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ON THE NORMS OF QUATERNIONIC HARMONIC PROJECTION
OPERATORS

ROBERTO BRAMATI, VALENTINA CASARINO, AND PAOLO CIATTI

Sur les normes des opérateurs de projection harmoniques sur la sphére
dans l’espace quaternionique

Abstract. As a consequence of integral bounds for three classes of quaternionic spher-
ical harmonics, we prove some bounds from below for the pLp, L2q norm of quaternionic
harmonic projectors, for p P r1, 2s.

Résumé. En conséquence d’estimations intégrales pour trois classes d’harmoniques sphé-
riques quaternioniques, nous prouvons quelques minorations pour la pLp, L2q norme des
projecteurs harmoniques quaternioniques, pour p P r1, 2s.

1. Introduction

In this note, we prove some bounds from below for the pLp, L2q norm of the quaternionic
harmonic projectors π``1 , which are the projection operators mapping the space of square
integrable functions defined on the quaternionic unit sphere S4n´1 in Hn onto the subspace
H`,`1 , consisting of all quaternionic spherical harmonics of bidegree p`, `1q. Here `, `1 P N,
0 ď `1 ď `, and p P r1, 2s.

Since the transposed operator π˚``1 : H``1 Ñ LqpS4n´1q is the inclusion operator (here
1{p` 1{q “ 1), we have

}π``1}pp,2q ě
}Y``1}q
}Y``1}2

, q ě 2 , Y``1 P H``1 . (1.1)

Thus to prove these inequalities we are led to study the Lq norms of the functions Y``1 P
H``1 , for q ě 2. Our estimates are therefore related to the problem of size concentration of
the bigraded spherical harmonics. In the real and complex context, where the analogous
question has been largely investigated (see [11] and [4, 5]), it is fully understood that two
classes of spherical harmonics with competing behaviours, the highest weight vectors and
the zonal functions, play a prominent role in the analysis of the harmonic projectors and
also in some related applications (see, e.g., [2, 3, 7]).

The quaternionic framework turns out to be more interesting: indeed, we identify
three classes of spherical harmonics with competing behaviours, giving rise, in the light
of (1.1), to different bounds from below for }π``1}pp,2q on three subintervals of p P r1, 2s.
More precisely, for p close to 1, like in the real and complex framework [11, 4, 5], the
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estimates for }π``1}pp,2q turn out to be sensitive to a high pointwise concentration. Thus
we obtain bounds from below by considering the quaternionic zonal functions Z``1 , which
are highly concentrated at the North Pole. When p is close to 2, the estimates are more
sensitive to a sparse concentration along the Equator; in this case, we prove our bounds
by considering the highest weight spherical harmonics, since these functions spread out
in a small neighborhood around the Equator.

Anyway, in a third interval inside r1, 2s, more precisely when p P p4{3, 2p4n´ 3q{p4n´ 1qq,
the dichotomy between zonal and highest weight harmonics is partially mitigated; we ob-
tain indeed better bounds from below for }π``1}pp,2q, by considering a third class of spher-
ical harmonics. We refer to Section 3 for a discussion about these elements of H``1 , which
have no analogous in the real or complex case and are related to representation-theoretic
questions on S4n´1.

Finally, in the light of these bounds for the spherical harmonics, in Section 4 we are
able to prove Lp ´ L2 bounds from below for π``1 . The proof of the same bounds from
above is already under way.

2. Notation and preliminaries

We denote by H the skew field of all quaternions q “ x0 ` x1i ` x2j ` x3k over R,
where x0, x1, x2, x3 are real numbers and the imaginary units i, j, k satisfy i2 “ j2 “ k2 “
´1 , ij “ ´ji “ k , ik “ ´ki “ ´j , jk “ ´kj “ i . The conjugate q and the modulus |q|
are defined by q “ x0´x1i´x2j´x3k and |q|2 “ qq “

ř3
j“0 x

2
j , respectively. For n ě 1

the symbol Hn will denote the n-dimensional vector space over H. By abuse of notation,
we write q also to denote pq1, . . . , qnq P Hn. Sometimes we will adopt a complex notation,
writing q “ pz1 ` jzn`1, . . . , zn ` jz2nq, with z1, . . . , z2n P C.
S4n´1 is the unit sphere in Hn, that is,

