliptical sets. Denote by Ea,θ2×2(0) the space of matrices
V = (vi,j)

2
i,j=1 with rows (vi1, vi2)> ∈ Ea,θ(0) and columns (v1i, v2i)

> ∈ Ea,θ(0)
(i = 1, 2). Then we can define the second order directional TGV (DTGV):
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Definition 3.1. The second order directional total generalized variation, DTGV2
λ,

of a function u ∈ L1(Ω) is defined as

DTGV2
λ(u) = sup

{∫
Ω

u div2 W̃ dx

∣∣∣∣ (13)

W̃ ∈ C2
c (Ω,Sym2(R2)), W̃ (x) ∈ λ0E

a,θ
2×2(0), (div W̃ (x))> ∈ λ1E

a,θ
2 (0) ∀x ∈ Ω

}
.

Remark 3.2. In [24], TGV has been extended to the infimal convolution of a
number of TGV type functionals with arbitrary norms. Our definition of DTGV2

λ

in (13) can be considered as a special case under this general definition with norm
defined by particular ellipses.

Next, we will provide a characterization of DTGV2
λ, which has the same fea-

sible set as in (12). To do so we need the second order generalization of (5)

Ṽ (x) = RθΛaV (x)ΛaR−θ ∈ Ea,θ2×2(0) ⇔ V (x) ∈ B2×2(0), (14)

which follows easily from the definitions. In addition, we define forW ∈ C2
c (Ω,Sym2(R2))

the directional divergence

d̃ivW (x) = divRθΛaW (x) (15)

and the second order directional divergence

d̃iv
2
W (x) = div2 W̃ (x) with W̃ (x) = RθΛaW (x)ΛaR−θ. (16)

The characterization of DTGV2
λ is now as follows:

Theorem 3.3. With the directional divergence and the second order directional
divergence defined in (15) and (16), for u ∈ L1(Ω)

DTGV2
λ(u) = sup

{∫
Ω

u d̃iv
2
W dx

∣∣∣∣ (17)

W ∈ C2
c (Ω,Sym2(R2)), ‖W (x)‖2 ≤ λ0, ‖(d̃ivW (x))>‖2 ≤ λ1 ∀x ∈ Ω

}
.

Proof: Let W̃ ∈ C2
c (Ω,Sym2(R2)) with W̃ (x) ∈ λ0E

a,θ
2×2(0) and (div W̃ (x))> ∈

λ1E
a,θ
2 (0) for any x ∈ Ω. Due to (14) we have for any x ∈ Ω

W (x) = Λ 1
a
R−θW̃ (x)RθΛ 1

a
∈ λ0B2×2(0),

and hence ‖W (x)‖2 ≤ λ0. In addition, since (div W̃ (x))> ∈ λ1E
a,θ
2 (0), we obtain

according to (5) that

Λ 1
a
R−θ(div W̃ (x))> = Λ 1

a
R−θ(divRθΛaW (x)ΛaR−θ)

> = (d̃ivW (x))> ∈ λ1B2(0),

i.e. ‖(d̃ivW (x))>‖2 ≤ λ1. Hence, we have proven that the feasible set in (17) is
equivalent to the one in (13), and the result follows from (16).

�

8



To close the section we extend the definition of DTGV2
λ to arbitrary order

h ∈ N. Recall from [8] the higher order TGV defined for any h ∈ N, λ =
(λ0, λ1, . . . , λh−1) by

TGVh
λ(u) = sup

{∫
Ω

u divhw dx

∣∣∣∣ (18)

w ∈ Chc (Ω,Symh(R2)), ‖divl w(x)‖2 ≤ λl, ∀x ∈ Ω and l = 0, ..., h− 1
}
,

where Symh(R2) denotes the space of symmetric h-tensors in R2. For any x ∈ Ω,
w(x) is a symmetric h-tensor. The operator divl on w(x) is defined as

(divlw(x))b =
∑
γ∈Nl

l!

γ!

∂lw(x)b+γ
∂xγ

for each component b ∈ Nh−l

where Nh =
{
b ∈ N2

∣∣∣|b| = ∑2
i=1 bi = h

}
. In addition, ‖ · ‖2 on a symmetric

h-tensor is defined as

‖w(x)‖2 =

(∑
b∈Nh

h!

b!
(w(x))2

b

)1/2

.

For further details of the h-tensors we refer the readers to [8].
To take the directional information into account, we first define two tensor

fields:

B2× . . .× 2︸ ︷︷ ︸
m times

(0) =
{
ξ ∈ Symm(R2) : ξ(ep1 , · · · , epi−1 , ·, epi+1 , · · · , epm) ∈ B2(0)

(19)

for any i ∈ {1, · · · ,m} and p ∈ {1, 2}m} ,

Ea,θ2× . . .× 2︸ ︷︷ ︸
m times

(0) =
{
ξ ∈ Symm(R2) : ξ(ep1 , · · · , epi−1

, ·, epi+1
, · · · , epm) ∈ Ea,θ2 (0)

(20)

for any i ∈ {1, · · · ,m} and p ∈ {1, 2}m} ,

where e1 and e2 denote the two standard basis vectors in R2. Similar as in (6)

and (16) we define l-directional divergence, d̃iv
l

for any order l ≤ h as

d̃iv
l
w(x) = divlw̃(x),

where w(x) ∈ B2× . . .× 2︸ ︷︷ ︸
h times

(0), and we can obtain w̃(x) ∈ Ea,θ2× . . .× 2︸ ︷︷ ︸
l times

(0)⊗B2× . . .× 2︸ ︷︷ ︸
h−l times

(0)

referring to the relations in (5) with ⊗ as the tensor product. Then as in (13),
we give the definition of DTGVh

λ as follows:

Definition 3.4. The h’th-order directional total generalized variation, DTGVh
λ,

of a function u ∈ L1(Ω) is defined as

DTGVh
λ(u) = sup

{ ∫
Ω

u divhw dx

∣∣∣∣ (21)

w ∈ Chc (Ω,Symh(R2)),divl w(x) ∈ λlEa,θ2× . . .× 2︸ ︷︷ ︸
h−l times

(0), ∀x ∈ Ω and l = 0, ..., h− 1

}
.
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Following the similar idea as the proof of theorem 3.3, we obtain a character-
ization of DTGVh

λ.

Theorem 3.5. For u ∈ L1(Ω)

DTGVh
λ(u) = sup

{∫
Ω

u d̃iv
h
w dx

∣∣∣∣ (22)

w ∈ Chc (Ω,Symh(R2)), ‖d̃iv
l
w(x)‖2 ≤ λl, ∀x ∈ Ω and l = 0, ..., h− 1

}
.

Clearly DTGV1
1(u) = DTV(u).

4 Properties of DTGV

In this section, we will derive some properties of DTGVh
λ on the space of Bounded

Generalized Variation of order h (BGVh), which is defined as

BGVh(Ω) =
{
u ∈ L1(Ω)

∣∣∣TGVh
λ(u) <∞

}
.

When BGVh(Ω) is equipped with the norm

‖u‖BGVh(Ω) = ‖u‖L1(Ω) + TGVh
λ(u),

it is a Banach space [8]. In the following two propositions we will show that by
replacing TGVh

λ with DTGVh
λ we get an equivalent norm on BGVh(Ω).

Proposition 1. DTGVh
λ : BGVh(Ω)→ R is a semi-norm.

Proof: Based on the definition of DTGVh
λ, it is obvious that DTGVh

λ(u) ≥ 0.
Further, with the linearity of the integral we have

DTGVh
λ(tu) = |t|DTGVh

λ(u).

Define the feasible set of the supremum problem in (22) as:

KD =

{
w ∈ Chc (Ω,Symh(R2))

∣∣∣∣‖d̃iv
l
w(x)‖2 ≤ λl, ∀x ∈ Ω and l = 0, ..., h− 1

}
.

Then, we have that for u1, u2 ∈ BGVh
λ

DTGVh
λ(u1 + u2) = sup

w∈KD

∫
Ω

(u1 + u2)d̃iv
h
w dx

≤ sup
w∈KD

∫
Ω

u1d̃iv
h
w dx+ sup

w∈KD

∫
Ω

u2d̃iv
h
w dx

= DTGVh
λ(u1) + DTGVh

λ(u2).

In addition, according to the definition of DTGVh
λ we have DTGVh

λ(u) = 0 for
any constant function u. Therefore, we conclude that DTGVh

λ is a semi-norm on
BGVh(Ω). �
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Proposition 2. For a function u ∈ L1(Ω), we have

ah
minl∈{0,h−1} λl

maxl∈{0,h−1} λl
TGVh

λ(u) ≤ DTGVh
λ(u) ≤ TGVh

λ(u). (23)

Proof: Define the feasible sets of the supremum problems in the definitions of
DTGV in (21) and TGV in (18) respectively as

KE =

w ∈ Chc (Ω,Symh(R2))

∣∣∣∣∣∣∣divl w ∈ λlEa,θ2× . . .× 2︸ ︷︷ ︸
h−l times

(0), l = 0, . . . , h− 1

 .

KB =

w ∈ Chc (Ω,Symh(R2))

∣∣∣∣∣∣divl w ∈ λlB2× . . .× 2︸ ︷︷ ︸
h−l times

(0), l = 0, . . . , h− 1

 .

Since a ≤ 1 implies Ea,θ2×...×2(0) ⊆ B2×...×2(0) we see that KE ⊂ KB and hence

by the definitions that DTGVh
λ(u) ≤ TGVh

λ(u).
If we shrink the set KB to

KB̃ =

w ∈ Chc (Ω,Symh(R2))

∣∣∣∣∣∣divl w ∈ ahλlB2× . . .× 2︸ ︷︷ ︸
h−l times

(0), l = 0, . . . , h− 1

 ,

then we have KB̃ ⊂ KE . Further, we obtain the inequality

sup
w∈KB̃

∫
Ω

udivh w dx ≤ sup
w∈KE

∫
Ω

udivh w dx,

that is, TGVh
ahλ(u) ≤ DTGVh

λ(u). Based on the third statement in proposition
3.3 in [8], we have the relation between TGV-functionals with different weights
as:

cTGVh
λ(u) ≤ TGVh

ahλ(u) with c = ah
minl∈{0,h−1} λl

maxl∈{0,h−1} λl
.

