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ABSTRACT

Trading activity in intraday (ID) electricity markets has increased significantly over
the last few years. We study the problem of a financial agent wishing to maximize a Changes to this sentence and

the next OK?

constant relative risk-aversion expected utility of their terminal wealth while operating
in an ID market.Assuming that the price of traded hours follows an additive Ornstein–
Uhlenbeck process, we derive the optimal strategy via the Hamilton–Jacobi–Bellman
equation. The optimal portfolio in the log case is totally myopic with respect to time
to maturity, while in the power case it becomes more and more risky as final maturity
approaches. In order to implement our strategy, it is necessary to estimate the model Changes to this sentence and

the next OK?

parameters. One cannot resort to known results, as it is typical for time series to be
unevenly time spaced, with more and more transactions as maturity approaches. Thus,
we present an estimation procedure for unevenly spaced observations, based on max-
imum likelihood estimation and a bootstrap bias correction, in order to compensate
for having few observations at the beginning of the observation frame. Finally, we
backtest our method and conclude. Author: a maximum of six

keywords/terms are
permitted. Please indicate 1
for removal.
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2 E. Edoli et al

1 INTRODUCTION

Trading activity in intraday (ID) electricity markets has increased significantly over
the last few years. This is partially due to the growing penetration of nonprogrammable
renewable energy sources (such as wind and solar) in the power mix, necessitating ID Change OK?

adjustments with respect to the day-ahead (DA) schedule. However, since ID markets
are more liquid than in the past, “purely financial” traders are also beginning to enter
into these markets in search of mere financial gains. The aim of this paper is to study
exactly how a purely financial trader could invest optimally in a continuous-time ID
market.

In more detail, we analyze the case of a financial trader operating in markets Changes to sentence OK?

organized by the European Power Exchange (EPEX) SPOT market (EPEX 2015b).
EPEX SPOT is the power market of Central Western Europe (France, Germany,
Austria, Switzerland, the Netherlands, Belgium and Luxembourg). Like most power As per the CWE website.

Change correct?

markets, it is mainly divided into two sections. The DA market is the main one: it is
auction based, occurs the day before the physical delivery of the energy and is based
on twenty-four system marginal price auctions, one for each hour of the following
day. The ID market allows agents to change their schedules as defined by the end of
the DA market, following on from the DA for the same day. Unlike the DA, the ID is Changes to this sentence and

the next OK?

a continuous-time market. For each delivery hour, it starts at 15:00 on the day D � 1

(where D is the date when delivery takes place) and closes thirty minutes before the
beginning of each delivery hour on the day D.

By exploiting the continuous-time nature of the ID market, this paper attempts to
establish whether it is possible for a “small” financial agent to employ a fruitful pure
trading strategy. This means that our agent does not have significant price impact (in Changes to this sentence and

the next OK?

contrast with Aïd et al (2016) or Tan and Tankov (2016), for instance) and would not
wish to physically buy or sell power at the end of the market session; they would only
be aiming to trade in order to make financial gains before the session. A significant
example of this kind of behavior is “proprietary trading”, where a producer wants to
sell the power that they have produced but is entitled to trade into power markets where
they could, in principle, make mere financial gains. Obviously, the stochastic nature
of energy price dynamics induces some level of market risk for every trading strategy. Change OK?

For this reason, it is necessary to define a criterium that allows us to keep market risk
under control. To do this, we choose the classical criterium of maximizing a utility
function of the final profit for our agent. A similar problem of maximizing wealth due
to ID trading has been treated in Aïd et al (2016) and Tan and Tankov (2016). These Changes to this sentence and

the next OK?

works explicitly model possible price impact; however, they are also risk-neutral with
respect to gains in the ID market, reserving risk aversion for positions in the balancing
market. By contrast, we assume that our investor trades in a risk-averse way only in
the ID market, ending up with a null position in the balancing market.

Journal of Energy Markets www.risk.net/journals



Optimal intraday power trading with a Gaussian additive process 3

In order to properly define an optimal strategy, we must first choose a model.

We choose a parsimonious yet quite realistic model by assuming that the price of

each traded hour evolves as an additive Ornstein–Uhlenbeck (OU) model driven by

a Brownian motion. This choice is in line with many models used in the literature for

spot (Benth et al 2007, 2012; Meyer-Brandis and Tankov 2008) and ID prices (Aïd

et al 2016; Kiesel and Paraschiv 2017; Tan and Tankov 2016). It also acknowledges

the possibility of negative prices, observed more and more in power markets in recent

years (EPEX 2015a).