S4n´1
“ tq “ pq1, . . . , qnq P Hn : xq, qy “ 1u ;

here the inner product x¨, ¨y on Hn is defined as xq, q1y “ q1q11 ` . . . ` qnq1n , q, q1 P Hn.
S4n´1 may be identified with K{M , where K “ SppnqˆSpp1q andM “ Sppn´ 1qˆSpp1q,
Sppnq denoting the group of nˆn matrices A with quaternionic entries, such that ATA “
AAT “ In. We introduce on S4n´1 the coordinate system

#

q1 “ cos θ pcos t` q̃ sin tq

qs “ σs sin θ , s “ 2, . . . , n ,
(2.1)

where θ P r0, π{2s, t P r0, πs, σs P H with
řn
s“2 |σs|

2 “ 1. Moreover, q̃ P H with |q̃|2 “ 1
and <q̃ “ 0; we will write q̃ “ cosψ i ` sinψ cosϕ j ` sinψ sinϕk, with ψ P r0, πs and
ϕ P r0, 2πs. We remark that psin t sinψ sinϕ , sin t sinψ cosϕ , sin t cosψ , cos tq yields a
coordinate system for Spp1q.

The normalized invariant measure dσ “ dσS4n´1 on S4n´1 with respect to the spherical
coordinates (2.1) is, up to a constant C “ Cpnq,

sin4n´5 θ cos3 θ dθ sin2 t dt dσS4n´5 dσpq̃q , (2.2)

dσpq̃q denoting the measure on the unit sphere in R3.
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By L2pS4n´1q we denote the Hilbert space of square integrable functions on S4n´1, with
respect to the inner product

pf, gqL2 “

ż

S4n´1

fpqq gpqq dσ .

Johnson and Wallach, starting from some earlier work by Kostant [10], proved in [9] that
this space may be decomposed as

L2
pS4n´1

q “
à

`ě`1ě0

H``1 , (2.3)

where each subspace H``1

(1) is irreducible under K;
(2) is generated under K by the "highest weight vector"

P`,`1pz, z̄q “ z̄`´`
1

n`1pz1z̄n`2 ´ z2z̄n`1q
`1 ; (2.4)

(3) is finite dimensional.
In the following, we shall use the symbols c and C with 0 ă c , C ă 8 to denote

constants which are not necessarily equal at different occurrences. They depend only on
the dimension n and on the Lebesgue indices p or q. The symbol » between two positive
expressions means that their ratio is bounded above and below by such constants. For
two positive quantities a and b, we write a À b instead of a ď Cb and a Á b for b À a.
Finally, we will denote by IS the set of indices tp`, `1q P Nˆ N : 0 ď `1 ď `u.

3. The main estimates

In [6] we started studying the Lp´L2 norm of the joint spectral projectors π``1 , p`, `1q P
IS, mapping LppS4n´1q onto H``1 , 1 ď p ď 2. We proved sharp bounds for these norms
under the additional assumptions `´ `1 ď c0 or `1 ď c1, for some positive constants c0, c1.
In this note, we prove some crucial estimates from below for }π``1}pp,2q in the general case.
As illustrated in the Introduction, we are led to study the Lq norms of the eigenfunctions
Y``1 P H``1 , for q ě 2.

Estimates for zonal functions. We call zonal function of bidegree p`, `1q with pole e1 “
p1, 0 . . . , 0q a M -invariant function in H``1 . An explicit formula for the zonal function Z``1
with pole e1 is given for all p`, `1q P IS by

Z``1pθ, tq “
d``1

ω4n´1

sin pp`´ `1 ` 1qtq

p`´ `1 ` 1q sin t
pcos θq`´`

1P
p2n´3,`´`1`1q
`1 pcos 2θq

P
p2n´3,`´`1`1q
`1 p1q

, (3.1)

where t P r0, πs, θ P r0, π
2
s, ω4n´1 denotes the surface area of S4n´1, P p2n´3,`´`

1`1q
`1 is the

Jacobi polynomial and d``1 is the dimension of H``1 , given by

d``1 “ p`` `
1
` 2n´ 1qp`´ `1 ` 1q2

p`` 2n´ 2q!

p`` 1q!p2n´ 3q!

p`1 ` 2n´ 3q!