Hence, cTGVh
λ(u) ≤ DTGVh

λ(u). �
There are two straightforward consequences from proposition 2. First of all

BGVh(Ω) can equivalently be equipped with the norm

‖u‖BGVhλ(Ω) = ‖u‖L1(Ω) + DTGVh
λ(u).

Second, the kernel of DTGVh
λ can be characterized:

Corollary 1. DTGVh
λ(u) = 0 if and only if u is a polynomial of degree less than

h.

Proof: The kernel of TGVh
λ = 0 consists of polynomials of degree less than h,

see [8]; hence the conclusion follows from (23). �
In the next proposition we will derive further properties of DTGVh

λ.

Proposition 3. DTGVh
λ : BGVh → R+∪{0} is convex and lower semi-continuous.
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Proof: For u1, u2 ∈ L1(Ω) and t ∈ [0, 1] we have

DTGVh
λ(tu1 + (1− t)u2) = sup

w∈KE

∫
Ω

(tu1 + (1− t)u2) d̃iv
h
w dx

≤ t sup
w∈KE

∫
Ω

u1 d̃iv
h
w dx+ (1− t) sup

w∈KE

∫
Ω

u2 d̃iv
h
w d

= tDTGVh
λ(u1) + (1− t)DTGVh

λ(u2).

Hence, DTGVh
λ is convex.

By use of Fatou’s lemma we can show the lower semi-continuity of DTGVh
λ.

Let {un}n∈N be a Cauchy sequence in BGVh(Ω) such that un → u in L1(Ω).
Based on the definition of DTGVh

λ in (21) and Fatou’s Lemma, for any w ∈ KE

we have

lim inf
n→∞

DTGVh
λ(un) ≥ lim inf

n→∞

∫
Ω

undivh w dx ≥
∫

Ω

lim inf
n→∞

undivh w dx =

∫
Ω

u divh w dx.

Taking the supremum over all w in KE thus yields

DTGVh
λ(u) ≤ lim inf

n→∞
DTGVh

λ(un),

which means that DTGVh
λ is indeed lower semi-continuous. �

In the end of this section we give another similar equivalent definition as in
Theorem 3.1 in [9] but for DTGV2

λ, which is highly attractive in the numerical
implementation.

Theorem 4.1. For u ∈ L1(Ω) we have

DTGV2
λ(u) = min

v∈BD(Ω)
λ1‖D̃u− v‖M + λ0‖Ẽv‖M,

where BD(Ω) denotes the space of vector fields of Bounded Deformation [40],

‖D̃u‖M =
∫

Ω
d|D̃u| = DTV(u), the directional symmetrized derivative Ẽ is the

adjoint operator of d̃iv for a vector field.

Since the proof of theorem 4.1 is following the same lines as the proof of
Theorem 3.1 in [9] except the change on the divergence operator, for more details
we refer the readers to this paper. In addition, in section 6.1 we give definitions
of all operators in the discrete case.

5 L2-DTGV2
λ Model

In this section we consider (2) with the regularization term given by DTGV2
λ, i.e.

min
u∈BGV2(Ω)

J (u) (24)

with

J (u) =
1

2
‖Au− f‖2L2(Ω) + DTGV2

λ(u).

We call this the L2-DTGV2
λ model. Based on the properties of DTGV2

λ and
BGV2(Ω), we prove the existence and uniqueness of a solution to (24).
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Theorem 5.1. Suppose that f is in L2(Ω) and A ∈ L(L2(Ω)) is injective on the
space of affine functions A1(Ω). Then the L2-DTGV2

λ model defined in (24) has
a solution. Moreover, the solution is unique.

Proof: Since J is bounded from below, we can choose a minimizing sequence
{un}n∈N ⊂ BGV2(Ω) for (24). Thus both {‖Aun − f‖L2(Ω)} and {DTGV2

λ(un)}
with n = 1, 2, · · · are bounded.

Let P : L2(Ω)→ A1(Ω) be a linear projection onto the space of affine functions
on Ω, A1(Ω). Based on the result in proposition 4.1 in [9], we can find a constant
C > 0 such that

‖u‖L2(Ω) ≤ C TGV2
λ(u)

for any u in kerP ⊂ L2(Ω). Then from (23) we have

‖u‖L2(Ω) ≤ C̃ DTGV2
λ(u) ∀u ∈ kerP ⊂ L2(Ω),

with C̃ = Cmax{λ0,λ1}
a2 min{λ0,λ1} . By using corollary 1 and the triangle inequality on the

semi-norm DTGV2
λ we obtain DTGV2

λ(u) = DTGV2
λ(u − Pu). Hence, we have

that {un −Hun}n∈N is bounded in L2(Ω).
Since A is injective on the finite-dimensional space A1(Ω), there is a C1 > 0

such that ‖Pu‖L2(Ω) ≤ C1‖APu‖L2(Ω). Further,

‖Pun‖L2(Ω) ≤ C1‖APun‖L2(Ω)

≤ C1

(
‖Aun − f‖L2(Ω) + ‖A(un − Pun)− f‖2

)
≤ C2,

for some C2 > 0. It implies that {un} bounded in L2(Ω).
Therefore, there exists a subsequence of {un} that converges weakly to a

u∗ ∈ L2(Ω). Based on the lower semi-continuity and convexity of DTGV2
λ stated

in proposition 3 we obtain that u∗ is a minimizer of J and hence a solution of
the model (24).

Based on proposition 3, the functional J is convex. Furthermore, combining
with the result in corollary 1 and A is injective on A1(Ω), (24) is strictly convex,
thus its minimizer has to be unique [1]. �

6 Algorithms

In this section we will introduce the algorithms needed for the following numerical
simulations. First we will give the notations and discretization of the different
operators that our algorithms will require. To keep the notation simple, we re-use
the same symbols as in continuous case in the previous sections for the discrete
case. Then, we will propose a method for estimating the main direction in images.
In the end of the section, we will propose a primal-dual based algorithm for solving
the minimization problem in the L2-DTGV2

λ model.

6.1 Notation and discretization

The domain Ω is discretized as an M -by-M equidistant pixel-grid with pixel-size
1×1. We use (i, j) to denote a pixel index with 1 ≤ i, j ≤M , such that ui,j gives
the pixel value at (i, j). Here, for the sake of simplicity we stick to a square pixel-
grid, but all proposed algorithms can be easily generalized to any rectangular
discretization.
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For u ∈ RM×M , the discrete gradient operator ∇ : RM×M → R2M×M is
defined as

∇u =

(
∇+
x1
u

∇+
x2
u

)
,

where ∇+
x1

and ∇+
x2

are obtained by applying a forward finite difference scheme
with symmetric boundary condition, i.e.,

(∇+
x1
u)i,j =

{
ui+1,j − ui,j , if i < M,
0, if i = M,

and (∇+
x2
u)i,j =

{
ui,j+1 − ui,j , if j < M,
0, if j = M.

The divergence operator is defined as the adjoint operator of∇, i.e., we have div =
−∇∗ = (∇−x1

,∇−x2
), where ∇−x1

and ∇−x2
utilize the backward finite difference

scheme.
Moreover, based on the relation in (6), the directional divergence for a tensor

v with vi,j = (v1
i,j , v

2
i,j)
> and 1 ≤ i, j ≤M can be obtained by calculating

(d̃ivv)i,j = (div ṽ)i,j with ṽi,j = RθΛavi,j .

The corresponding directional gradient operator is (∇̃u)i,j = ΛaR−θ(∇u)i,j .

For a tensor W with Wi,j =
(
w11
i,j w

12
i,j

w12
i,j w

22
i,j

)
and 1 ≤ i, j ≤ M , its divergence can

be expressed as

(divW )i,j =

(
(∇+

x1
w11)i,j + (∇+

x2
w12)i,j

(∇+
x1
w12)i,j + (∇+

x2
w22)i,j

)
.

Based on the definition in (15), the directional divergence, d̃iv, can be obtained
by calculating

(d̃ivW )i,j = (divW̃ )i,j with W̃i,j = RθΛaWi,j .

In addition, the directional symmetrized derivative of the tensor v defined
above is given by

(Ẽv)i,j =
1

2

[
ΛaRθ

(
(∇−x1

v1)i,j (∇−x1
v2)i,j

(∇−x2
v1)i,j (∇−x2

v2)i,j

)
+

(
(∇−x1

v1)i,j (∇−x2
v1)i,j

(∇−x1
v2)i,j (∇−x2

v2)i,j

)
R>θ Λa

]
Note that for tensors it still holds that d̃iv = −Ẽ∗.

6.2 Detecting the main direction in images

In order to apply DTGV as regularization, the parameters a and θ have to be
specified. In this paper, we focus on the case that the texture in images is mainly
along one direction. By estimating this main direction, we will obtain the param-
eter θ. The parameter a somehow shows the confidence on the angle estimation.
For image restoration, the main direction can be estimated directly from the de-
graded images. Some classical methods to estimate angles or directions in images
could be used here, e.g., 2D Fourier transform and the arctangent function with
two arguments. There are also more advanced techniques for angle estimation.
Here we list a few of them: the quadrature filter [22], the boundary tensor [22],
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and the structure tensor [45]. Most of these methods estimate the direction pixel-
wisely, but in our case we aim for only one main direction for the whole image. In
this section, based on our single direction assumption, we will introduce another
method for estimating the main direction.

Our direction estimator is inspired by [38], and is mainly composed of three
steps. First, we smooth the degraded image in order to reduce the influence of
noise. Then, a pixel-wise angle estimation is calculated as

Θi,j =


0, if |(∇fσ)i,j |2 < 10−3,

arccos

(
(∇+

x1
fσ)i,j

|(∇fσ)i,j |2

)
, (∇+

x2
fσ)i,j ≥ 0 and |(∇fσ)i,j |2 < 10−3,

2π − arccos

(
(∇+

x1
fσ)i,j

|(∇fσ)i,j |2

)
, otherwise,

(25)

where fσ denotes the smoothed image from the first step. After that, we smooth
the estimated angles in order to remove outliers and features due to noise. At
the same time, we introduce the new period for the angles. Note that in [38] the
focus is on restoring rectangular shapes, therefore π/2-period is used. But in our
case, we need a π-period estimate. Moreover, we only need the main direction in
the image, which is obtained by calculating the mean over the pixel-wise angles.
In algorithm 1 the details of the main direction estimation method are outlined.
It should be noted that if we do not calculate the mean of the angles, we will
have pixel-wise angle estimates, which can be utilized for restoring images with
multiple angles in the future. Since in this paper we mainly focus on the analysis
of DTGV under continuous setting and its extension to spatially varying angles is
not trivial, the applications on restoring images with multiple angles are outside
the scope of this work.