Inspired by Kiesel and Paraschiv (2017), we choose an OU process as a natural Clarify sentence?

version in continuous time of the model therein. Based upon this model, we present Change OK?

the solution of the optimal portfolio problem: this is done via the standard tools

of dynamic programming and the Hamilton–Jacobi–Bellman (HJB) equation. The

optimal portfolio in the log case turns out to be totally myopic with respect to time

to maturity. In the power case, however, the optimal strategy is that of the log case

multiplied by a decreasing function of time to maturity; hence, the investor takes more

and more risky positions as the final maturity approaches, as in other models in the Changes to this sentence and
the next OK?

literature (Battauz et al 2014; Kim and Omberg 1996). The derivation of this result

had to be explicitly carried out in our paper, as the literature only provides solutions

for the case of asset prices following geometric models, while our model is arithmetic.

In order to implement the optimal strategy that we find, it is necessary to estimate

the model parameters based on the time series of each traded hour. Again, this is Changes to this sentence and
the next OK?

not a standard task. In fact, parameter estimations for OU processes can be easily

found in cases where observations are equispaced in time. Unfortunately, this is not

the case here; in fact, for each traded hour, ID time series prices are most active in Changes to sentence OK?

the last two to three hours before maturity. During the first hours, few transactions

occur. Thus, we are forced to develop a technique for estimating the parameters from

nonequispaced observations. We do this via a maximum likelihood (ML) estimation,

with a bootstrap bias correction inspired by Tang and Chen (2009) to compensate for

the fact that little data may be observed during the first hours. Finally, we backtest

our model and estimators, in order to assess whether it is possible to make a financial

profit on the ID market.

We present a brief outline of this paper. In Section 2, we define a Gaussian additive

model for ID energy prices. In Section 3, we formalize the utility maximization

problem and solve it using the dynamic programming technique. In Section 4, we

present a procedure for estimating the parameters of our model. Finally, in Section 5

we present the results of a backtest and conclude.

www.risk.net/journals Journal of Energy Markets



4 E. Edoli et al

FIGURE 1 Mean volume and number of transactions by traded hour.
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2 THE ID PRICE DYNAMICS

We now specify a parsimonious, yet quite realistic, model for the price dynamics of
traded hours in the ID market.

We start from a data set of high-frequency daily data from January 1 to July 31,
2014 from the EPEX German market. With a continuous-time ID market and a total
of 767 651 transactions every single hour, EPEX is one of the most liquid markets. Change OK?

Transactions per hourly block or quarter, though present in the EPEX market, have Change OK?

not been included in our database. In this sample, for each hourly contract we observe
in mean

� 150 transactions,

� 14.58 MWh of exchanged average volume per transaction.

As we can see from Figure 1 in greater detail, peak hours are the most liquidly traded.
For example, the maximum average occurs during hour 14, with 242 daily transactions
and 16.05 MWh exchanged.

On finer analysis, we note the following important ID energy price features for Changes to sentence OK?

each traded hour:

� liquidity grows during the last two to three hours of transactions (see Figure 2
for typical price paths);

� there is high volatility;

� there are local trends, ie, trends which appear only in part of the price path
(typically in the last two to three hours of transactions);

Journal of Energy Markets www.risk.net/journals
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Optimal intraday power trading with a Gaussian additive process 5

FIGURE 2 Intraday energy price sample paths.
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The four graphs show intraday prices for: (a) hour 17, April 19, 2014; (b) hour 18, April 4, 2014; (c) hour 6, April 3,
2014; and (d) hour 16, April 14, 2014.

� sometimes it is possible to observe negative prices (EPEX 2015a).

A negative price is a signal that occurs when high inflexible power generation meets
with either low demand or unpredicted high production from renewables. (According ‘unforeseen’?

to the Erneuerbare Energien Gesetz (EEG), German electricity network operators are
obligated to accept the entire electrical output of renewable plants (see Mitchell et al
2006).) Power generation units are inflexible and cannot be shut down and restarted
in a quick, cost-efficient manner (as is the case with renewable energy plants). In this Changes to sentence OK?

scenario, producers usually deem it more convenient to keep their power plants online
and pay an additional cost, rather than wind them down and restart them later.

The possibility of negative prices has also already been acknowledged by more
recent spot and ID price models. Benth et al (2007, 2012) and Meyer-Brandis and
Tankov (2008) propose detailed models for the spot price of electricity that are addi-
tive and driven by general Lévy processes. If the driving process is a subordinator

www.risk.net/journals Journal of Energy Markets
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6 E. Edoli et al

(ie, a process with only positive jumps), then the spot price remains positive. However,
due to negative spot prices being observed more and more in power markets over the Changes to sentence OK?

past few years (EPEX 2015a), a choice of driving process that also comprises negative
increments could be viable. In fact, the ID price models by Aïd et al (2016) and Tan
and Tankov (2016) are both drifted Brownian motions, while Kiesel and Paraschiv
(2017) propose an alternative kind that is autoregressive and driven by Gaussian noise,
with a regime switch driven by a latent variable linked with demand. However, the
technique used by Kiesel and Paraschiv (2017) to estimate this latent variable is quite
time consuming and needs the entire price path of the day; of course, this makes the
model quite unsuitable for any investor implementing a dynamic trading strategy. By Changes to this sentence and

the next OK?

