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PROBLEM. ANNOUNCEMENT OF RESULT
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(Communicated by Walter Craig)

Abstract. We improve a result in [9] by proving the existence of a positive
measure set of (3n − 2)-dimensional quasi-periodic motions in the spacial,

planetary (1+n)-body problem away from co-planar, circular motions. We also

prove that such quasi-periodic motions reach with continuity corresponding
(2n− 1)-dimensional ones of the planar problem, once the mutual inclinations

go to zero (this is related to a speculation in [2]). The main tool is a full

reduction of the SO(3)-symmetry, which retains symmetry by reflections and
highlights a quasi-integrable structure, with a small remainder, independently

of eccentricities and inclinations.

1. Set up and background

In [2], V. I. Arnold, partly solving but undoubtedly clarifying important math-
ematical settings of the more than centennial question (going back to the investi-
gations by Sir Isaac Newton, in the 17th century) on the motions of the planetary
system, asserted his “Theorem on the stability of planetary motions” as follows.

Theorem 1.1 (“Theorem on the stability of planetary motions” [2, Ch. III, p.
125]). For the majority of initial conditions under which the instantaneous orbits
of the planets are close to circles lying in a single plane, perturbation of the planets
on one another produces, in the course of an infinite interval of time, little change
on these orbits provided the masses of the planets are sufficiently small. [. . .] In
particular [. . .] in the many-body problem there exists a set of initial conditions
having a positive Lebesgue measure and such that, if the initial positions and ve-
locities belong to this set, the distances of the bodies from each other will remain
perpetually bounded.
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Arnold proved Theorem 1.1 in the particular case of the planar three-body prob-
lem. To extend his statement to the general case, he provided, in his paper, sketchy
ideas and ingenious conjectures. Completing his ideas and conjectures was revealed
to be absolutely not trivial. The geometric and symplectic structure of the prob-
lem, responsible for certain strong degeneracies partly known and partly unknown
to him, has been clarified only recently [8]. The complete, general proof of Theorem
1.1 has been reached thanks to contributions by J. Laskar, P. Robutel, M. Herman,
J. Féjoz, L. Chierchia, and the author [20, 28, 16, 11, 23, 9].

An important assumption in Arnold’s statement, followed by all previously men-
tioned papers, is the initial one, where he requires the orbits of the planets to be
“close to circles lying in a single plane.” The mathematical reason that lead Arnold
to consider this assumption was the necessity of treating one of the many degen-
eracies of the problem, the so-called “proper degeneracy,” recalled below. From the
physical point of view, such constraint may be regarded as almost natural, or at
least not too annoying, since, for example, it is observed that most of the planets
of the Solar System have indeed small eccentricities and inclinations. However, it
is a fact that some trans-Neptunian objects, or a large number of asteroids, does
not fulfill this condition, and for them, numerical estimates or extensions allowing
to go beyond this constraint seem not to be enough. Arnold himself dedicated a
paragraph in his paper [2, Chapter III, §1, no 6] to a discussion on how to elim-
inate this assumption in the case of the planar three-body problem, using very a
particular tool for this case. Also, the cases of the spatial three-body problem and
of the planar general problem have been studied, and, for them, similar results
have been recently obtained thanks to some special circumstances arising in such
problems [24].

The purpose of this paper is to present and illustrate the main ideas of the
proof of a new statement (Theorem 2.1 below) of Theorem 1.1 for the general prob-
lem, where the first assumption is removed. We shall prove that, for arbitrary
values of eccentricities and relatively small inclinations, a positive measure set of
quasi-periodic motions with trajectories close to Keplerian ellipses with those ec-
centricities and inclinations do exists, and its measure is ruled only by the distances
among the planets, thus (as the main novelty with respect to existing quoted formu-
lations), is independent on eccentricities and inclinations. The proof is based on a
different procedure for eliminating the proper degeneracy, with respect to Arnold’s.
We shall obtain a new, explicit normal form for the planetary problem (Proposi-
tion 3.3 below). Here, by “explicit,” we mean that we are able to compute any
relevant quantity for the system, for example, its “torsion.” This computational
aspect will be achieved thanks to two ingredients. The first ingredient (actually,
the main novelty of the paper) is a new set of canonical coordinates for the plane-
tary problem, presented in §3.1 below, which, thanks to its nice parity properties,
allows for explicit analytical expressions of an integrable problem close to the prob-
lem under investigation. The second ingredient consists of a suitable choice of the
planets’ distances, which will allow the use of normal form and KAM techniques.
The complete proof is publicly available in [25].