Algorithm 1 Main Direction Estimation Method

1: Input smoothing parameter µ and the degraded image f .
2: Smooth the degraded image by implementing Gaussian blur: fσ = Gσf ,

where Gσ denotes Gaussian blurring operator with mean 0 and variance σ2.
3: Estimate pixel-wise direction Θu according to (25).
4: Introduce π

2 -period to the angles and smooth them:
2mm cui,j = cos(4Θu

i,j),
5: sui,j = sin(4Θu

i,j),

6: (cv, sv) = arg min
cv,sv

∑
i,j

|(∇f)i,j |22

∣∣∣∣( cui,j
sui,j

)
−
(
cvi,j
svi,j

)∣∣∣∣2
2

+ µ
(
|(∇cv)i,j |22 + |(∇sv)i,j |22

)
.

2mm The smoothed pixel-wise angles, Θv, are obtained by implementing (25)
with

(
cv

sv
)

instead of ∇fσ as input.

7: Calculate the main direction: θ = 1
|Ω|

∑
i,j

Θv
i,j .

8: Transform into π-periodic angle according to

9: θ ←
{
−θ, if (∇+

x1
fσ) : (∇+

x2
fσ) ≤ 0,

π
2 − θ, otherwise,

10: where “:” denotes the Frobenius inner product. return θ.
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6.3 The Chambolle-Pock algorithm

Corresponding to (24) we formulate the discrete L2-DTGV2
λ model as

min
u∈RM×M

J (u) :=
1

2
‖Au− f‖2F + DTGV2

λ(u), (26)

where f ∈ RM×M and A : RM×M → RM×M denotes the identity operator
(denoising problem) or a blurring operator (deblurring problem). Since the mini-
mization problem in (26) is convex, many optimization algorithms could be used
to solve it, e.g. Nesterovs method [29], the FISTA algorithm [4], the alternating
direction method with multipliers (ADMM) [6], and any of the many primal-dual-
based methods. Here, due to the simplicity of the implementation, we utilize the
Chambolle-Pock primal-dual (CP) algorithm [10] to solve our problem.

Referring to the algorithm proposed in [7], we can rewrite the data-fitting
term in (26), F(u) = 1

2‖Au− f‖
2
F , as

F(u) = max
q∈U

〈Au, q〉 − 1

2
‖q‖2F − 〈f, q〉, (27)

where U = RM×M . Combining with the result in theorem 4.1, we obtain the
primal-dual formulation of (26)

min
u∈U,v∈V

max
q∈U,p∈P,W∈W

〈Au, q〉 − 1

2
‖q‖2F − 〈f, q〉+ 〈∇̃u− v,p〉+ 〈Ẽv,W 〉

where V = R2M×M , P = {p : Ω→ R2 | ‖pi,j‖2 ≤ λ1 for ∀(i, j) ∈ Ω}, W = {W :
Ω → Sym2(R2) | ‖Wi,j‖F ≤ λ0 for ∀(i, j) ∈ Ω}. This is a generic saddle-point
problem, and we can apply the CP algorithm proposed in [10] to solve it. The
algorithm is summarized in Algorithm 2.

In algorithm 2, η and τ denote the dual and primal step-sizes, respectively.
In addition, Sλ is a set-projection operator defined as

[Sλ(ξ)]i,j =
ξi,j

max
(

1,
|ξi,j |
λ

) .
If ξ ∈ P, then |ξi,j | is with 2-norm; and if ξ ∈ W, then |ξi,j | is with Frobenius
norm. Here, we use the relative changes of the objective function in (26) to define
the stopping criterion, since the objective function is essentially what we desire
to minimize and it is simple to calculate.

7 Numerical Experiments

In this section, we provide numerical experiments to study the behavior of our
method. First, we examine the direction estimation method proposed in algo-
rithm 1 for a series of noisy images, ranging from low- to high-level noise. Since
the directional regularization requires additional parameters (θ, a), we then em-
pirically examine how these parameters influence the solution of (26). In the
end, we compare DTGV2

λ- and DTV-regularization with TGV2
λ- and classical

TV-regularization for some denoising and deblurring problems, where the blur-
ring and noise have been simulated. Based on the balance between the compu-
tational complexity and restoration improvement, the second order of TGV is
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Algorithm 2 The CP algorithm for solving L2-DTGV2
λ

1: Require f , A, λ, a, θ and tol.
2: Estimate Lipschitz constant L, e.g. using power-method for A.
3: Initialize u0 = ū0 = 0, v0 = 0, q0 = 0, p0 = p̄0 = 0, w0 = 0, e0 = 0, η < 1√

L
,

τ < 1√
L

.

4: Run loop until stopping criterion is met:
5: while ek > tol do

pk+1 = arg max
p∈P

〈∇̃ūk − v̄k,p〉 − 1

2η
‖p− pk‖2F

= Sλ1

(
pk + η

(
∇̃ūk − v̄k

))
W k+1 = arg max

W∈W
〈Ẽv̄k,W 〉 − 1

2η
‖W −W k‖2F

= Sλ0

(
W k + ηẼv̄k

)
qk+1 = arg max

q∈U
〈Aūk, q〉 − 1

2
‖q‖2F − 〈f, q〉 −

1

2η
‖q − qk‖2F

=
1

1 + η

(
qk + η(Aūk − f)

)
uk+1 = arg min

u∈U
〈Au, qk+1〉+ 〈∇̃u,pk+1〉+

1

2τ
‖u− uk‖2F

= uk + τ
(

d̃ivpk+1 −A∗qk+1
)

vk+1 = arg min
v∈V

−〈v,pk+1〉+ 〈Ẽv,W k+1〉+
1

2τ
‖v − vk‖2F

= vk + τ
(
pk+1 + d̃iv W k+1

)
ūk+1 = 2uk+1 − uk

v̄k+1 = 2vk+1 − vk

ek+1 =

∣∣J (uk)− J (uk+1
)∣∣

J (uk)

end while
6: return uk+1.
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mostly widely used, so in our numerical experiments we only investigate DTGV2
λ

and compare it with TGV2
λ. To simplify the notations, we refer to TGV2

λ and
DTGV2

λ as TGV and DTGV in this section. In addition, same as in [8] we fix the
ratio between the two regularization parameters, i.e., λ0

λ1
= 2, which commonly

yields good restoration results for images. The tolerance in the algorithm 2 has
been chosen as 10−6 and all simulated experiments are implemented in Matlab
R2016a.

7.1 Robustness of direction-estimation

Since the estimation of the main direction plays an important role in our method,
we first demonstrate the performance of the presented direction-estimation method
in algorithm 1. Here, we use one simulated image and one real image for numeri-
cal experiments, and test our direction-estimation method on the images with up
to 50% Gaussian noise. In all tests, we set σ = 10 for the smoothing step, i.e.,
Step 2 in algorithm 1. The numerical results are shown in fig. 4. It is clear that
for both test images, until the noise level (nl) reaching to 20%, our method pro-
vides estimates within ±15◦ of the main direction. Especially for the real image,
even with 50% noise, the estimation is still very accurate.

θ = 69.4◦, nl = 0%

θ = -35.3◦, nl = 0%

θ = 67.4◦, nl = 5%

θ = -35.1◦, nl = 5%

θ = 64.1◦, nl = 10%

θ = -34.9◦, nl = 10%

θ = 56.8◦, nl = 20%

θ = -36.7◦, nl = 20%

θ = 50.4◦, nl = 30%

θ = -40◦, nl = 30%

θ = 45.5◦, nl = 50%

θ = -43.1◦, nl = 50%

Figure 4: Estimating main direction in test images with increasing noise-level
(nl). The top image size is 512×512 and bottom one is 253×253. Main direction
estimate θ is written in degrees and visualized on top of the noisy images with a
blue line from the center.

7.2 Role of DTGV parameters

In the DTGV functional, besides the parameters λ0,1 there are another two im-
portant parameters: θ and a, where θ is an angle and a determines the ratio of
anisotropy. If a = 1, DTGV becomes identical to the rotation invariant TGV.
In this section, we will test the influence of these two parameters when DTGV is
used as a regularizer, and also seek the robustness of the L2 − DTGV solutions
with respect to the parameter choices.

In order to study the influence from a and θ solely, in each test with fixed
values for (a, θ) we adjust the regularization parameter λ and pick the one that
provides the highest peak signal-to-noise ratio (PSNR) value. The test images
used for our numerical algorithm consist of two simulated images and two natural
images as shown in fig. 5. Since the test image in fig. 6 is piece-wise constant,
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Figure 5: Ground truth images used in the numerical tests.

Best PSNR (λ) for (a,θ)

-2 8 18 28 38

θ

0.01

0.05
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0.25

0.35

0.45

a

25

26

27

28

θ=18, a=0.10, PSNR=28.5

(best PSNR)

θ=38, a=0.01, PSNR=24.4

(20◦ wrong angle)

θ=18, a=0.45, PSNR=26.8

(too large a)

Figure 6: Test image 1: piece-wise constant image with size 256-by-256. DTV-
regularized denoising problem. Lines mark specific angles: tested angles, esti-
mated angle and best angle.

DTV is used as regularizer instead of DTGV. All test images are corrupted by 10%
Gaussian noise, and the operator A is set as the identity. In fig. 6-9, we visualize
the PSNR values for different choice of (a, θ), where we test a ∈ [0.01, 0.45] and
θ ∈ [θ̄ − 20◦, θ̄ + 20◦] with θ̄ as the estimated main direction by algorithm 1. In
addition, for each test image we also show three restoration results: the best one,
according to PSNR, one with θ = θ̄ + 20◦ and small a, and one with θ = θ̄ and
large a.

Obviously, the use of directional regularization improves the PSNR values
significantly when θ coincides with the main direction of the image. Moreover,
with a good direction estimation the highest PSNR values are usually achieved
by choosing a relatively small a. From the restored images we can see that with
incorrect θ and a small a there are some line artifacts along the direction of θ.
The reason is that with a small a the textures in the images are forced to be
restored along the incorrect direction. With correct θ and a large a the restored
results look very similar to the TV- or TGV-regularized results. Especially in the
last figure of fig. 6, staircasing artifacts start to appear.