this method, one can only observe the price history up to the present time.
For the same kinds of reasons, we did not include any dependence on weather

forecast. First, forecasts are not given in continuous time but only at fixed dates in
time; thus, their impact upon different traded hours may be different.1 However, the Changes to this sentence and

the next OK?

main reason why we did not explicitly include forecasts is because we assume that they
are broadcast publicly and known to every market participant; thus their information Change OK?

can be absorbed by the prices’ dynamics as soon as they are revealed. This will be
reflected in the iterated estimation procedure in Section 5. As soon as a new price is
present in the market, the parameters will be estimated again, thus incorporating the
new information. Considering these behaviors for the price of each traded hour, we
choose an arithmetic dynamic for ID energy price .St /t . In particular, we assume an Changes to sentence OK?

OU process to describe the ID price dynamics of any given traded hour:

dSt D .� � �St / dt C � dWt ; t 2 .0; T �;

S0 D s0; t D 0:

)
(2.1)

This specification of an OU process driven by a Brownian motion may seem an
excessive simplification. However, it is in line with many models used in the literature
for ID prices (see Kiesel and Paraschiv (2017) and the references therein), which are
additive and driven by Gaussian noise. Unlike Kiesel and Paraschiv (2017), we choose Changes to sentence OK?

not to introduce regime switches because the techniques needed to assess a regime
change are too computationally intensive and typically require knowledge of the time
series in the future, making them hard to use for dynamic trading strategies.

3 THE OPTIMIZATION PROBLEM

To define an optimal strategy for the ID market, it is necessary to deal with the risk Changes to sentence OK?

arising from the stochastic price movements included in every strategy. In principle,

1 Tan and Tankov (2016) present a partial solution to this, but at the cost of adding one more state
variable that would complicate our model.

Journal of Energy Markets www.risk.net/journals
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Optimal intraday power trading with a Gaussian additive process 7

the agent could decide to trade in the ID market in all twenty-four hours (or in another
product, such as quarters or blocks of hours).Thus, in full generality, this would require
a multidimensional model. However, such a model would be much more complicated Changes to this sentence and

the next OK?

to specify and calibrate for the reasons already seen in Section 2.
More specifically, the first reason is that, for each of the twenty-four hours, trading

stops thirty minutes before the physical delivery, causing all delivery hours to differ
from one another. For example, the ID market for hour 1 starts at 15:00 on the day
before the delivery date D � 1 and ends at 00:30 on the delivery date D, while the
ID market for the hour 24 starts at 15:00 on day D � 1 and ends at 23:30 on day D.
Thus, there is no natural final time horizon for our trader.

The second reason is that, for each traded hour, transactions are concentrated during
the last two to three hours prior to delivery.As a consequence, when the price of hour 1
moves, the price of hour 24 stays mostly still; conversely, when the price of hour 24 is Change OK?

moving, the price of hour 1 no longer exists. This makes the estimation of correlations
between hourly prices very difficult, as one never observes contemporary changes in
price. This could lead to a bias toward zero known as the Epps effect taking place in
the covariance estimators (Epps 1979).

For these reasons, we assume that the prices of individual traded hours are indepen-
dent of one other. This is equivalent, in our formulation, to assuming that the various Changes to this sentence and

the next OK?

Brownian motions in (2.1) are independent. Moreover, we make the naive choice of
representing our optimal investment problem with a single-asset optimal portfolio
problem, in the sense that the agent divides their initial capital between the hours and
performs an optimal portfolio problem for each given hour that is independent of all
other hours.

Thus, for each hour we frame our problem as a classical utility maximization
problem

max
�

EŒU.XT /�; (3.1)

where the asset’s dynamics are given by (2.1); the portfolio value’s dynamics are

dXt D �t dSt ; t 2 .0; T �;

X0 D x0; t D 0I

)
(3.2)

the trading strategy � D .�t /t2Œ0;T � is such that �t 2 R for all t 2 Œ0; T /; and

�T D 0 for t D T (3.3)

is imposed. This signifies that we want to neither buy nor sell power at the end of the Change OK?

ID market; instead we are in a pure trading context. Here s0 is the DA energy price,
x0 is our initial risk capital and T is the closure time of the ID market.

www.risk.net/journals Journal of Energy Markets
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8 E. Edoli et al

Remark 3.1 Imposing (3.3) requires that the market is liquidly accepting all posi-
tions at all times t , including t D T . Should this condition not be satisfied, the trader Changes to this sentence and

the next OK?

would pay a cost in the form of a penalty in the so-called balancing market. This would
also be the case for a physical producer wanting to impose ˘T equal to a certain non-
negative quantity sold by them. Should this quantity come from a nonprogrammable Changes to this sentence and

the next OK?

renewable source (such as solar or wind), there would be a positive probability that,
even if the financial position �T is met, the final quantity produced would be different
from that. In this case, the producer would also end up with a position in the balancing
market. We leave this more structured problem for future research. From now on we
assume that (3.3) can be satisfied, ie, the market is perfectly liquid at all times t 6 T .