Before presenting our results, we remark that at the time of submission of the
present manuscript to this journal and the arXive repository (June 2014), J. Féjoz
was also working on the N -body problem and announced, in his recent lectures, to
have obtained, via an independent proof, similar KAM results. Even so, at the time
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of revision of the present paper (February 2015), no manuscript of Féjoz’s work is
publicly available and hence no detailed comparison of strategies is possible. It is,
however, a pleasure to mention here a recent private conversation with him, during
which he kindly told the author that he used, for his proof, Poincaré’s coordinates
and, as a common point with our strategy, the planets’ distances as a “smallness
parameter.”

To illustrate our results, we need to recall main difficulties, features and tools of
the problem. Therefore, we dedicate this section to this purpose (referring however
the reader to the aforementioned literature, or to the review papers [12, 4, 7] or,
finally, to the introduction of [24] for more details), and defer to the next §2 the
precise statement and technical aspects of our result.

Consider (1 +n) masses in the configuration space E3 = R3 interacting through
gravity. Let such masses be denoted as m0, µm1, . . . , µmn, where m0 is a leading
mass (“sun,” of “order one”), while µm1, . . . , µmn are n smaller masses (“planets,”
of “order µ,” with µ a very small number). This problem, a sub-problem (usually
referred to as “planetary” system) of the more general N -body problem, emulates
the Solar System; hence, the study of it has a relevant physical meaning. It is very
natural to regard this system (which is Hamiltonian1) as a small perturbation of
the leading dynamical problem consisting of the gravitational interaction of the sun
separately with each planet. This corresponds to what follows. After letting the
system be free of the invariance by translations (i.e., eliminating the motion of the
sun), one can write the 3n-degrees of freedom Hamiltonian governing the motions
of the planets as

Hhel(y, x) =

n∑
i=1

h
(i)
2B(y(i), x(i)) + µfhel(y, x)

=

n∑
i=1

( |y(i)|2

2mi
− miMi

|x(i)|
)

+ µ
∑

1≤i<j≤n

(y(i) · y(j)

m0
− mimj

|x(i) − x(j)|
)

(1)

where x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 ) = q(i) − q(0) denote the “heliocentric distances,”

y(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 ) their generalized conjugated momenta and mi := m0mi

m0+µmi
and

Mi := m0 + µmi the “reduced masses.”

1 That is, its motions are described by equations of the form


ẏ
(i)
j = −∂

x
(i)
j

H3+3n(p, q)

x
(i)
j = ∂

y
(i)
j

H3+3n(p, q)

where (p(i), q(i)) := (p
(i)
1 , p

(i)
2 , p

(i)
3 , q

(i)
1 , q

(i)
2 , q

(i)
3 are canonical coordinates of the point-mass

i, and H3+3n is a suitable (3 + 3n)-degrees of freedom Hamilton function, depending on

(p, q) = (p(0), · · · , p(n), q(0), · · · , q(n)).
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In order to exploit the integrability of the “two-body terms”

h
(i)
2B :=

|y(i)|2

2mi
− miMi

|x(i)|
,

a natural approach is to put the system in Delaunay2 coordinates. This is a system
of canonical action-angle variables ((Λ,Γ,H, `, g, h) ∈ R3n×T3n), whose role is the

one of transforming (via the Liouville-Arnold Theorem) h
(i)
2B into “Kepler form,”

i.e., a function of actions only. It is well known that, due to the too many integrals

of h
(i)
2B, this integrated form

h
(i)
K = −m3

iM
2
i

2Λ2
i

(2)

exhibits a dramatic loss of degrees of freedom: two actions, Γi := |x(i) × y(i)| and

Hi := x
(i)
1 y

(i)
2 − x

(i)
2 y

(i)
1 , disappear completely. This circumstance is usually called

the “proper degeneracy.”
Let us denote by

HDel = hK(Λ) + µfDel(Λ,Γ,H, `, g, h) (3)

where

hK(Λ1, · · · ,Λn) := −
∑

1≤i≤n

m3
iM

2
i

2Λ2
i

(4)

the system (1) expressed in Delaunay coordinates. The purpose is to determine a
positive measure set of quasi-periodic motions for this system.