When DTGV is used as the regularizer to penalize the textures that are not
oriented along the main direction of the images, we take θ as the main direction
and choose a depending on how much to penalize the textures that are not along
θ. Hence the selection of (θ, a) only depends on the orientation of the textures
and not on the noise level. In order to empirically confirm the noise robustness,
in fig. 10 we give an example similar to the one in fig. 9, but now with the
image corrupted by 20% additive Gaussian noise. In this test, we still adjust
the regularization parameter λ and pick the one that provides the highest PSNR
value. Note that λ controls the trade-off between a good fit to the noisy image
and the smoothness from DTGV, so it varies due to the different noise level. We
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Best PSNR (λ) for (a,θ)

-2 8 18 28 38

θ

0.01

0.05

0.15
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0.35

0.45

a

26
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28

29

30

θ=18, a=0.15, PSNR=30.6

(best PSNR)

θ=38, a=0.01, PSNR=25.9

(20◦ wrong angle)

θ=18, a=0.45, PSNR=28.5

(too large a)

Figure 7: Test image 2: piece-wise affine image with size 256-by-256. DTGV-
regularized denoising problem. Lines mark specific angles: tested angles, esti-
mated angle and best angle.

Best PSNR (λ) for (a,θ)

-65 -55 -45 -35 -25

θ
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0.15

0.25

0.35

0.45
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23

24
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θ=-50, a=0.05, PSNR=27.0

(best PSNR)

θ=-25, a=0.01, PSNR=22.8

(20◦ wrong angle)

θ=-45, a=0.45, PSNR=24.3

(too large a)

Figure 8: Test image 3: real image with size 145-by-145. DTGV-regularized
denoising problem. Lines mark specific angles: tested angles, estimated angle
and best angle.

can see that the PSNR figure with respect to (a, θ) in fig. 10 is very similar to the
one in fig. 9 except the different range of the PSNR values, which demonstrates
that the choice of (a, θ) is independent on the noise levels.

The tests in fig. 6-10 can also serve as robustness tests for our method. They
show that our method is robust with respect to the parameters for a ∈ [0.1, 0.2]
and θ within [θ̄ − 5◦, θ̄ + 5◦]. So in the following numerical experiments, we will
use algorithm 1 to estimate θ and fix a to 0.15.

7.3 Image denoising

To show the improvement of imposing the direction prior into the regularizer we
empirically compare DTGV and DTV with TGV and TV for image denoising
problems. We use four different test images with 10% and 20% Gaussian noise
respectively. In all tests, after many experiments with different choices of the
regularization parameter λ, the ones that give the best PSNRs are presented
here.

Comparing the results from the four different regularization techniques in
fig. 11 and fig. 12, we see that both visually and quantitatively in terms of PSNR
the improvement by directional regularizers is evident. Especially the PSNR
values of the results from solving the L2-DTGV model are at least 2.2dB higher
than the ones from the L2-TGV results. The textures in the images are obviously
much better preserved by using DTV and DTGV than by using the two isotropic
regularizers, i.e., TV and TGV. Note that in both results from TV and DTV
for the second test image, the staircasing artifact is observable along the main
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Best PSNR (λ) for (a,θ)

-62 -52 -42 -32 -22

θ

0.01

0.05

0.15

0.25

0.35

0.45

a

28

29

30

31
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θ=-42, a=0.45, PSNR=30.2

(too large a)

Figure 9: Test image 4: real image. DTGV-regularized denoising problem. Lines
mark specific angles: tested angles, estimated angle and best angle.
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Figure 10: Test image 4: real image. DTGV-regularized denoising problem (with
20% Gaussian noise). Lines mark specific angles: tested angles, estimated angle
and best angle.

direction. This is due to the test image being piece-wise affine, while the TV and
DTV regularizers are based on an assumption of piece-wise constant images. In
this case, by using DTGV as regularizer the artifacts are successfully removed and
the textures are well preserved. Hence, these tests demonstrate the advantages of
including directional information in the regularizer when dealing with directional
images.

In the first two simulated test images, we specially add a dark region per-
pendicular to the main direction in order to demonstrate the potential artifacts
from the directional regularizers. We can see that near the boundary of the dark
region some artifacts in the restored results by DTV and DTGV appear. These
artifacts are due to the diffusion of the different intensities along the main direc-
tion. In addition, the similar artifacts can be observed in the results from DTV
and DTGV for restoring the two real images, especially for lines that are close to
perpendicular to the main direction. In order to clearly show these artifacts, in
fig. 13 we zoomed in on the center of the last test image and show the comparison
of the four restorations. These artifacts mainly occur when the direction prior is
not met, e.g. a part of the image textures do not follow the main direction.

In the DTGV2
λ regularizer, the directional information is introduced both in

the first and second-order derivatives. To demonstrate the advantage of this
we compare our method with the anisotropic TGV method, ITGV, proposed in
[31, 21]. In ITGV, a diffusion tensor is estimated from the noisy image and used
only in the first-order derivative term. Since in this paper we only consider the
case of textures with one global direction, in order to have a fair comparison in
fig. 14 we give the result from ITGV method with the same direction estimation as
ours; we mark this result by the name DITGV. Since in ITGV the diffusion tensor
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is highly influenced by noise, its performance is limited. Comparing the results
from DITGV and DTGV, we can clearly see that the advantage of including the
directional information also in the second-order derivative terms.

Noisy, psnr = 20.0

Noisy, psnr = 20.0

Noisy, psnr = 20.0

Noisy, psnr = 20.0

TV, psnr = 25.1 TGV, psnr = 25.1 DTV, psnr = 28.5 DTGV, psnr = 29.1

TV, psnr = 26.1 TGV, psnr = 26.2 DTV, psnr = 29.1 DTGV, psnr = 30.6

TV, psnr = 22.5 TGV, psnr = 22.7 DTV, psnr = 25.5 DTGV, psnr = 26.2

TV, psnr = 27.3 TGV, psnr = 28.2 DTV, psnr = 30.3 DTGV, psnr = 31.5

Figure 11: Comparison of TV, TGV, DTV and DTGV regularizers for four dif-
ferent denoising problems with 10% Gaussian noise.

7.4 Image deblurring and denoising

In order to test directional regularization on a more complicated problem, we
consider the restoration of noisy blurred images. In our experiment, the blurring
operator is s et as Gaussian blur with a standard deviation of 2. Further, after
being blurred, the test image is corrupted by 10% Gaussian noise. In our method,
we still use algorithm 1 to estimate the main direction in the image.

In fig. 15, we show the degraded image and the restored results by using
TV, TGV, DTV and DTGV regularizers. It is clear that both TV and TGV
cannot help to restore the edges correctly, while the methods with the directional
regularizers are much better at restoring the textures and removing the noise.
In addition, the DTV result is heavily influenced by staircasing artifacts, since
this test image is piece-wise affine which does not fit with the piece-wise constant
assumption for the method. Due to the use of higher order derivatives, those
artifacts do not appear in the DTGV result, as expected. Quantitatively, the
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Noisy, psnr = 14.0

Noisy, psnr = 14.0

Noisy, psnr = 14.0

Noisy, psnr = 14.0

TV, psnr = 21.0 TGV, psnr = 21.0 DTV, psnr = 24.6 DTGV, psnr = 26.0

TV, psnr = 22.3 TGV, psnr = 22.4 DTV, psnr = 25.2 DTGV, psnr = 27.3

TV, psnr = 19.2 TGV, psnr = 19.3 DTV, psnr = 21.8 DTGV, psnr = 22.3

TV, psnr = 23.8 TGV, psnr = 24.7 DTV, psnr = 26.8 DTGV, psnr = 28.2

Figure 12: Comparison of TV, TGV, DTV and DTGV regularizers for four dif-
ferent denoising problems with 20% Gaussian noise.

PSNR value is increased by at least 2.5dB when the directional regularizer is
utilized.

8 Conclusion

In this paper, we propose a new directional functional, directional total general-
ized variation (DTGV), and study its mathematical properties. Then we combine
DTGV with the least-squares data-fitting term and propose a new variational
model, L2-DTGV, for restoring images whose textures mainly follow one direc-
tion. We prove the existence and uniqueness of a solution to our proposed model,
and apply a primal-dual algorithm to solve the minimization problem. Since the
new proposed DTGV functional requires the input of the main direction of the
images, we also propose a direction estimation algorithm, which can be easily
extended to spatially varying direction estimation. Numerical results show that
the direction estimation algorithm is reliable and the improvement for restoring
directional images by using DTGV as regularizer is significant compared to using
isotropic regularizers. In addition, we also try to discover the potential artifacts
from DTGV. In order to reduce the artifacts from DTGV, we intend to extend
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Original TV, psnr = 23.8 TGV, psnr = 24.7 DTV, psnr = 26.8 DTGV, psnr = 28.2

Figure 13: The zoomed-in regions of the restored results shown in the last row of
fig. 12.

Figure 14: Comparison of TGV, ITGV, DITGV and DTGV regularizers for de-
noising problem with 10% Gaussian noise.

our method to deal with multi-directions or spatially varying directions in the
future.
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Abstract. A recently suggested regularization method, which combines
directional information with total generalized variation (TGV), has been
shown to be successful for restoring Gaussian noise corrupted images. We
extend the use of this regularizer to impulse noise removal and demon-
strate that using this regularizer for directional images is highly advanta-
geous. In order to estimate directions in impulse noise corrupted images,
which is much more challenging compared to Gaussian noise corrupted
images, we introduce a new Fourier transform-based method. Numerical
experiments show that this method is more robust with respect to noise
and also more efficient than other direction estimation methods.

Keywords: Directional total generalized variation · Impulse noise ·
Variational methods · Regularization · Image restoration

1 Introduction

The use of variational methods is a successful way to improve image restoration
by incorporating prior information through regularization, see e.g. [18,20,23,25].
For images corrupted by blurring and impulse noise, �1-fidelity-based variational
models are effectively demonstrated their success as seen in [3,5,16,17,19,20].
In this paper, we will study restoration of impulse noise corrupted directional
images.