We may take into account the risk associated with every ID market strategy with Changes to sentence OK?

the use of a utility function U . Further, we consider the classical choice of a constant
relative risk-aversion (CRRA) utility function; this could be either the power utility
function U.x/ D x�=� , with � 2 .0; 1/, or the logarithmic utility function U.x/ D
log.x/, which we will indicate conventionally as “the case � D 0”.

Definition 3.2 (Admissible controls, objective function and value function) We
denote byA.Œt; T �/ the set of admissible controls, ie, predictable processes � D .�u/u

on Œt; T �, such that (3.2) has a unique strong solution X t;x;sI� for each initial condition
.x; s/ at time t , and ˘T D 0.

We call objective function J the function defined by

J.t; x; s; �/ D EŒU.X
t;x;sI�
T /�; (3.4)

where .X t;x;sI� ; S t;x;sI�/ is the two-dimensional controlled Markov process starting
from .x; s/ at time t with the dynamics defined by (??) and (3.2) with the control The equation referred to here

(‘eqn:AssetDynamic’) was
commented out in your
submitted TEX file: please
reword sentence.

� 2 A.Œt; T �/.
Finally, we call value function V the function defined by

V.t; x; s/ D sup
�2A.Œt;T �/

J.t; x; s; �/: (3.5)

Now we can write the HJB equation associated with our optimization problem as Change OK?

Vt C sup
�

A�V D 0; .t; s; x/ 2 Œ0; T / � R � R; (3.6)

V.T; s; x/ D U.x/; .s; x/ 2 R � R; (3.7)

with the infinitesimal generator A� given by

A�V.t; x; s/ D .Vx.t; x; s/� C Vs.t; x; s//.� � �s/ C 1
2
�2�2Vxx.t; x; s/

C ��2Vsx.t; x; s/ C 1
2
�2Vss.t; x; s/: (3.8)

Journal of Energy Markets www.risk.net/journals
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Optimal intraday power trading with a Gaussian additive process 9

First-order conditions on (3.6) to (3.8) that a candidate optimal control � has the Insert missing word? eg,
‘require that’?

particular form

O� WD arg max
�

A�V D �Vx.� � �s/ C �2Vsx

�2Vxx

; (3.9)

and the HJB equation (3.6) can be written as

Vt C Vs.� � �s/ C 1
2
�2Vss � 1

2
O�2�2Vxx D 0; .t; s; x/ 2 Œ0; T / � R � R: (3.10)

The usual procedure for solving our optimization problem is to guess at a particular Changes to this sentence and
the next OK?

solution to the HJB equation and for a given utility function U . We then test whether
this particular candidate satisfies the hypothesis of a so-called verification theorem.
To carry out this plan, as previously stated, we consider the case of CRRA utility
functions, which can be either the power utility function U.x/ D x�=� , with � 2
.0; 1/, or the logarithmic utility function U.x/ D log.x/.

Lemma 3.3 (CRRA utility function) Let U.x/ D x�=� , with � < 1, � ¤ 0, or
U.x/ D log.x/. Then our process is as follows. Our style is to introduce with

a full sentence. Is this one
okay?

(1) The system of ordinary differential equations

a0
2 D � 2��2

1 � �
a2

2 C 2�

1 � �
a2 � �2

2.1 � �/�2
; (3.11)

a0
1 D a1

�
�

1 � �
� 2��2

1 � �
a2

�
� 2�a2

1 � �
C ��

.1 � �/�2
; (3.12)

a0
0 D � �

1 � �
a1 � �2a2 � ��2

2.1 � �/
a2

1 � �2

2.1 � �/�2
; (3.13)

with terminal conditions a2.T / D a1.T / D a0.T / D 0, admits a unique
solution for t < T , such that

a2.t/ D �

2�2

sinh m.T � t /

sinh m.T � t / C p
1 � � cosh m.T � t /

(3.14)

D �

2�2

e2m.T �t/ � 1

.1 C p
1 � �/e2m.T �t/ C p

1 � � � 1
;

a1.t/ D �

�2

1 � e2m.T �t/

.1 C p
1 � �/e2m.T �t/ C p

1 � � � 1
D �2�

�
a2.t/; (3.15)

with m WD �=
p

1 � � . Moreover, a2 > 0 for all t 6 T .