`1!p2n´ 1q!
, ` ě `1 ě 0. (3.2)

We recall the Mehler–Heine formula for the so-called disk polynomials, proved in [1, p.
10]. The symbol Jα denotes the Bessel function of the first kind of order α.
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Proposition 3.1. Fix n P N. Let j, k P N, j ď k. Then

lim
jÑ`8
kÑ`8

´

cosp
θ
?
jk
q

¯k´j P
p2n´3,k´jq
j

`

cosp 2θ?
jk
q
˘

P
p2n´3,k´jq
j p1q

“ Γp2n´ 2q
J2n´3p2θq

θ2n´3
.

This limit holds uniformly in every compact interval.

We also recall (see [1, p. 12]) that for all j, k P N, j ď k,

sup
θPr0,π{2s

ˇ

ˇ

ˇ
pcos θqk´j

P
p2n´3,k´jq
j

`

cosp2θq
˘

P
p2n´3,k´jq
j p1q

ˇ

ˇ

ˇ
ď 1. (3.3)

For q ě 2 set

Iq “
´

ż π{2

0

ˇ

ˇ

ˇ

P
p2n´3,`´`1`1q
`1 pcos 2θq

P
p2n´3,`´`1`1q
`1 p1q

pcos θq`´`
1
ˇ

ˇ

ˇ

q

psin θq4n´5pcos θq3 dθ
¯1{q

. (3.4)

Lemma 3.2. For all q ě 2 and for all p`, `1q P IS such that `1 is sufficiently great, we have

Iq
I2

Á p`1qp2n´2qp
1
2
´ 1

q
q´ 1

2 `p2n´2qp
1
2
´ 1

q
q

›

›

›

›

›

P
p2n´3,`´`1`1q
`1

´

cosp 2θ?
``1
q

¯

P
p2n´3,`´`1`1q
`1 p1q

pcospθ{
?
``1qq`´`

1`1

›

›

›

›

›

Lqpr0,1s; θ4n´5dθq

Proof. Observe that

`

Iq
˘q
Á

ż 1{
?
``1

0

ˇ

ˇ

ˇ

P
p2n´3,`´`1`1q
`1 pcos 2θq

P
p2n´3,`´`1`1q
`1 p1q

pcos θq`´`
1
ˇ

ˇ

ˇ

q

psin θq4n´5pcos θq3 dθ

“

ż 1{
?
``1

0

ˇ

ˇ

ˇ

P
p2n´3,`´`1`1q
`1 pcos 2θq

P
p2n´3,`´`1`1q
`1 p1q

pcos θq`´`
1` 3

q

ˇ

ˇ

ˇ

q

psin θq4n´5 dθ

Á

ż 1{
?
``1

0

ˇ

ˇ

ˇ

P
p2n´3,`´`1`1q
`1 pcos 2θq

P
p2n´3,`´`1`1q
`1 p1q

pcos θq`´`
1`1

ˇ

ˇ

ˇ

q

psin θq4n´5 dθ,

where the last inequality follows from the fact that θ P p0, 1{
?
``1q. Then, after a change

of variables we get
`

Iq
˘q
Á

ż 1

0

ˇ

ˇ

ˇ

P
p2n´3,`´`1`1q
`1 pcosp2θ{

?
``1qq

P
p2n´3,`´`1`1q
`1 p1q

pcospθ{
?
``1qq`´`

1`1
ˇ

ˇ

ˇ

q

psinpθ{
?
``1qq4n´5

dθ
?
``1

»