In 1954, A. N. Kolmogorov [19] discovered a breakthrough property of quasi-
integrable dynamical systems: for a regular, slightly perturbed system

H(I, ϕ) = h(I) + µf(I, ϕ) (I, ϕ) ∈ A× Tν

where A ⊂ Rν is open, a great number of quasi-periodic motions (I0, ϕ0)→ (I0, ϕ0+
∂Ih(I0)t) of the unperturbed system h may be continued in the dynamics of the
perturbed system, provided the Hessian ∂2

Ih(I) does not vanish identically in A.
Due to the proper degeneracy, for the planetary system expressed in Delaunay
variables (3), taking I := (Λ,Γ,H) and ϕ := (`, g,h), Kolmogorov’s non-degeneracy
assumption is clearly violated. Despite of this fact, the perturbing function has
good parity properties: Arnold noticed that such parities help in determining a
quasi-integrable structure in all the variables for the planetary system, as now we
explain.

Arnold’s procedure goes as follows. Following Poincaré, one switches from De-
launay coordinates to a new set of canonical coordinates (Λ, λ,η, ξ,p, q). These are
not in action-angle form, but are in mixed action-angle (the couples (Λ, λ)) and
rectangular form (the z := (η, ξ,p, q)). The variables (Λ, λ) have roughly the same
meaning of the (Λ, `); the z are defined in a neighborhood of z = 0 ∈ R4n and the
vanishing of (ηi, ξi) or of (pi, qi) corresponds to the vanishing of the ith eccentricity,
inclination, respectively.

2 Delaunay and (see below) Poincaré coordinates are widely described in the literature. A
definition may be found, e.g., in [8, 13]. Note that (H,h) ∈ Rn × Tn are denoted as (Θ, θ) in
[8]. Delaunay-Poincaré coordinates were used by several authors, including Arnold, Nekhorossev,

Herman, Laskar, Chenciner, Féjoz, Robutel, etc. We shall see below that, due to the proper
degeneracy, there is a certain freedom in choosing canonical coordinates for the planetary system.
See the definition of Kepler map in §3.2.
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Let us denote as

HP = hK(Λ) + µfP(Λ, λ, z) z = (η, ξ,p, q) (5)

the system (1) expressed in Poincaré variables.
Since the perturbation fhel in (1) does not change under reflection

(y
(i)
1 , y

(i)
2 , y

(i)
3 , x

(i)
1 , x

(i)
2 , x

(i)
3 )→ (r1y

(i)
1 , r2y

(i)
2 , r3y

(i)
3 , r′1x

(i)
1 , r′2x

(i)
2 , r′3x

(i)
3 ) ri, r

′
i = ±1

(6)
and rotation transformations

(y
(i)
1 , y

(i)
2 , y

(i)
3 , x

(i)
1 , x

(i)
2 , x

(i)
3 )→

(
R(y

(i)
1 , y

(i)
2 , y

(i)
3 ),R′(x

(i)
1 , x

(i)
2 , x

(i)
3 )
)

R,R′ ∈ SO(3)
(7)

and due to the fact that the transformations (respectively, reflections with respect
to the coordinate planes and rotation about the k-axis)

R−1 : q′(i) =
(
− x(i)

1 , x
(i)
2 , x

(i)
3

)
, p′(i) =

(
y

(i)
1 ,−y(i)

2 ,−y(i)
3

)
R−2 : q′(i) =

(
x

(i)
1 ,−x(i)

2 , x
(i)
3

)
, p′(i) =

(
− y(i)

1 , y
(i)
2 ,−y(i)