An image u ∈ IRN×N is assumed to be degraded as

f = N (Au),

where A is a known blurring operator, N indicates degradation with impulse
noise, and f ∈ IRN×N is the degraded image. Impulse noise often appears due to
e.g. transmission errors or malfunctioning pixels. Impulse noise is known for not
degrading all image pixels, but only a part of them. The two most common types
of impulse noise are salt-and-pepper noise and random-valued impulse noise. Let
ρ ∈ [0, 1] be the noise-level. The model for impulse noise degradation at pixel
(i, j) is

fi,j =
{

bi,j , with probability ρ,
(Au)i,j , with probability 1 − ρ.

c© Springer International Publishing AG 2017
F. Lauze et al. (Eds.): SSVM 2017, LNCS 10302, pp. 221–231, 2017.
DOI: 10.1007/978-3-319-58771-4 18
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We assume the intensity range as [0, 1]. For salt-and-pepper noise, we have bi,j ∈
{0, 1} for all (i, j), while for random-valued impulse noise, bi,j is random and
uniform distributed in [0, 1]. A variational model for restoring the impulse noise
corrupted image takes the form

min
u

‖Au − f‖1 + R(u).

The choice of regularization term R should reflect what prior knowledge we have
for the image u.

Total Variation (TV) is a very popular used regularization in image process-
ing, which is corresponds to a piecewise constant prior [23]. The combination
of �1 data-fitting and TV-regularization has been investigated for impulse noise
in [5,7,16,20]. A drawback for TV-regularized methods is the so called stair-
casing effect, which can be successfully overcome by regularization with higher-
order derivatives, e.g. Total Generalized Variation (TGV) regularization pro-
posed in [2].

In series of applications, processing of images with a distinct main direction
is typical. This could for example be different fibre materials such as carbon,
glass optical fibres, see [13,24,27]. Images with a the texture following one main
direction we dub directional images. Including the directional information in
an image processing setting can highly improve the image quality and hence
improve the material analysis.

TV-regularization has been combined with directional information for several
applications and in various aspects, see [1,8–10,15,26]. Directionality has also
been combined with second-order derivative regularization in [12] and with the
first-order information of second-order TGV, see [11,22]. Recently in [14] a reg-
ularization method for restoring directional images has been introduced, which
combines TGV with directional information estimated from the images. In [14]
directional TGV (DTGV) is demonstrated to improve the quality of restorations
in the case of Gaussian noise.

In this paper, we investigate DTGV-regularized variational methods for
restoring impulse noise corrupted images. Under impulse noise, how to estimate
the main direction is a big challenge. In order to obtain a robust direction esti-
mation algorithm, we utilize the Fourier transform and propose a new algorithm.
Numerical results show that the new direction estimation algorithm outperforms
the one proposed in [14] under both impulse noise and Gaussian noise cases, and
it is much more efficient due to the fast Fourier transform algorithm and non-
iterative structure. With the estimated main direction, DTGV regularization is
combined with the �1 data-fitting term. The minimization problem in the new
variational model is solved by a primal-dual method [4]. The numerical results
show that our method can successfully restore directional images by removing
impulse noise and preserving the texture.

The rest of the paper is organized as follows. In Sect. 2, we briefly review
DTGV regularization, and provide a new variational model for restoring direc-
tional images under impulse noise. Section 3 gives the new direction estima-
tion algorithm, Sect. 4 gives a primal-dual algorithm for solving our restoration
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model. The numerical results shown in Sect. 5 demonstrate the efficiency of the
new method. Finally, conclusions are drawn in Sect. 6.

2 �1-DTGV Model

In [14], the directional total generalized variaiton (DTGV) regularization, which
is utilized to restore directional images, is proposed. Comparing with the TGV
in [2], the idea behind DTGV relies on a change of the feasible set for the
dual variable in the definition, i.e., the feasible set is turned from a spherical
set into an elliptical set. This change leads to non-identical penalization along
each directions. Further, in [14] it is shown that the change of the feasible set
can be boiled down to the modification of the operators, which is much more
implementation-friendly.

In this paper, we only consider the discrete case. Then, the discrete second
order DTGV (DTGV2

λ) of u ∈ R
N×N can be written as:

DTGV2
λ(u) = min

v∈R2N×N
λ1

∑
i,j

|ΛaR−θ(∇u)i,j − vi,j |2 + λ0

∑
i,j

|(Ẽv)i,j |F (1)

where v = (v�
1 , v�

2 )� ∈ R
2N×N with v1, v2 ∈ R

N×N , | · |F denotes Frobenius
norm, and λ = (λ1, λ2)� are positive parameters. Furthermore, the discrete
gradient operator ∇ ∈ R

2N×N is defined as

∇u =
(∇x1u

∇x2u

)
,

where ∇x1 and ∇x2 are the derivatives along x1 and x2 directions, which are
obtained by applying the forward finite difference scheme with symmetric bound-
ary condition. In addition, Λa and Rθ are the scaling and rotation matrices

Rθ =
(

cos θ − sin θ
cos θ sin θ

)
and Λa =

(
1 0
0 a

)
,

and Ẽ is the directional symmetrized derivative defined as:

(˜Ev)i,j = −1

2

[

ΛaR−θ

(

(∇�
x1v1)i,j (∇�

x2v1)i,j

(∇�
x1v2)i,j (∇�

x2v2)i,j

)

+

(

(∇�
x1v1)i,j (∇�

x1v2)i,j

(∇�
x2v1)i,j (∇�

x2v2)i,j

)

RθΛa

]

.

Due to the scaling and rotation matrices, DTGV is rotationally variant, whereas
TGV is rotationally invariant.

To remove impulse noise, the �1 data-fitting term in variational methods has
been shown to be suitable [20]. For restoring directional images, with the prior
information of the main texture direction, we combine the �1 data-fitting term
with DTGV regularization and obtain the �1-DTGV model:

min
u∈RN×N

∑
i,j

|(Au)i,j − fi,j | + DTGV2
λ(u). (2)

By using DTGV as regularization, the variances along the main direction θ will
get more penalization than other directions.
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3 Direction Estimation Algorithm

In DTGV, the directional parameter θ is very important. In [14] an algorithm
for estimating the main direction from degraded images is presented, and it has
been shown to work well for Gaussian noise up to a noise level around 30%. But
since this algorithm has a lack of robustness with respect to high level Gaussian
noise, it also cannot handle other more complicated types of noise, e.g. impulse
noise. Moreover, this method requires solving a minimization problem iteratively,
which reduces the computational efficiency. In this section, based on the Fourier
transform we will propose a new direction estimation algorithm, which is much
more robust with respect to noise and too more efficient.

The new algorithm is based on the fact that 2D Fourier basis functions can
be seen as images with a significant main direction. After calculating the discrete
2D Fourier transform

c(ω1, ω2) = F [f ](ω1, ω2) =
∑
i,j

fi,je− 2ιπ
N (iω1+jω2) (imaginary unit : ι),

the magnitude of the complex coefficients, c, will provide information on the
similarity between the image f and the individual directional basis-functions.
If the image f indeed has one main direction, then it would resemble one or a
combination of the basis-functions, and the amplitude(s) of the corresponding
coefficient(s) would be relatively large. By finding the coefficients with the largest
amplitude, we can obtain the main direction of the image. The Fourier based
method is outlined in Algorithm1.

Algorithm 1. Direction estimation algorithm
1: Input f .
2: Calculate Fourier transform of f : c(ω1, ω2) = F [f ](ω1, ω2).
3: Find max-amplitude spatial frequencies: (ω∗

1 , ω∗
2) = argmax

(ω1,ω2)

|c(ω1, ω2)|.

4: Estimate the direction from the spatial frequencies: θ = tan−1
(

ω∗
2

max(ω∗
1 ,ε)

)

.

5: return θ.

Since a 2D Fourier transform is the only computational requirement, which
can be calculated by the Fast Fourier transform, the new algorithm is highly
efficient.

4 Numerical Algorithm

The objective function in (2) is convex, so convex optimization methods can
be used to solve the minimization problem in (2). In this section, we apply a
primal-dual method based on the work in [4] for solving (2).
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According to the definition of DTGV2
λ in (1), we give the primal-dual formu-

lation of (2):

min
u∈U,v∈V

max
q∈Q,p∈P,W∈W

〈Au − f, q〉 +
∑
i,j

〈ΛaR−θ[∇u]i,j − vi,j ,pi,j〉

+
∑
i,j

〈(Ẽv)i,j ,Wi,j〉,

where U ∈ IRN×N , V ∈ IR2N×N , Q =
{
q ∈ U ∣∣ |qi,j | ≤ 1 for 1 ≤ i, j ≤ N

}
,

P =
{
p ∈ V ∣∣ |pi,j |2 ≤ λ1 for 1 ≤ i, j ≤ N

}
, W = {W

∣∣Wi,j is a 2-by-2
symmetric matrix and |Wi,j |F ≤ λ0 for 1 ≤ i, j ≤ N}. This is a generic saddle-
point problem, and in Algorithm2 the primal-dual algorithm proposed in [4] is
applied to solve the above optimization task.

In Algorithm 2, η is the dual step-size, τ is the primal step-size, A∗ indicates
the adjoint operator of A, and the projection operator is defined as

[Sλ(ξ)]i,j =
ξi,j

max
(
1,

|ξi,j |
λ

) .

If ξ ∈ V, then |ξi,j | is with 2-norm; and if ξ ∈ W, then |ξi,j | is with Frobenius
norm.

5 Numerical Experiments

In this section, we provide numerical results to study the behavior of our method.
We first compare the new direction estimation algorithm in Algorithm 1 with the
one given in [14]. After this we compare our method, i.e., restoring directional
images from the �1-DTGV2

λ model, with the one based on the �1-TGV2
λ model.

All numerical experiments are carried out in Matlab on a laptop with a 2.9 GHz
Intel Core i5 processor.

5.1 Direction Detection

Here, we use a simulated directional image as test image to compare the perfor-
mance of the new direction estimation algorithm proposed in Algorithm 1 with
the one from [14]. In Fig. 1 we test them on the image with up to 90% Gaussian
noise, and in Fig. 2 we test them on the image with up to 90% random-valued
impulse noise.

Clearly, the new direction estimation algorithm is much more robust with
respect to both kinds of noise. Moreover, it is much more efficient. Average
time from 1000 runs on a 256 × 256 images is only 9 ms by the new algorithm,
comparing of 407 ms by the one in [14], which is almost 45 times faster.
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Algorithm 2. Primal-dual algorithm for solving �1-DTGV model
1: Require f , A, λ, a, θ and tol.
2: Estimate Lipschitz constant L, e.g. using power-method for A.
3: Initialize u0 = 0, ū0 = 0, p0 = 0, q0 = 0, v0 = 0, v̄0 = 0, w0 = 0, e0 = 0, η < 1√

L
,

τ < 1√
L

.