(2) The function H.t; s; x/ WD U.xeg.t;s//, with

g.t; s/ D a2.t/s2 C a1.t/s C a0

is a solution to HJB equation (3.10), with the final condition given by (3.7).

www.risk.net/journals Journal of Energy Markets
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10 E. Edoli et al

(3) The portfolio strategy .��
u /u>t such that ��

u WD O�.u; Su; Xu/ for u 2 Œt; T /

and ��
T D 0, with

O�.t; s; x/ D .� � �s/x

.1 � �/�2
C �

1 � �
gs.t; s/x D .� � �s/

.1 � �/�2
xh.T � t / (3.16)

with

h.u/ D 1 C p
1 � � tanh mu

1 � � C p
1 � � tanh mu

(3.17)

defines an admissible control in the sense of Definition 3.2.

Proof See online Appendix A. �

We now present a verification theorem summarizing the different choices for U

(log or power case).

Theorem 3.4 (Verification theorem) Let U.x/ be equal either to log.x/, letting
� D 0, or to U.x/ D x�=� , with � 2 .0; 1/. Further, let H be as in Lemma 3.3(ii).
Then, H D V , and the portfolio strategy .��

u /u>t , such that ��
u WD O�.u; Su; Xu/

for u 2 Œt; T / and ��
T D 0, defines an admissible optimal control, with O� defined by

(3.16) and (3.17).

Proof What remains to be proved is that the value function satisfies good integrabil-
ity conditions. Thus, on applying the Ito formula to the process .H.u; X;Su//u2Œt;T �, Changes to sentence OK?

we can be sure that the stochastic integral appearing in its stochastic differential is a
proper martingale. For the logarithmic case, this is quite straightforward, and the final
result follows from standard versions of the verification theorem (see, for example,
Bjork 2003, Theorem 14.6). The power case is more complicated, but it can be treated
with techniques similar to those of Benth and Karlsen (2005, Propositions 4.1 and
4.2). The proof of the latter case is long and quite technical, and we do not provide it
here. However, interested readers may obtain it from the authors upon request. �

Remark 3.5 The optimal control turns out to be proportional to the optimal one for ‘for the power case’? Please
specify.

the log case, which is totally myopic with respect to t multiplied by the proportionality
factor h.T � t / in (3.17). This factor tends uniformly to 1 as � ! 0 increases; � also Please check my rewrites

here. I found this confusing.

increases (ie, as the risk-aversion coefficient 1�� decreases) and explodes to C1 as
� ! 1. This means that the exposure associated with the risky asset increases as the
risk-aversion coefficient 1 � � decreases. Moreover, this factor depends on t only in
the time leading up to maturity u D T � t , as t ! T increases up to the finite limit

lim
t!T

h.T � t / D lim
u!0

h.u/
1

1 � �

Journal of Energy Markets www.risk.net/journals
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FIGURE 3 The function h.u/, with u D T � t , � D 1 and various risk-aversion parameters
� .
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From below, � D 0; 0.2; 0.4; 0.6; 0.8. It is easy to see that h converges uniformly to 1 as � ! 0 and is increasing in
� . Moreover, as u D T � t tends to 0 (ie, as t approaches maturity T ), h increases to the finite value 1=.1 � �/.

for all � 2 .0; 1/. A sample of this behavior can be seen in Figure 3. This means that
the investor is more and more nonmyopic with respect to time as � increases. For this Changes to this sentence and

the next OK?

reason, investors tend to assume more extreme positions as time t approaches maturity
T . However, these positions do not explode as in Battauz et al (2014); instead they
tend to a Merton-like position (Sharpe ratio divided by 1 � � ). This phenomenon has
already been observed in other models (see, for example, Battauz et al 2014; Kim
and Omberg 1996). Axes in fig03 are not labeled.

Would you like to add these
details now? Also, can you
clarify fig 3 caption? I don’t
understand what might be
‘increasing in �’ – or how.

4 PARAMETER ESTIMATION

We now present a procedure for estimating the parameters of our model, in order to Changes to this sentence and
the next OK?

implement the optimal portfolio strategy found in Section 3. As seen in Section 2, a
typical time series for the price of each traded hour will have unevenly spaced obser-
vations in time, since transactions become more and more frequent as the delivery
time approaches. Indeed, most transactions happen in the last two to three hours. For Changes to this sentence and

the next OK?

this reason, we cannot rely upon known parameter estimation techniques designed to
work on evenly spaced observations. Rather we must develop an estimation procedure
for observations that are unevenly spaced in time.