3

)
R−3 : q′(i) =

(
x

(i)
1 , x

(i)
2 ,−x(i)

3

)
, p′(i) =

(
y

(i)
1 , y

(i)
2 ,−y(i)

3

)
Rg : q′(i) =

(
R(3)
g (x

(i)
1 , x

(i)
2 ), x

(i)
3

)
, p′(i) =

(
R(3)
g (y

(i)
1 , y

(i)
2 ), y

(i)
3

) (8)

where

R(3)
g :=

(
cos g − sin g
sin g cos g

)
g ∈ T

have a nice expression in Poincaré variables, respectively,

R−1 : (Λ′i, λ
′
i,η
′
i, ξ
′
i,p
′
i, q
′
i) = (Λi,−λi,ηi,−ξi,−pi, qi)

R−2 : (Λ′i, λ
′
i,η
′
i, ξ
′
i,p
′
i, q
′
i) = (Λi, π − λi,−ηi, ξi,pi,−qi)

R−3 : (Λ′i, λ
′
i,η
′
i, ξ
′
i,p
′
i, q
′
i) = (Λi, λi,ηi, ξi,−pi,−qi)

Rg : (Λ′i, λ
′
i,η
′
i, ξ
′
i,p
′
i, q
′
i) = (Λi, λi + g,R(3)

−g(ηi, ξi),R
(3)
−g(pi, qi))

(9)

one then sees that the averaged (“secular”) perturbation

fav
P (Λ,η, ξ,p, q) :=

1

(2π)n

∫
Tn
fP(Λ, λ,η, ξ,p, q)dλ

enjoys the following symmetries. If we denote

tj :=
ηj − iξj√

2
tj+n :=

pj − iqj√
2

t∗j :=
ηj + iξj√

2i
t∗j+n :=

pj + iqj√
2i

and by

fav
P (Λ, t, t∗) =

∑
a,a∗∈Nn

Fa,a∗(Λ)tαt∗α
∗

the Taylor expansion of fav
P in powers of t, t∗, we then have the following:

Proposition 1.1 (D’Alembert rules).

fav
P (Λ,η, ξ,p, q) =

 fav
P (Λ,η,−ξ,−p, q)
fav

P (Λ,−η, ξ,p,−q)
fav

P (Λ,η, ξ,−p,−q)

Fa,a∗(Λ) 6= 0 ⇐⇒ |a|1 = |a∗|1, (10)

where |a|1 :=
∑n
i=1 ai.
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By D’Alembert rules, one has that the expansion of fav
P around z = 0 contains

only even monomials and starts with

fav
P (Λ,η, ξ,p, q) = C0(Λ) +

∑
1≤i,j≤n

Q(h)
ij (Λ)(ηiηj + ξiξj)

+
∑

1≤i,j≤n

Q(v)
ij (Λ)(pipj + qiqj) + O(z4)

where C0(Λ), Q(h)
ij (Λ) and Q(v)

ij (Λ) are suitable coefficients, expressed in terms of

Laplace coefficients, computed in [20, 16, 11]. This expansion shows that the point
z = (η, ξ,p, q) = 0 is an elliptic equilibrium point for fav

P (Λ,η, ξ,p, q). A natural
question is whether, from here, it is also possible to transform fav

P into

H̆P(Λ, λ, z) = hK(Λ) + µf̆P(Λ, λ, z)

where f̆av
P is in “Birkhoff normal form” (hereafter, BNF) of a suitable order (say,

of order three). This means

f̆av
P = C0(Λ) +

n∑
i=1

σi(Λ)wi +

n∑
i=1

ςi(Λ)wi+n

+

3∑
r=2

∑
1≤i1···ir≤2n

τi1···ir (Λ)wi1 · · ·wik + O(z7) (11)

where σi(Λ), ςi(Λ) are the eigenvalues of Q(h)(Λ), Q(v)(Λ) and, for 1 ≤ i ≤ n,

wi :=
η2
i+ξ2

i

2 , wi+n :=
p2
i+q2

i

2 . Then Arnold aims to solve the problem of the
proper degeneracy (and hence to prove Theorem 1.1) by obtaining Kolmogorov full-
dimensional tori bifurcating from the elliptic equilibrium z = 0, via the following
abstract result.