4: while ek > tol do

pk+1 = arg max
p∈P

〈˜∇ūk − v̄k,p〉 − 1

2η
‖p − pk‖2

2

= Sλ1

(

pk + η
(

˜∇ūk − v̄k
))

W k+1 = arg max
W∈W

〈˜Ev̄k, W 〉 − 1

2η
‖W − W k‖2

F

= Sλ0

(

W k + η ˜Ev̄k
)

qk+1 = arg max
q∈Q

〈Aūk − f, q〉 − 1

2η
‖q − qk‖2

2

= S1

(

qk + η(Aūk − f)
)

uk+1 = arg min
u∈U

〈Au, qk+1〉 + 〈˜∇u,pk+1〉 +
1

2τ
‖u − uk‖2

2

= uk + τ
(

˜divpk+1 − A∗qk+1
)

vk+1 = arg min
v∈V

−〈v,pk+1〉 + 〈˜Ev, W k+1〉 +
1

2τ
‖v − vk‖2

2

= vk + τ
(

pk+1 + ˜div W k+1
)

ūk+1 = 2uk+1 − uk

v̄k+1 = 2vk+1 − vk

ek+1 =
‖uk − uk+1‖2

‖uk‖2

end while
5: return uk+1.

Fig. 1. Estimating the main direction in the test images with additive Gaussian noise
(“nl” denotes the noise level). The colored lines indicates the estimated direction by
using the method in [14] (red) and the new method (blue). (Color figure online)
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Fig. 2. Estimating the main direction in the test images with random-valued impulse
noise (“nl” denotes the noise level). The colored lines indicates the estimated direction
by using the method in [14] (red) and the new method (blue). (Color figure online)

5.2 Image Denosing and Deblurring

In this section, we examine the difference between using TGV2
λ and DTGV2

λ as
regularizers combined with a �1-data fidelity term for restoring images corrupted
by impulse noise.

In DTGV, except the main direction parameter θ, there are another three
parameters: the scaling parameter a and the regularization parameter λ =
(λ0, λ1). The scaling parameter a demonstrates to what extent the textures in
images following the main direction. If a = 1, DTGV becomes identical to the
rotation invariant TGV. Due to the good performance of the direction estima-
tion algorithm, as suggested in [14] we choose a relatively small, saying a < 0.3.
In addition, same as the TGV in [2], we fix the ratio λ0

λ1
as 2, which commonly

yeilds good restoration results. All the numerical results shown here are the ones
with the highest peak-signal-to-noise-ratio (PSNR) values after adjusting the
parameters λ1 and a ∈ (0, 0.3).

The first denoising experiment is using a 512 × 512 test image, which is
corrupted by the salt-and-pepper noise with the noise level as 30%, 50% and
70%, respectively. In Fig. 3 the restored results from both regularizers are pre-
sented. It is obvious that the DTGV reglurizer provides better results, and the
improvement of the PSNR values is even more than 10 dB. But in the dark region
perpendicular to the main direction we see some artifacts from the DTGV reg-
ularization. It is due to the diffusion of the different intensities along the main
direction.

In the second denoising experiment, a real bamboo image is used (253 × 253
pixels). In this image the main direction varies smoothly throughout the image
within a range of about 15◦. Here, we test our method and the one based on
�1-TGV model for removing random valued impulse noise, which is much more
difficult than the salt-and-pepper noise. The best-PSNR results are shown in
Fig. 4. As seen restoring a real image with random-valued impulse noise is a
harder problem for both methods, but the improvement of using DTGV is again
clear, both visually and quantitively. Since in the DTGV regularizer we only
consider one main direction, the variation of the directional is not taken into
account, which leads to some line artifacts.

The deblurring and denoising experiment is also with the bamboo image.
Here, we consider the Gaussian blurring with standard deviation σ = 2 and the
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Fig. 3. Denoising results from the salt-and-pepper noise corrupted images.

Fig. 4. Denoising results for a real image corrupted by random-valued impulse noise.
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Fig. 5. Restoration results for blur images with random-valued impulse noise.

random valued impulse noise. The best-PSNR results are shown in Fig. 5. Our
method with DTGV regularization gives the highest PSNR values in all three
different noise level cases. The visual difference also can be observed, especially
in high noise level cases.

6 Conclusions

In this paper, we apply a recently proposed directional regularization, DTGV,
on image restoration under impulse noise. By combining DTGV with �1 data-
fitting term, we give a new �1-DTGV variational model. In order to estimate
the main direction directly from impulse noise corrupted images, which is much
more challenging than Gaussian noise case, we propose a new direction esti-
mation algorithm based on the Fourier transform. The new algorithm is much
more robust with respect to the noise, and furthermore also much more efficient
than a previously suggested algorithm in [14]. The numerical results show that
our DTGV-regularized method improve the TGV-based method on restoring
impulse-noise-corrupted directional images significantly. Hence, there is a high
advantage of incorporating the direction information into the regularization for
directional image restoration.

In order to further improve the restoration results, especially in high noise
level cases, in the future we intend to extend our method to the two-phase app-
roach, referring to the work in [3,5,6,21]. That is, in the first phase we distinguish
the noisy pixels, and then in the second phase we utilize the variational method
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to restore only noisy pixels from the detected noise-free pixels. The range of
applications for this method could be extended by letting the direction vary
spatially, which would require a reliable, e.g. adaptive, way to estimate local
directions.

Acknowledgments. The authors would like to thank the reviewers for their com-
ments and suggestions, which has helped to improve this article. The work was sup-
ported by Advanced Grant 291405 from the European Research Council.
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Abstract

The X-ray computed tomography technique has many different practi-
cal applications. In this paper, we propose two new reconstruction methods
that can decompose and reconstruct objects at the same time. By incorpo-
rating direction information, the proposed methods can decompose objects
into various directional components. Furthermore we propose a method to
obtain the direction information in the objects directly from the measured
sinogram data. We demonstrate the proposed methods on simulated and
real samples to show their practical applicability. The numerical results
show the differences between the two methods and the practical usefulness
when dealing with fibre-crack decomposition problem.

1 Introduction

X-ray computed tomography (CT) is a highly used non-invasive imaging tech-
nique. Applications of this technique ranges from biological and chemical sci-
ence, to structural and material science, where the resolution also varies from
large scale (meters) to micro-scale (nano-meters). For the CT technique, recon-
struction methods play a fundamental role, and very often after the reconstruction
we need to segment or decompose the objects into different components. In this
paper, we focus on directional objects, whose textures are mainly along one di-
rection. One important example of directional objects is fibres, such as optical
fibres, glass fibres, carbon fibres, etc. When analyzing fibre materials, CT scan-
ners can be used to investigate interior properties, for example irregularities, see
[22, 24, 12]. A specific irregularity that is often sought for in fibre materials are
cracks. Both the fibres and the cracks can be regarded as directional components.
Based on this application, we will propose new methods for reconstructing and
decomposing directional components simultaneously.

The CT technique is based on the X-ray attenuation as X-rays pass through
an object. According to Lambert-Beers law, the measured data, i.e. the sinogram
in 2D, can be considered as line integrals of the attenuation coefficients of the
object [18, 5]. In the continuous setting, this is integral corresponds to the Radon
transform, and in the discrete setting we can write it as a linear equation:

Az ≈ b, (1)

∗Department of Applied Mathematics and Computer Science, Technical University of Den-
mark, 2800 Kgs. Lyngby, Denmark (rara@dtu.dk, yido@dtu.dk).

1



where A ∈ RN×M2

represents the CT process, z ∈ RM2

represents the object
to be reconstructed, and b ∈ RN denotes the measured noisy data. The data is
measured with Nφ scanning angles and Nt detector bins, which gives N = NφNt
rays in total. For simplicity we consider the 2D parallel beam geometry, the
work introduced in this paper can be easily extended to fan beam geometry. In
addition, we assume to have uniformly distributed scanning angles for the whole
180◦.

The most widely used reconstruction method for CT is called Filtered Back-
Projection (FBP) [21], which is based on the analytical formulation of inverse
Radon transform. Therefore, FBP implicitly assumes to have continuously mea-
sured data from the whole 180◦ angular range. FBP is very efficient, and with
sufficient measurements of a low noise level the method provides good results.
But when we deal with noisy data and an underdetermined system, FBP will
introduce many artifacts. In order to overcome this drawback from FBP and be
able to deal with noisy and/or limited data, variational methods can be used.
Variational methods have been used for many many different inverse problems,
including CT, see [1, 25] for more details. In this paper, we assume that the
sinogram data are corrupted by additive white Gaussian noise, which ends up
with the following variational model

min
z

1

2
‖Az− b‖22 +R(z). (2)

In (2) R(z) is called as regularization term, which incorporates the prior infor-
mation on the object z. Many regularization techniques have been proposed, and
one of the most commonly used for imaging problems is total variation (TV). TV
was first introduced in [23] for image restoration and afterwards was used for CT
reconstruction in e.g. [8, 26].

Image decomposition methods was first proposed in [6] by using infimal con-
volution. The idea is to define two convex functionals J1 and J2 with respect to
two components z1 and z2 and their properties, then by solving the optimization
problem

inf {J1(z1) + J2(z2)} s.t. z = z1 + z2

a decomposition is achieved. Based on different applications, many image decom-
position methods have been proposed, e.g. [17, 9, 27, 2, 3, 10, 11]. Recently, this
technique is also applied to CT problems to decompose the reconstruction into
the object component, limited data artifacts and the noise component [16].

In this paper, we propose two methods to decompose the objects into direc-
tional components. One method is motivated from the microlocal analysis results
in [20], and decomposes the objects by splitting the sinogram directly. In order
to suppress artifacts from the limited data, variational methods with proper reg-
ularizations are introduced. The other method is based on image decomposition
by using infimal convolution. We compare the two methods by discussing their
theoretical differences, and also demonstrate their performance through empirical
examples. In addition, to define the directional components, we also introduce a
method to estimate the main direction of an object directly from its sinogram.

The paper is organized as follows. In Section 2 we review a regularization
technique proposed in [14] for incorporating direction information. Furthermore,
we propose a method to estimate the main direction of an object directly from its
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sinogram data. In Section 3 we introduce the sinogram splitting method, where by
splitting the sinogram we are able to obtain components along different directions.
In Section 4 a image decomposition method by using directional regularization
is proposed to decompose directional components. Numerical experiments are
carried out in Section 5, and in Section 6 conclusions are drawn.