ż 1

0

ˇ

ˇ

ˇ

P
p2n´3,`´`1`1q
`1 pcosp2θ{

?
``1qq

P
p2n´3,`´`1`1q
`1 p1q

pcospθ{
?
``1qq`´`

1`1
ˇ

ˇ

ˇ

q

pθ{
?
``1

˘4n´5
dθ{p

?
``1q

» p``1q´p2n´2q

›

›

›

›

›

P
p2n´3,`´`1`1q
`1

´

cosp 2θ?
``1
q

¯

P
p2n´3,`´`1`1q
`1 p1q

pcospθ{
?
``1qq`´`

1`1

›

›

›

›

›

q

Lqpr0,1s; θ4n´5dθq

. (3.5)

For q “ 2 we obtain a more precise estimate. Indeed, from standard properties of zonal
harmonics it follows that ||Z``1 ||2 » pd``1q1{2, that is, by means of (3.1),

d``1 » pd``1q
2

ż π

0

ˇ

ˇ

ˇ

sin pp`´ `1 ` 1qtq

p`´ `1 ` 1q sin t

ˇ

ˇ

ˇ

2

sin2 t dt
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ˆ

ż π{2

0

ˇ

ˇ

ˇ

P
p2n´3,`´`1`1q
`1 pcos 2θq

P
p2n´3,`´`1`1q
`1 p1q

pcos θq`´`
1
ˇ

ˇ

ˇ

2

psin θq4n´5pcos θq3 dθ.

Since
ż π

0

ˇ

ˇ

ˇ

sin pp`´ `1 ` 1qtq

p`´ `1 ` 1q sin t

ˇ

ˇ

ˇ

2

sin2 t dt » p`´ `1 ` 1q´2, (3.6)

we have

pI2q
2
» p`´ `1 ` 1q2pd``1q

´1. (3.7)

Then, combining (3.5) and (3.7), we get for all q ą 2

Iq
I2

Á p`´ `1 ` 1q´1 pd``1q
1{2
p``1q´p2n´2q{q

›

›

›

›

›

P
p2n´3,`´`1`1q
`1

´

cosp 2θ?
``1
q

¯

P
p2n´3,`´`1`1q
`1 p1q

pcospθ{
?
``1qq`´`

1`1

›

›

›

›

›

Lqpr0,1s; θ4n´5dθq

Á p`1qp2n´3q{2`p2n´2q{2p``1q´p2n´2q{q

›

›

›

›

›

P
p2n´3,`´`1`1q
`1

´

cosp 2θ?
``1
q

¯

P
p2n´3,`´`1`1q
`1 p1q

pcospθ{
?
``1qq`´`

1`1

›

›

›

›

›

Lqpr0,1s; θ4n´5dθq

Á p`1qp2n´2qp
1
2
´ 1

q
q´ 1

2 `p2n´2qp
1
2
´ 1

q
q

›

›

›

›

›

P
p2n´3,`´`1`1q
`1

´

cosp 2θ?
``1
q

¯

P
p2n´3,`´`1`1q
`1 p1q

pcospθ{
?
``1qq`´`

1`1

›

›

›

›

›

Lqpr0,1s; θ4n´5dθq

.

�

Then, for q ě 2 set

Jq “
´

ż π

0

ˇ

ˇ

ˇ

sin pp`´ `1 ` 1qtq

p`´ `1 ` 1q sin t

ˇ

ˇ

ˇ

q

sin2 t dt
¯1{q

. (3.8)

Lemma 3.3. For all q ě 2 and for all p`, `1q P IS such that `´ `1 is sufficiently great, we
have

Jq
J2

»

$

’

&

’

%

p`´ `1 ` 1q1´3{q for all q ą 3

plogp`´ `1qq1{3 for all q “ 3

1 for all q ă 3.