Theorem 1.2 (The Fundamental Theorem, [2]). Let

H = h(I) + µf(I, ϕ, u, v) (I, ϕ, u, v) ∈ A× Tν ×B (12)

where A ⊂ Rν , B ⊂ R2` are open, 0 ∈ B, (I, ϕ) = (I1, . . . , Iν , ϕ1, . . . , ϕν), and
(u, v) = (u1, . . . , u`, v1, · · · , v`) are real-analytic and

(i) det
(
∂2
Ih(I)

)
6≡ 0;

(ii) .
fav :=

1

(2π)m

∫
Tm

f(I, ϕ, u, v)dϕ

=

3∑
r=0

∑
1≤i1···ir≤m

βi1···ir (I)wi1 · · ·wir + O(u, v)7,

where wi :=
u2
i+v

2
i

2 ;

(iii) det
(
βij(I)

)
6≡ 0.

Then, for any κ > 0 one can find a number ε0 = ε0(κ) such that, if 0 < ε < ε0

and 0 < µ < ε8, the set Fε := A × Tν × B2`
ε (0) may be decomposed into a set F∗ε

which is invariant for the motions of H and a set fε the measure of which is smaller
than κ. More precisely, F∗ε foliates into (ν + `)-dimensional invariant manifolds
{Tω}ω close to

Ii = I∗i (ω) ϕi ∈ T u2
j + v2

j = ε2I∗j (ω),
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where the motion is analytically conjugated to the linear flow

θ → θ + ωt θ ∈ Tν+`.

Despite of this brilliant strategy, Arnold succeeded in applying Theorem 1.2 to
the case of the planar three-body problem only, by explicitly checking assumptions
(i)-(iii). For the general case, he was aware of some extra difficulties, about which
he gave just some vague indications.

A first problem is represented by the so-called “secular degeneracies.” The “first
order Birkhoff invariants” σ1, . . . , σn, ς1, . . . , ςn satisfy, identically, two linear com-
binations with integer coefficients that are often referred to as “rotational” and
“Herman” resonance, respectively,

ςn ≡ 0,

n∑
i=1

(σi + ςi) ≡ 0. (13)

Arnold was aware of the former of relations (13), while he did not mention, in his
paper, the latter, that seems to be noticed, in its full generality, by M. Herman, in
the ’90s, from whom it takes its name. He attributed the former to the conserva-
tion, along the motion, of the two horizontal components C1, C2 of the total angular
momentum C = (C1,C2,C3), and then managed to eliminate these extra-integrals
with a change of coordinates. He proposed two qualitatively different changes, for
the case of two, or more than two planets. In the case of two planets, the solution
was ready. In the 19th century, Jacobi proved that the order of the differential equa-
tions of the motion of the three-body problem may be explicitly reduced from six to
four. A reduction by two degrees of freedom is the maximum that one can obtain,
since this is the maximum number of commuting, independent integrals that one
can form with the three (non-commuting) components of C. Next, Radau found
a way to write such equations in Hamiltonian form. Geometrically, the method
by Jacobi and Radau consists of referring the system to a rotating reference frame
with the z-axis in the direction of the (constant) total angular momentum, and the
x-axis in the direction of the (moving) “line of the nodes” – the straight line deter-
mined by the intersection of the instantaneous planes of the planets’ orbits [18, 27].
The idea works (the system again appears in a adaptable form for the Fundamental
Theorem), but Arnold failed its application. Instead of computing explicitly the
torsion for this case, for sake of shortness, he invoked certain controversial argu-
ments of continuity with the planar problem (note the number of degrees of freedom
of the un-reduced planar problem is the same, four) that in fact were revealed to be
affected by the fact that Radau-Jacobi coordinates are not defined for the planar
problem. This mistake was pointed out by M. Herman, and repaired by J. Laskar
and P. Robutel [20, 28]. Robutel computed the correct torsion and checked its non
vanishing.