2 Directional regularization in CT reconstruction

We start this section by reviewing a directional regularization, called directional
total variation (DTV), proposed in [4, 14, 13]. This regularization is one kind of
anisotropic TV, and very effective for reconstructing directional objects, whose
textures are mainly along one specific direction. Afterwards taking the CT scan-
ning geometry into account we propose a method to estimate the main direction
of objects directly from the sinogram data.

2.1 Directional regularization

In order to incoporate direction information, a directional regularization, called
directional total variation (DTV), was introduced for image denoising and deblur-
ring in [4, 14, 13]. DTV builds on the prior that the object is piece-wise constant
and its texture follows one main direction. For an image z ∈ RM×M , its DTV
can be defined as

DTVθ,a(z) =
∑
i,j

|RθΛa(∇z)i,j |2,

where

Rθ =

(
cos θ − sin θ
cos θ sin θ

)
and Λa =

(
1 0
0 a

)
, (3)

denote the rotation matrix with the angle θ ∈ (0, 2π] and the scaling matrix
with the paramter a ∈ (0, 1], respectively. In addition, the gradient operator
∇ : RM×M → R2M×M is defined as

∇z =

(
∇x1z
∇x2

z

)
and (∇z)i,j =

(
(∇x1z)i,j
(∇x2

z)i,j

)
where ∇x1 and ∇x2 denote the derivatives along the two dimensions x1 and x2,
respectively, and can be obtained by applying a forward finite difference scheme
with symmetric boundary condition, i.e.,

(∇x1z)i,j =

{
zi+1,j − zi,j , if i < M,
0, if i = M,

and (∇x2z)i,j =

{
zi,j+1 − zi,j , if j < M,
0, if j = M.

In Figure 1, we give an example to illustrate how the DTV regularization
performs when reconstructing directional objects from CT data. In this example,
the underdetermined rate, i.e., N

M2 , equals 2
3 , and the data are corrupted by

1% additive white Gaussian noise. We compare the result by using the DTV
regularization in eqn:varprop with the one from FBP and the one by using total
variation (TV) as regularization. It is obvious that the DTV result is superior
both quantitatively, based on the peak signal-to-noise ratio (psnr) measure, and
visually.

3



Figure 1: Comparison on simulated CT reconstruction problem. Regularization
parameters for the `2-TV and `2-DTV methods are tuned to maximize the peak-
signal-to-noise ratio (psnr). The parameters in DTV are chosen as a = 0.15 and
θ = 20◦.

2.2 Direction estimation from sinogram data

In order to use DTV as regularization we have to select the parameters a and θ.
Based on the results in [14] with a good direction estimation a = 0.15 usually
provides good results. In this section, we focus on the main direction estimation,
and propose a method to estimate it directly from sinogram data.

In [13] a direction estimator based on Fourier transform was proposed. This
estimator is according to the fact that 2D Fourier basis functions can be seen as
images with a significant main direction. Therefore, if the textures of the image
are mainly along one direction, the magnitude of the coefficients corresponding
to the Fourier basis along the same direction will be relatively large. Although
this estimator is robust with respect to the noise, it requires the information
in image domain. But in CT reconstruction, we only have sinogram data. To
avoid estimating the main direction θ from the reconstruction, we introduce a
new direction estimator based on CT scanning geometry.

Since we scan the objects by rotation in CT, the measurements are strongly
related with the scanning angle. If we consider the case that the scanning angle
is relatively close to the main texture direction θ, then each projection line will
only pass through one type of material. Hence, the measurements along θ will
be oscillating. We can therefore utilize 1D Fourier transform to check if the mea-
surements along each scanning angle are oscillating, and the largest magnitude of
the Fourier coefficients should correspond to the main direction. The detailed al-
gorithm for estimating the main direction is given in Algorithm 1. Note that this
direction estimator is not limited to parallel-beam tomography, since a similar
oscillating signal also appears when the fan-beam geometry is used.

In order to demonstrate the performance of our direction estimator, we test
it on a simulated phantom and a real object from [12]. In both cases we simulate
the projections and the noise. In Table 1 we list the estimated direction under
different level of additive Gaussian noise, ρ, and in Figure 2 we show the two
objects with their sinograms. Furthermore, we indicate the estimated direction
from the noise-free sinogram and the sum of the magnitudes along each angle from
Algorithm 1. Based on these empirical tests it is clear that up to 20% Gaussian
noise the new direction estimator is robust with respect to the noise.
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Algorithm 1 Main Direction Estimator

1: Input the sinoogram data b and the measurement angles {φm}.
2: Compute 1D Fourier transform along each angle φm:

b̂ω,m =

Nt−1∑
l=0

bl,me−
2πιωl
Nt .

3: Calculate the sum of the magnitudes along each angle φm and find its maxi-
mizer:

h = argmax
m

∑
ω

|b̂ω,m|.

4: Return the main direction θ = φh.

ρ (%) 0 1 3 5 10 20 30 40
Phantom 20.1 20.1 20.1 20.1 20.1 20.1 20.1 31.7

Real 81.5 81.7 81.5 80.9 81.7 79.5 -1.1 -34.9

Table 1: Direction estimation results for the phantom and real objects shown in
Figure 2. Note that the exact main direction for the phantom is 20◦.

3 Sinogram Splitting Method

Microlocal analysis (MLA) have been used to determine which singular features,
such as edges, we can expect to recover in a range of continuous tomography
problems. In [20] the relation between singularities in a function f and singular-
ities in its Radon transform Af is described. The paradigm that is described in
[20] is further outlined in [15] as follows:

A detects singularities of f perpendicular to the line of integration (”visible”
singularities), but singularities of f in other (”invisible”) directions do not

create singularities of Af near the line of integration.

The fact that singularities only propagate when X-rays are perpendicular to
them inspired us to split the sinogram in order to decompose the objects into
several components along different directions. Here, each splitted part of the
sinogram is related to an object component where the directions of the singu-
larities, in the object-domain, are limited. In the following, we focus on a two-
component split, which can be easily extended to decompose any integer amount
of components with different directions.

Assume the two object components are u and w, and both are in RM2

. The
textures of u are mainly along the directions with the angles φu ∈ RK , and w
mainly contains the textures along the other angles φw ∈ RN−K . Based on MLA,
we known that we need measurements along the same angles as the texture, in
order to reconstruct it. We therefore split the sinogram and the system matrix
according to φu and φw and obtain:

Auu ≈ bu and Aww ≈ bw, (4)

where Au ∈ RKNt×M2

and Aw ∈ R(N−K)Nt×M2

are the splitted matrices, and
bu ∈ RKNt and bw ∈ R(N−K)Nt are the splitted noisy sinograms. Here, we
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Figure 2: Left: the objects with estimated direction from the noise-free sino-
gram. Right: the noise-free sinogram overlayed with the plot of the sum of the
magnitudes.

assume that K is a natural number and larger than 1 in order to avoid recon-
structing u from only a single-angle measurement.

To solve the linear systems in (4), we can use FBP. Since FBP is based on
the analytic solution of the Radon transform in the continuous setting it requires
continuous projections from all angles. With limited angle problems, the data
according to the missing angles are implicitly filled by 0. For the systems (4) it
is identical to the assumptions:

Auw = 0, and Awu = 0. (5)

On one hand, due to the artificial singularities in the sinograms at the transition
between the measured data and the assumed 0-data, artifacts will appear in both
u and w; on the other hand, according to the assumptions we have[

Au
Aw

]
(u + w) ≈

[
bu
bw

]
, (6)

which means that u+w is reconstructed from the whole sinogram, and the limited
angle artifacts in u and w will cancel each other.

Besides the limited angle artifacts appearing in reconstruction results from
FBP, FBP is also very sensitive to the noise in the sinogram. In order to obtain
good reconstructions from noisy data with limited angles, we can use variational
methods by incorporating prior information on the individual components. Based
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on the linear systems (4) we get the following two variational models for recon-
structing u and w:

min
u≥0

1

2
‖Auu− bu‖22 +Ru(u), (7)

min
w≥0

1

2
‖Aww − bw‖22 +Rw(w), (8)

where the regularization termsRu andRw should depend on the prior information
on each component. For example, for the fibre-crack decomposition problem, the
prior for the fibre-component is that it is piecewise constant and its textures
mainly follow one direction θ, however, the prior for the crack-component is that
it is independent on the direction, piece-wise constant and sparse. Based on these
priors we suggest the following regularizations:

Ru(u) = λuDTVθ,au(u),

Rw(w) = λwTV(w) + β‖w‖1,

where λu and λw are positive regularization parameters, which control the balance
between the fit to the data and the regularization. With these two regularizer
choices, both optimization problems in (7) and (8) are convex, and many convex
optimization methods can be used to solve them.

4 Image Decomposition Method

In [3, 10], texture-cartoon decomposition methods built on the infimal convolution
technique are proposed. Based on this work, we introduce another method to
decompose directional components from sinogram data in this section.

In many applications fibre-structures are analyzed with the aim to detect
cracks and/or other types of deterioration. Whereas the texture of the fibre mate-
rial follows one main direction θ, the deteriorated parts are mainly perpendicular,
or close to perpendicular, to the main direction. Moreover the deteriorated parts
are sparse in the object. Based on these observations we propose the following
decomposition model:

min
u≥0,w

1

2
‖A(u + w)− b‖22 + λ

(
DTVθ,au(u) + αDTVθ⊥,aw(w)

)
+ β‖w‖`1 , (9)

where u ∈ RM2

represents the fibres, w ∈ RM2

the crack part, and λ, α, β > 0 are
regularization parameters. The model (9) is convex, which is desirable when we
want to find a solution to the minimization problem. Furthermore the sparsity
constraint is not only a reasonable regularization method for w, it also makes (9)
strictly convex, i.e. the minimizer will be unique.