Proof. We start recalling that
sin pp`´ `1 ` 1qtq

sin t
“ Opp`´ `1 ` 1q1{2qP

p 1
2
, 1
2
q

`´`1 pcos tq ,

[13, p.60]. Thus, using some asymptotic integral estimates in [13, p.391], we see that

pJqqq »
ż π{2

0

ˇ

ˇ

ˇ

sin pp`´ `1 ` 1qtq

p`´ `1 ` 1q sin t

ˇ

ˇ

ˇ

q

sin2 t dt » p`´ `1 ` 1q´3 , (3.9)

for q ą 3 and ` ´ `1 sufficiently great. Combining (3.6) and (3.9) we get the expected
estimate for Jq{J2 for all q ą 3. The other two cases analogously follow from [13, p.391],
and (3.6). �

Combining Lemma 3.2 and Lemma 3.3 gives a bound from below for }π``1}pp,2q, with
1 ď p ď 2.
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Proposition 3.4. Fix n ě 2. For all p`, `1q P IS such that `1 and ` ´ `1 are sufficiently
great, and for all q ě 2 we have

||Z``1 ||q
||Z``1 ||2

Á

$

’

&

’

%

p`´ `1 ` 1q1´3{qp``1qp2n´2qp1{2´1{qq`1´1{2 for all q ą 3

plogp`´ `1qq1{3p``1qp2n´2qp1{2´1{qq`1´1{2 for q “ 3

p``1qp2n´2qp1{2´1{qq`1´1{2 for all q ă 3.

(3.10)

Proof. As a consequence of Lemma 3.2 for q ą 3 we have

||Z``1 ||q
||Z``1 ||2

Á p`´ `1 ` 1q1´3{q Iq{I2

» p`´ `1 ` 1q1´3{q p``1qp2n´2qp1{2´1{qqp`1q´1{2

ˆ

›

›

›

›

›

P
p2n´3,`´`1`1q
`1 pcos

`

2θ{
?
``1q

˘

P
p2n´3,`´`1`1q
`1 p1q

pcospθ{
?
``1qq`´`

1`1

›

›

›

›

›

Lqpθ4n´5dθ,r0,1sq

.

Then the first inequality in (3.10) follows from a slight variation of Proposition 3.1, (3.3)
and some trivial asymptotics for the Bessel function. The proof of the other two inqualities
is similar. �

Estimates for the highest weight sherical harmonics. We will estimate the norm of the
highest weight spherical harmonics P`,`1 in H``1 , defined in (2.4).

In [6, Lemma 5.3] we proved that for all ζ1 P R, ζ1 ą 0, and for all ζ2 P N one has
ż

S4n´1

|z̄n`1|
2ζ1 |z1z̄n`2 ´ z2z̄n`1|

2ζ2dσ “
cn Γpζ1 ` ζ2 ` 2qΓpζ2 ` 1q

Γpζ1 ` 2ζ2 ` 2nq pζ1 ` 1q
. (3.11)

We also proved that as a consequence of (3.11) the following bound holds

}P`,`1}2 »

˜

p`1 ` 1q
1
2

p`` `1q2n´2 p`´ `1 ` 1q

¸
1
2

. (3.12)

Proposition 3.5. Let P``1 be the highest weight vector defined by (2.4). For all q ě 2 we
have

lim sup
`1Ñ`8

´

p`1 ` 1q
1
2

p`` `1q2n´2 p`´ `1 ` 1q

¯
1
2
´ 1

q }P`,`1}q

}P`,`1}2
ą 0. (3.13)

Proof. Fix any q ě 2 and let p`, `1q P IS. First of all, we choose 2ζ1 “ p` ´ `1qq. Then, if
`1q P 2N, (3.11) applied to P``1 with 2ζ2 “ `1q yields

}P`,`1}
q
q “

cn Γp q
2
`` 2q Γp q

2
`1 ` 1q

Γp q
2
p`` `1q ` 2nq p q

2
p`´ `1q ` 1q

.

Then a standard application of Stirling’s estimate leads to

}P`,`1}q »
p
q
2
`` 1q

1
2
``p1` 1

2
q{qp

q
2
`1 ` 1q

1
2
`1`1{p2qq

p
q
2
p`` `1q ` 2n´ 1q

1
2
p```1q`p2n´1` 1

2
q{q p

q
2
p`´ `1q ` 1q1{q

,



ON THE NORMS OF QUATERNIONIC HARMONIC PROJECTION OPERATORS 7

which, combined with (3.12), yields

}P`,`1}q

}P`,`1}2
»