How to switch to the case of more than two planets was not so clear in the
’60s, when no procedure generalizing Jacobi-Radau construction was known. For
this more general case, Arnold, surprisingly, suggested a breakthrough procedure,
qualitatively very different from the method by Jacobi and Radau. He conjectured
that, in order to eliminate the problem of the identically vanishing eigenvalue, just a
“partial reduction” (the expression is opposite to the “full reduction,” performed by
the set of coordinates by Jacobi and Radau mentioned above) should be enough,
namely, a reduction of the number of degrees of freedom by just one unit. The
idea is genial since he had understood, with the few means at his disposal, that
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the problem would be solved by a system of coordinates, analogous to Poincaré
coordinates, which, including a couple of integrals as a conjugated couple, would
render this eigenvalue negligible. He shortly illustrated a formal procedure for
computing such coordinates but never completed the proof.

In 2002, Malige, Robutel and Laskar [22] explicitly computed the first orders of
Arnold’s coordinates for the case of two planets, where, however, the solution via
Jacobi-Radau reduction was already available. A global, explicit set of coordinates
satisfying Arnold’s conjecture and solving the problem appeared in [9], based on
the results of the author’s PhD dissertation [23]; compare also Theorem 1.3.

In the meantime, in 2004, J. Féjoz, completing investigations by M. Herman,
published the proof of Theorem 1.1 for the general case. Herman’s ideas were
substantially different from Arnold’s. Firstly, aiming to avoid too many compu-
tations, Herman (extending ideas by H. Russmann [29]) proved an abstract result
which relied on the properties of the first order coefficients β1, . . . , βm appearing
in the expansion in item (ii) of Theorem 1.2. Instead of assumptions (i) and (iii),
Herman’s theorem required that the “frequency map”

(I1, · · · , Iν) ∈ A ⊂ Rν → (∂I1h, · · · , ∂Iνh, β1, · · · , βm) ∈ Rν × Rm

should not be identically contained in any affine hyperplane:

ν∑
i=1

ci∂Iih +

m∑
j=1

c′jβj 6≡ 0 ∀(c, c′) 6= 0. (14)

Secondly, since, by (13), condition (14) is evidently violated in the planetary
system, Herman (following ideas going back to Poincaré) proposed an indirect so-
lution: to modify the Hamiltonian (5) by adding a commuting integral (a function
of the angular momentum), check non-planarity for the modified Hamiltonian so
as to prove the existence of quasi-periodic motions for the modified Hamiltonian,
and next to recover quasi-periodic motions for the original system by abstract argu-
ments of Lagrangian intersections. J. Féjoz replaced, in the final published version,
Herman’s ideas with some more subtle arguments of abstract reduction of rotation
invariance.

After Herman-Féjoz’s proof, some important questions were still unsolved, such
as the nature of resonances (13), the existence of a BNF associated to the averaged
perturbing function, or the possibility of a direct application of Arnold’s and Her-
man’s abstract results (i.e., the verification of condition (iii) in Theorem 1.2, or of
(14)). We remark that the possibility of handling a BNF, or some other normal
form of different nature, draws perspectives of different applications, for example,
to the theory of Nekhorossev, or analysis of instabilities. A positive answer to the
question of the BNF has been given in [23, 9]. In the next §3.3 we shall discuss a
different normal form for the system.

It might seem a paradoxical fact, but it turns out that the resonances (13) are not
a true obstacle to the construction of the planetary BNF [22, 9]. Indeed, as a nice
effect of the symmetry Rg in (9), only resonances

∑n
i=1(σi(Λ)ki + ςi(Λ)ki+n) = 0

with
∑2n
i=1 ki = 0 are really important for the construction of BNF, and, evidently,

none of the resonances in (13) have this form. Moreover, as proved in [11], (13)’s
are the only ones to be identically satisfied, a result next improved in [9], where,
by direct computation, it has been seen that they are the only ones to be satisfied
in an open set: compare item (ii)-(c) of Theorem 1.3.
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A much more serious problem is the following3.

Proposition 1.2 (Rotational degeneracy [8]). For the system (5), BNF can be
constructed up to any prefixed4 order p, but all the coefficient τi1···ir (Λ) of the
generic monomial wi1 · · ·wir with some of the ik’s equal to 2n vanish identically.