Let us suppose that we have nC1 unevenly time-spaced observations fstk gkD0;:::;n

of the process S at times t0 D 0; t1; : : : ; tn. We use the notation ık D tk � tk�1 and
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12 E. Edoli et al

sk WD stk for all k D 1; : : : ; n. To estimate the parameters of the OU process we need
to produce maximum likelihood estimators (MLEs). For this purpose, first of all, we
have to write the loglikelihood function of the process (2.1). It is easy to see that the
loglikelihood function of the unevenly spaced observations of the OU process (2.1)
at times .tk/kD0;:::;n is

L.�; �; �2I s0; : : : ; sn/ D �n

2
log.2��2/ � 1

2

nX
kD1

log

�
.1 � e�2�ık /

�

�

� �

�2

nX
kD1

..sk � �=�/ � .sk�1 � �=�/e��ık /2

1 � e�2�ık

(4.1)

(see also Franco 2003). To obtain MLEs for the parameters of the OU process, we
solve the system

rL D 0; (4.2)

where L is given by (4.1). In this case, it turns out to be impossible to solve (4.2) Changes to this sentence and
the next OK?

in closed form (as we would with evenly time-spaced observations). Thus, it is not
possible to obtain closed formulas for the MLEs of �, � and �2. Instead we apply the
method outlined in Franco (2003). This method is similar to the one used by Edoli et
al (2013). First, we express � and � as functions of �, for � > 0, as

O� D �.�/ D �

� X
i

si � si�1e��ıi

1 C e��ıi

�� X
i

1 � e��ıi

1 C e��ıi

��1

;

O�2 D �2.�; �.�// D 2�

n

X
i

.si � �.�/=� � .si�1 � �.�/=�/e��ıi /2

1 � e�2�ıi

and then we perform a numerical maximization of L in the unique real variable �.
This is a much faster, more efficient technique for numerically maximizing the three Changes to this sentence and

the next OK?

real variables �, � and �2. Their MLEs are

O� D max
�>0

L.�; �.�/; �2.�; �.�//I s0; : : : ; sn/;

O� D �. O�/;

O�2 D �2. O�; �. O�//:

If, as we saw, � D 0, the process (2.1) reduces to a simple arithmetic Brownian
motion. In this case we can write two closed formulas for the MLEs of � and �2,
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namely

O� D ST � S0

T
; (4.3)

O�2 D 1

n

nX
iD1

.Si � Si�1 � O�ıi /
2

ıi

: (4.4)

At this point, we can define the following estimation procedure for the process (2.1).

(1) Solve the maximization problem described above and obtain the values of O�,
O� and O�2.

(2) Perform a hypothesis test on O� to assess whether it is statistically different from
zero. If this is the case, then the calibration procedure is complete; if it is not, Changes to sentence OK?

we progress to (3).

(3) If O� is not statistically different from zero, then define O� and O�2 using (4.3) to
(4.4). Next perform a second hypothesis test on O�.

(4) If O� is statistically different from zero, then the procedure is complete;
otherwise, define O� using (4.4) with � D 0. Changes to sentence OK?

An important problem (that we need to solve) concerns the bias of the MLEs for Changes to sentence OK?

parameters of the drift function of a general diffusion process such as What do the subscripts ‘d’
and ‘v’ denote or label here?
We will make them Roman if
they are labels and do not
refer to variables d and v.dXt D �.Xt ; �d / dt C �.Xt ; �v/ dWt : (4.5)

Indeed, the bias of the ML estimator O�d of � is caused by the discretization of the
continuous-time process and becomes particularly pronounced when we have few Change OK?

observed data in a given time interval (see, for example, Bonest and Yu 2006; Franco
2003). To solve this problem, we follow Tang and Chen (2009) and use a bootstrap
bias correction. First of all, we recall the following.

Definition 4.1 We define the bias function of an estimator O� of a parameter � as

b. O�; �/ D E� Œ O�� � �:

The idea of the bootstrap bias correction procedure is to obtain an evaluation Qb. O�; �/

of the bias function b. O�; �/ using Monte Carlo techniques. We may then define the Change OK?

correct new estimator of � as

Q� D O� � Qb. O�; �/:

Suppose that we observe the process (4.5) at times t0 < � � � < tn, and let us call xt

the value of Xt observed at time t . The procedure is as follows.
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14 E. Edoli et al

(1) Find the MLEs, O�d of �d and O�v of �v , using the observed path fxtgt .

(2) Simulate M paths fxigiD1;:::;M using the dynamics

dXt D �.Xt ; O�d / dt C �.Xt ; O�v/ dWt

as well as the same instants t0 < � � � < tn for the time grid of these simulations.

(3) For each path in (2), find the MLE O�i
d

of �d .

(4) Define the new correct estimator of �d as

Q�d D 2 O�d �
PM

j D1
O�j

d

M
:

For the OU process we apply this procedure to the parameters � and � only, since
the MLE for �2 is already unbiased (see Tang and Chen 2009). It is also worth noting
that the bootstrap procedure described above can be iterated several times.

To test this procedure, we simulate N D 1000 paths with three sets of known param-
eters. We then estimate the parameters from the simulated data. Table 1 compares the Changes to sentence OK?

results of different methods of numerical estimation: without the bootstrap procedure
(NL); with the bootstrap procedure applied only once (NB); and with the bootstrap
procedure iterated twice (N2B). In this test, we define � WD �=�, that is, the long-term
mean of the OU process.