˜

p`1 ` 1q
1
2

p`` `1q2n´2 p`´ `1 ` 1q

¸
1
q
´ 1

2

. (3.14)

This proves the assertion under the assumption `1q P 2N.
If q “ m0

n0
, for some m0, n0 P N˚, it suffices to replace `1 with 2n0`

1 and then choose
ζ2 “ m0`

1. By considering p`, `1q P IS such that ` ě 2n0`
1, we get an estimate analogous

to (3.14) for }P`,2n0`1}q, yielding (3.13).
Finally, if q is not rational, the desired estimate follows from the continuity of the Lq

norms and the previous arguments for rational values of q. �

Estimates for mixed spherical harmonics. We consider the function Q``1 , given by

Q``1pθ, ϕ, tq “
`

sin t sinψ eiϕ
˘`´`1

pcos θq`´`
1P

p2n´3,`´`1`1q
`1 pcos 2θq

P
p2n´3,`´`1`1q
`1 p1q

, (3.15)

for all p`, `1q P IS, with t, ψ P r0, πs, ϕ P r0, 2πs, θ P r0, π2 s. Observe that Q``1 is obtained
replacing the factor sin pp`´ `1 ` 1qtq{

`

p`´ `1 ` 1q sin t
˘´1 in (3.1) with the highest weight

spherical harmonic of degree ` ´ `1 in Σ3, the unit sphere in R4. For a discussion about
the role of Σ3 (or, equivalently, of Spp1q) in our analysis we refer to [6, Remark 2.3].

We only recall here that H``1 is a joint eigenspace for the spherical Laplacian ∆S4n´1

and for an operator Γ, which essentially concides with the Casimir operator on Spp1q and
in our coordinates reads as

Γ “
1

sin2 t

B

Bt
sin2 t

B

Bt
`

1

sin2 t sinψ

B

Bψ
sinψ

B

Bψ
`

1

sin2 t

1

sin2 ψ

B2

B2ϕ
.

We refer to [9] and [8, p. 696] for a discussion about the role of this operator. Then it is
easily seen that Q``1 belongs to H``1 , since it is an eigenvector both for ∆S4n´1 and for Γ.

Proposition 3.6. Fix n ě 2. For all p`, `1q P IS, such that `1 and ` ´ `1 are sufficiently
great, and for all q ą 2 we have

||Q``1 ||q

||Q``1 ||2
Á p`´ `1 ` 1q1{2´1{qp``1qp2n´2qp1{2´1{qq`1

´1{2
.

Proof. It follows from Lemma 3.2, Proposition 3.1 and some basic estimates for the spher-
ical harmonics in Σ3 (see [11, Theorem 4.1]). �

4. Bounding the harmonic projections

A comparison between Proposition 3.4, Proposition 3.5 and Proposition 3.6 leads to
the following estimate.

Proposition 4.1. Let n ě 2, 1 ď p ď 2. Set pn “ 2p4n´ 3q{p4n´ 1q. Then there exists
some constant C, only depending on n and p, such that the following estimate holds

||π``1f ||2 ě Cpn, pq p1` `qαp
1
p
,nq
p1` `1qβp

1
p
,nq
p`´ `1 ` 1qγp

1
p
,nq
||f ||p , (4.1)
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where
αp

1

p
, nq :“ 2pn´ 1q

`1

p
´

1

2

˘

for all 1 ď p ď 2 ,

βp
1

p
, nq :“

#

2pn´ 1q
`

1
p
´ 1

2

˘

´ 1
2

if 1 ď p ď pn
1
2
p1
2
´ 1

p
q if pn ď p ď 2 ,

and

γp
1

p
, nq :“

#

3p1
p
´ 1

2
q ´ 1

2
if 1 ď p ď 4

3
1
p
´ 1

2
if 4

3
ď p ď 2,

for all p`, `1q P IS, such that `´ `1 and `1 are sufficiently great.

The proof of (4.1) from above, which involves both real and analytic interpolation
arguments, multiplier theorems for ∆S4n´1 , Γ and for L, and a very detailed analysis of
the Jacobi polynomials, is quite long and tangled. This work is already under way.
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