In particular, the “torsion” matrix (the matrix of the second-order coefficients)
τ = (τij) has an identically vanishing row and column, hence,

det τ ≡ 0.

This violates assumption (iii) of Theorem 1.2.
However, a such negative result, understood only “a posteriori,” is just the coun-

terpart of Theorem 1.3 below.

Theorem 1.3 ([23, 9, 8]). It is possible to determine a global set of canonical
coordinates5

RPS = (Λ, λ, η, ξ, p, q) (15)

which are related to Poincaré coordinates (Λ, λ,η, ξ,p, q) by

Λ = Λ, λ = λ+ ϕ1(Λ, z) ηj + iξj = (ηj + iξj)e
iϕ2(Λ,z) + O(z3)

p = U(Λ)p+ O(z3) q = U(Λ)q + O(z3) (∗)

where U(Λ) is a n × n unitary matrix, i.e., verifying U(Λ)U t(Λ) = id and ϕ1, ϕ2

are suitable functions defined in a global neighborhood of z = 0, such that

(i) (pn, qn) are integrals for fRPS, and
(ii) D’Alembert rules (9) are preserved and correspond to the reflections and

the rotation in (8). In particular, denoting by

HRPS(Λ, λ, z̄) = hK(Λ) + µfRPS(Λ, λ, z̄)

the system (1) expressed in the RPS variables, where z̄ denotes z deprived
of (pn, qn), then
(a) the point z̄ = 0 ∈ R2n−1, which corresponds to the vanishing of all

eccentricities and mutual inclinations, is an elliptic equilibrium point
for z̄ → fav

RPS(Λ, z̄);
(b) For any fixed p ∈ N, p ≥ 2, it is possible to conjugate HRPS to

H̆RPS(Λ, λ̆, z̆) = hK(Λ) + µf̆RPS(Λ, λ̆, z̆)

where

f̆av
RPS(Λ, λ̆, z̆) = C0(Λ) +

n∑
i=1

σi(Λ)w̆i +

n−1∑
i=1

ςi(Λ)w̆i+n

+

p∑
r=2

∑
1≤i,j≤2n−1

τi1···ir (Λ)w̆i1 · · · w̆ir + O(z̆2p+1);

3 Proposition 1.2 answers, in particular, a question raised by M. R. Herman, who, in [16],
declared not to know if the planetary torsion might vanish identically. More generally, Proposi-
tion 1.2 generalizes Laplace resonance in (13) to any order of BNF.

4 Namely, with 3 replaced by p and O(z7) by O(z2p+1) in (11).
5 RPS stands for Regular, Planetary, and Symplectic.
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(c) for any p ∈ N, a(1)
− > 0 if a

(n)
+ := ∞, for any 1 ≤ i ≤ n − 1, it is

possible to choose numbers a
(i+1)
+ > a

(i+1)
− � a

(i)
+ , such that, if

A :=
{

Λ = (Λ1, · · · ,Λn) : a
(i)
− ≤ a(i)(Λi) ≤ a(i)

+

}
,

then (σ(Λ), ς̄(Λ)) · k 6= 0 for any Λ ∈ A, k ∈ Z2n−1, 0 < |k|1 ≤ 2p,
k 6= (1, · · · , 1) and det τ(Λ) 6= 0 for any Λ ∈ A.

Clearly, Theorem 1.3 above and Theorem 1.2 (with ν := n, ` := 2n− 1, I := Λ,

ϕ := λ̆, (u, v) := z̆) suddenly imply Theorem 1.1, simply replacing6 “inclinations”
with “mutual inclinations” in the statement. That (∗) and (i) imply Proposition 1.2
follows by a classical unicity argument in BNF, suitably adapted to the properly-
degenerate case; see [8].