It is interesting to note that, within Table 1, the estimation of the parameter � is
very precise from the beginning, even without the bootstrap bias correction proce-
dure. However, the numerical loglikelihood estimation of both � and � improves Changes to sentence OK?

significantly with the application of the iterated bootstrap bias correction procedure.

5 BACKTEST AND RESULTS

We perform a backtest to evaluate the effectiveness of our solutions to the optimization
problem as well as our calibration process for the various classes of CRRA utility Changes to sentence OK?

function used therein. We compare the results obtained with the utility functions for
different values of the risk parameter. Each day, we start our exercise with a risk
capital of x0 D €1000, shared equally between the hours in the day, so that each hour Changes to this sentence and

the next OK?

has a starting capital of €41.66. This can easily be rescaled to suit any initial amount
by adjusting the properties of CRRA utility functions. This simply entails multiplying Changes to this sentence and

the next OK?

the optimal strategies by the correct factor, taking into account that the liquidity of the
ID market is limited, as shown in Figure 1. Moreover, we need to make the following
simplifying hypotheses. Notes expanded for Table 1 to

define what MAE, MAPE
and RMSE stand for: all
OK/correct?
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TABLE 1 A comparison between three procedures for numerical estimation.

(a) NL

� � � � � � � � �

Real 0.851 8.510 10.000 0.251 2.510 10.000 0.080 0.800 10.000
Mean 0.233 2.345 10.067 0.064 0.660 10.324 0.030 0.324 10.750
MAE 0.618 6.165 0.067 0.187 1.850 0.324 0.050 0.476 0.750
MAPE (%) 73 72 0.7 74 74 3.2 62 60 7.5
RMSE 0.382 38.003 0.005 0.035 3.421 0.105 0.002 0.227 0.562

(b) NB

� � � � � � � � �

Real 0.851 8.510 10.000 0.251 2.510 10.000 0.080 0.800 10.000
Mean 0.420 4.200 10.006 0.117 1.180 10.059 0.053 0.540 10.144
MAE 0.431 4.310 0.006 0.134 1.330 0.059 0.027 0.260 0.144
MAPE (%) 51 51 0 53 53 0.6 33 32 1.4
RMSE 0.186 18.578 0.000 0.018 1.768 0.003 0.001 0.068 0.021

(c) N2B

� � � � � � � � �

Real 0.851 8.510 10.000 0.251 2.510 10.000 0.080 0.800 10.000
Mean 0.733 7.302 9.966 0.214 2.131 9.942 0.094 0.931 9.854
MAE 0.118 1.208 0.034 0.037 0.379 0.058 0.014 0.131 0.146
MAPE (%) 14 14 0.3 15 15 0.6 18 16 1.5
RMSE 0.014 1.459 0.001 0.001 0.144 0.003 0.000 0.017 0.021

The three subcategories denoted (a), (b) and (c) correspond with: numerical estimation without bootstrap (NL);
the bootstrap procedure completed only once (NB); and the bootstrap procedure iterated twice (N2B). The three
subcategories represented in columns correspond with different parameter sets, the real values of which are always
included in the first row in bold. MAE stands for ‘mean absolute error’; MAPE stands for ‘mean absolute percentage
error’; and RMSE stands for ‘root mean square error’.

� Market liquidity (ie, every offer of the optimal quantity O� 2 R) will always
be accepted; in reality, the minimum tradable quantity is 0:1 MWh. This gives
quite a fine granularity, and short sellings are allowed, provided we end with a
nonnegative position at time T .

� Our financial guarantees always allow us to implement our optimal strategy.

� Transaction costs do not apply.

www.risk.net/journals Journal of Energy Markets
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� When we reach time tk and observe the price sk , we may buy or sell the quantity
O�k at the same price sk exactly at that time. This is, in some sense, equivalent Clarify sentence?

to the fact that our agent is “small” and has a negligible market impact.

Finally, before the backtest, we replace simultaneous transactions with a volume-
weighted average price. We consider a three-month time period (from March to May
in 2014) and proceed as follows, for each trading day and traded hour.

(1) We observe forty transactions:

� should we observe fewer than forty transactions, we take no position;

� once we have observed at least forty transactions, we go ahead to point
(2).

(2) We apply the calibration process described in Section 2. To estimate the param- Changes to sentence OK?

eters, we always use the last forty observed prices combined with a double
bootstrap procedure.

(3) We calculate the optimal strategy O� (see (3.16)):

� if O� is statistically different from zero, we implement the optimal strategy;

� if O� is statistically equal to zero, we take no position but go ahead to (5).

(4) If � D 0 (as with with log utility), we go directly to the next point; otherwise, in
the case where no transactions occur within one minute, we restart the bidding
procedure as in (2).