We have introduced two different methods for combined decomposition and re-
construction, the sinogram splitting method and the image decomposition method,
and now we sum up the relations and differences between these two methods. The
sinogram splitting method has a risk to reconstruct incorrect attenuation coeffi-
cient values due to the splitting into two limited angle problems, which are much
more complicated to solve. If we use the variational methods in (7) and (8) to
reconstruct the components, the results are not summable. On the other hand,
if we use FBP, based on (6) the components are summable, and the results are
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Figure 3: Left: fibre-crack phantom with fibres along the direction 20◦ and cracks
in a circular pattern. Right: simulated noise-free sinogram.

identical to decompose the objects under the constraint (5). In addition, com-
paring with Ru and Rw in (7) and (8), the regularization in (9) plays a different
role. In (7) and (8) the main purpose of utilizing regularization technique is to
remove the limited angle artifacts that occur due to splitting the sinogram, but
in (9) the regularization is used for decomposing the components.

5 Numerical Experiments

In this section we demonstrate the performance of the methods introduced in
Section 3 and 4 on two simulated X-ray CT problems. In order to set the stage
for the numerical experiments we first give some discretization and experiment
details which are valid for the following tests.

We solve the variational optimization problems by using the Primal-Dual-
Hybrid-Gradient (PDHG) method proposed in [7] with the stopping rule

|J (·k+1)− J (·k)|
|J (·k)|

< 10−5,

where J denotes the objective function. For (9) we solve the subproblems with
respect to u and w alternately by using PDHG method. All of the algorithms
are implemented in Matlab, where we use the parallel beam GPU code described
in [19] from the ASTRA toolbox, see [29, 28], to calculate Radon transform and
its adjoint operator.

5.1 Sinogram splitting method

For the sinogram splitting method we compare the two reconstruction techniques
presented in Section 3, namely FBP and the variational method. Both reconstruc-
tion methods are tested on a simulated fibre-crack phantom shown in Figure 3,
which has cracks in a 360◦ circular pattern in order to illustrate the performance
of decomposition. In the test, the sinogram is simulated with Nt = 256 detector
bins, Nφ = 171 scanning angles and the reconstruction grid-size is M = 256,
which make the underdetermined rate as N

M2 = 2
3 . Further, the sinogram is cor-

rupted with 1% additive white Gaussian noise. In Figure 4 we compare the two
methods with a split parameter K = 11 and centered by the estimated main
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Figure 4: Comparison of two sinogram-splitting methods introduced in Section 3.

direction from Algorithm 1. For the variational method on splitted sinogram, we
choose the optimal λu and λw based on visual inspection, i.e., the reconstructed
u has clear edges within similar intensity range as the ground truth and w has a
homogeneous background and sharp crack edges.

In Figure 4 we see that both reconstructed fibre components (u) are visually
similar, but the colorbar shows that the intensity range by FBP has an offset
of around 0.5. Comparing the reconstructed crack components (w) it is obvious
that the result from FBP is much more noisy than the one from the variational
method. In addition, all of the cracks are located in the crack components, which
is due to a highly directional object and a good choice of the range-width index
K = 10. An interesting observation is that the cracks along the main direction
are also present in crack components, and the reason is that the boundaries of
the cracks, which are perpendicular to the main direction, are present in bw.

To show the role of the parameter K, in Figure 5 we show the results from
the variational method with different values of K. It is clear that a small K will
result in some fibre elements falling into the crack-component, whereas a large
K will result in some cracks appearing in the fibre component. The choice of
K should be according to prior knowledge about the object, e.g. if the object is
highly directional a relatively low value will be sufficient.

5.2 Image decomposition method

In the image decomposition model (9) several parameters need to be given. The
main direction angle θ for fibre component is estimated by Algorithm 1, and au
is fixed as 0.15 based on the empirical tests in [14]. For the crack component, θ⊥

is orthogonal to the main direction, and aw = 0.5 in order to allow the model to
decompose the cracks that are not strictly perpendicular to the main direction and
still avoid ending up as TV. In order to avoid one feasible set from the two DTV
terms fully covering the other, α should satisfy au < α < 1

aw
, i.e. 0.15 < α < 2.
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Figure 5: Influence of K on the results from the sinogram splitting method using
DTV-regularized reconstruction.

In the numerical tests, we tune the parameters λ, α and β such that the psnr
value of u + w to the ground truth z is maximum.

In Figure 6, we show the reconstruction results with different α values. To
avoid that the sparsity constraint influences the results, we fix β = 10−6. It is
obvious that a small α will result in more details as well as noise in the crack
component and a large α will leave many cracks in the fibre component.

In Figure 7, we demonstrate the improvement of including the sparsity con-
straint in the image decomposition method by comparing the results from β =
10−6 and β = 10−4. From the results we see a clear improvement on both com-
ponents by using larger β. The intensity range for the fibre-component is much
more accurate and cracks have much sharper edges. The improvement is also
reflected by a slight increase of the psnr value.

5.3 Comparison of the sinogram splitting method with the
image decomposition method

Comparing the results shown in Figure 4 and 7, we can see that the sinogram
splitting method delivers a much more complete split between the fibres and
the cracks along any given direction. From the sinogram splitting method the
crack component contains a non-homogeneous background and some artifacts.
Furthermore, some cracks are wider than they should be, which is due to the
limited scanning angles and the smoothness from the regularization. The im-
age decomposition method performs better on decomposing the cracks along the
perpendicular direction to θ because of the regularization. When the sparsity
constraint is enforced, we can see that the background of the crack component is
homogeneous, while the edges of the cracks are still sharp.

Next, we compare the two methods on a real sample object, which is a carbon
fibre sample and shown in Figure 8. The sample is with the size M = 426, and
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Figure 6: Comparison of the decomposition results from different α by using the
image decomposition method.

we simulate Nt = 426 detector bins and Nφ = 284 scanning angles with 1%
Gaussian noise in the sinogram. In Figure 9 we show the results from FBP-based
and variational-based sinogram splitting method as well as image decomposition
method. The regularization parameters are tuned based on visual inspection,
where we prioritize the decomposition of cracks. In addition, in the sinogram
splitting method the range-width index K is set to 120, which is much larger
than the one in Figure 4. The reason is to avoid fibre textures appearing in the
crack component.

From Figure 9, we can see that the results from the FBP-based sinogram
splitting method are clearly influenced by noise and limited angle artifacts. In
the results from the variational-based sinogram splitting method the edges of
the fibres along the main direction are sharp, but other edges are blurry due
to the limited scanning angles. In addition, the crack component suffers from
a non-homogeneous background and the stair-casing artifacts, which makes it
difficult to distinguish cracks. Comparing with the results from the sinogram
splitting method, the image decomposition method produces sharper edges in the
fibre component and decomposes the parts that could be categorized as cracks
to the crack component. Especially, the homogeneous background in the crack
component will benefit distinguishing cracks.

6 Conclusions

We propose two new tomographic reconstruction methods and aim to decom-
pose components including textures along different directions. We compare the
two methods by discussing their theoretical differences, and also propose a new
method for estimating the main object direction directly from measured com-
puted tomography data. The proposed methods are compared empirically on
both a simulated phantom and a real object. The simulated phantom is used for
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Figure 7: Comparison of the decomposition results from different β by using the
image decomposition method. Here, we fixed α = 0.7 and λ = 0.0038.

Figure 8: Carbon fibre sample from [22].

general performance tests of the methods. In these tests we demonstrate what
can be achieved with the proposed methods. The real data sample tests show
how well these methods perform in practice.
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position into a bounded variation component and an oscillating component.
J. Math. Imaging Vis., 22(1):71–88, 2005.

[3] J. F. Aujol, G. Gilboa, T. Chan, and S. Osher. Structure-texture image
decomposition-modeling, algorithms, and parameter selection. Int. J. Com-
put. Vis., 67(1):111–136, 2006.

[4] I. Bayram and M. E. Kamasak. A directional total variation. Eur. Signal
Process. Conf., 19(12):265–269, 2012.

[5] T. M. Buzug. Computed Tomography : From Photon Statistics to Modern
Cone-Beam CT. Springer, 2008.

[6] A. Chambolle and P.-L. Lions. Image recovery via total variation minimiza-
tion and related problems. Numer. Math., 76(2):167–188, 1997.

13



[7] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. J. Math. Imaging Vis., 40(1):120–
145, dec 2011.

[8] A. H. Delaney and Y. Bresler. Globally convergent edge-preserving regu-
larized reconstruction: An application to limited-angle tomography. IEEE
Trans. Image Process., 7(2):204–221, 1998.

[9] S. Esedoglu and S. J. Osher. Decomposition of images by the anisotropic
Rudin-Osher-Fatemi model. Commun. Pure Appl. Math., 57(12):1609–1626,
2004.

[10] J. Gilles. Noisy image decomposition: A new structure, texture and noise
model based on local adaptivity. J. Math. Imaging Vis., 28(3):285–295, 2007.

[11] M. Holler and K. Kunisch. On infimal convolution of total tariation
type functionals and applications. SIAM J. Imaging Sci. J. Imaging Sci.,
7(4):2258–2300, 2014.

[12] K. M. Jespersen, J. Zangenberg, T. Lowe, P. J. Withers, and L. P. Mikkelsen.
Fatigue damage assessment of uni-directional non-crimp fabric reinforced
polyester composite using X-ray computed tomography. Compos. Sci. Tech-
nol., 136:94–103, 2016.

[13] R. D. Kongskov and Y. Dong. Directional total generalized variation regular-
ization for impulse noise removal Rasmus. Scale Sp. Var. Methods Comput.
Vis. 2017, 6667:221–231, 2017.

[14] R. D. Kongskov, Y. Dong, and K. Knudsen. Directional total generalized
variation regularization. http://arxiv.org/abs/1701.02675, 2017.

[15] V. P. Krishnan and E. T. Quinto. Handbook of Mathematical Methods in
Imaging. Springer Science + Business Media, 2015.

[16] J. Li, C. Miao, Z. Shen, G. Wang, and H. Yu. Robust frame based x-ray ct
reconstruction. Journal of Computational Mathematics, 34(6):683, 2016.

[17] Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution
Equations, volume 22. American Mathematical Society, 2001.

[18] F. Natterer. The Mathematics of Computerized Tomography, volume 29.
John Wiley & Sons Ltd. and B G Teubner, Stuttgart, 1986.

[19] W. J. Palenstijn, K. J. Batenburg, and J. Sijbers. Performance improvements
for iterative electron tomography reconstruction using graphics processing
units (GPUs). J. Struct. Biol., 176(2):250–253, 2011.

[20] E. T. Quinto. Singularities of the X-ray transform and limited data tomog-
raphy in R2 and R3 . SIAM J. Math. Anal., 24(5):1215–1225, 1993.
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