(5) When we observe a new transaction, we restart the bidding procedure from (2).

In the above list, (4) is peculiar to power utility functions. As noted in Remark 3.5, Changes to this sentence and
the next OK?

it is the case with power utility that the optimal position O� is influenced by time to
maturity T � t , while in the case of logarithmic utility the optimal strategy is myopic
with respect to time. We add an upper bound to our strategies to ensure that the
hypothesis of not being market maker is fulfilled. In particular, all our strategies are
less than or equal to 50 MWh. We define the performance of hour h as Xh

T �xh
0 , where

Xh
T is the portfolio’s value for hour h, the final hour in the trading day, and xh

0 is the
hourly starting risk capital. Finally, we compare the results obtained by the different
utility functions. Figure 4 shows the results of our backtest for several CRRA utility Please check my rewrites to

fig04 caption.

functions, with different values of the parameter � .
We note that both the average performance and the average standard deviation Changes to sentence OK?

grow along with � , ie, as risk aversion 1 � � decreases. We pass from the case of Changes to this sentence and
the next OK?

the logarithmic utility function (a), with an average performance of €3.51 across
all twenty-four-hour and single-hour performances ranging from �€2.01 to €17.17,
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tiziano
Evidenziato
This, in some sense, corresponds

tiziano
Evidenziato

tiziano
Evidenziato
eliminate one "with"

tiziano
Evidenziato
Ok like this



Optimal intraday power trading with a Gaussian additive process 17

FIGURE 4 Exponential and CRRA utility function: backtest results with different utility
functions.
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In all subfigures, the blue bars (and the numbers on the left-hand vertical axes) represent the sample standard
deviation in each traded hour, while the red lines (and the numbers on the right-hand vertical axes) represent the
mean performance. In (a) we have the logarithmic utility function (corresponding to � D 0), while in (b)–(e) we have
the utility function x� =� , with � D 0.2, 0.4, 0.6 and 0.8 in alphabetical order.

to the case of � D 0:8 (e), which shows an average performance of €20.53 and
single-hour performances ranging from �€8.76 to more than €65.28. Standard devi-
ation scales vary accordingly; in particular, they increase along with the parameter
� . In all utility functions, the negative performances recorded for a few hours are
counterbalanced by much higher positive performances in various other hours.

Further, since we do not take transaction costs into account in this work, we define
a simple indicator of the number of transactions made by our trading algorithm. To
this purpose, we examine the ratio of the number of bids made to the number of ticks
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FIGURE 5 Activity levels per hour (%), including the average daily rate.
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observed; we call this the “activity level”. Figure 5 shows the activity level of our
bidding procedure during the backtesting period.

The average activity level during the backtest period is 42%. This is obviously
very high, meaning our activities may not be profitable in the presence of transaction Changes to this sentence and

the next OK?

costs. However, this also means that our bidding process may lead to some interesting
trading chances in the ID power market.

6 CONCLUSIONS

This work shows that, in principle, it is possible to exploit the characteristics of ID
power prices to define a fruitful trading strategy. We modeled ID prices as additive
Gaussian mean-reverting processes (capable of assuming the negative values increas- Changes to this sentence and

the next OK?

ingly observed in today’s climate) and formulated the portfolio selection problem
by maximizing a CRRA utility function. Our problem turned out to have an explicit
solution, in which capital and ID price assumed the structure of the optimal strat-
egy for a logarithmic utility. This process may be corrected by a factor dependent Changes to sentence OK?

on time to maturity, which increases up to a finite value in maturity. The parameter
estimation needed to implement the model is nontrivial and relies on a numerical
technique based on MLE. This technique gives the mean-reversion level as well as Changes to sentence OK?

the volatility as functions of the mean-reversion speed, to be estimated numerically.
We further improve the numerical results using a bootstrap bias correction technique.
Finally, we apply this technique to a data set from January 1 to July 31, 2014, taken
from Germany’s EPEX market. We find that, on average, our optimal strategies give
a significant gain, resulting in both the mean performance and the standard deviation
increasing with respect to the risk-aversion coefficient. Negative performances are
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present in certain trading hours, but they are counterbalanced by much more positive
performances in other hours.

Future work can be developed in three significant directions. First, there is the Changes to this sentence and
the next OK?

question of the correlations between various traded hours. These are very difficult to
estimate with standard techniques, since very few hours are traded simultaneously.
Second, there is the prospect of realistic modeling of bid–ask spreads. In this way, we Changes to this sentence and

the next OK?

might assess whether fruitful ID trading strategies could be built for more realistic
situations. The third and final direction is the development of ID market models in
which prices could possibly exhibit jumps, even in a time-inhomogeneous way, with
more and more activity observed as maturity approaches. This is the topic of a work
in progress by one of the authors (Piccirilli and Vargiolu 2017).
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