We just mention that the variables (15) have been obtained via a suitable
“Poincaré regularization” of a set of action-angle variables (Λ,Γ,Ψ, `, γ, ψ), which
we may call “planetary” Deprit variables7, since they are in turn easily related to
a set of variables (R,Φ,Ψ, r, ϕ, ψ) studied in the ’80s by F. Boigey and, in their
full generality, by A. Deprit [3, 10]. The variables (Λ,Γ,Ψ, `, γ, ψ) “unfold” and
extend to any n ≥ 2 classical reduction of the nodes by Jacobi and Radau, previ-
ously mentioned, [18, 27]. For the relation between the “original” Deprit variables
(R,Φ,Ψ, r, ϕ, ψ) and the planetary version (Λ,Γ,Ψ, λ, γ, ψ) or the relation between
the latter and Jacobi-Radau reduction of the nodes, see [24].

2. Result

Two joint decisive ingredients lead to the success of Arnold’s strategy. These
were

• the use of a set of canonical coordinates performing full or partial reduction
of the SO(3)-symmetry, in order to overcome the rotational degeneracy;
• the elliptic equilibrium point of the secular perturbation, in order to over-

come the proper degeneracy.

However, the nature of the elliptic equilibrium realized by the Jacobi-Radau (n = 2)
or RPS (n ≥ 2) coordinates is very different, and some distinction is to be made.

• The variables (15) realize a partial reduction of the SO(3)-invariance: in
such variables, the system has (3n − 1) degrees of freedom, one over the
minimum. As said, this is useful in order to describe with regularity the
co-inclined, co-circular configuration and to keep the elliptic equilibrium
for z̄ = 0. On the other hand, the fact of having one more degree of
freedom than needed implies that possible (3n − 1)-dimensional resonant
tori corresponding to rotations in the invariable plane of non-resonant (3n−
2)-dimensional tori are missed, with subsequent under-estimate (∼ ε4n−2

instead of ∼ ε4n−4) of the measure of the invariant set F∗ε mentioned in
Theorem 1.2.

6 Substantially, switching from Poincaré to RPS variables corresponds to replacing the n incli-
nations of the planets with respect to a prefixed frame (i, j, k), with (n − 1) mutual inclinations

among the planets plus the negligible inclination of the invariable plane with respect to k. Recall
that the invariable plane is the plane orthogonal to the total angular momentum C.

7 The variables (Λ,Γ,Ψ, `, γ, ψ), in such “planetary form,” have been rediscovered by the author

during her PhD. Note that, apart from a few cases [21, 14] of application to the three-body problem,
where they reduce to the variables of Jacobi reduction, Deprit variables seem to have remained
un-noticed by most. See also [6] for the proof of the symplecticity of (Λ,Γ,Ψ, `, γ, ψ) found in [23].
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• In [9], a construction is shown that allows one to switch to a “full reduction”
to (3n−2) degrees of freedom. Such procedure is a bit involved, but allows
one, at the end, to reduce completely the number of degrees of freedom
and, simultaneously, to deal with only one singularity. It generalizes the
analogous singularity of Jacobi variables for n = 2, for which the planar
configuration is not allowed. Therefore, one has to discard a positive mea-
sure set in order to stay away from it. The measure of the invariant set F∗ε
is therefore estimated as ∼ (ε4n−4 − ε4n−4

0 ) with an arbitrary 0 < ε0 < ε.
• The completely reduced variables that are obtained via the full reduction of

the previous item for the n = 2 case are analogues of Jacobi’s variables (they
are not the same) and lead to the same BNF studied in [28]. Differently
from what happens for the above discussed case n = 2, for n ≥ 3, the
full reduction studied in [9] loses (besides the Rg-symmetry in (10)) also
reflection symmetries and hence the elliptic equilibrium. Such equilibrium
needs to be restored via an Implicit Function Theorem procedure that is
successful in the range of small eccentricities and inclinations.
• From the two previous items one has that, while a “continuity” (letting

the inclinations to zero) between (3n − 1)-dimensional Lagrangian tori of
the partially reduced problem in space (whose existence has been discussed
in [11, 9]) and (2n)-dimensional Lagrangian tori of the unreduced planar
problem follows from [9], instead, an analogous continuity between (3n−2)-
dimensional Lagrangian tori of the fully reduced problem in space (again
discussed in [11, 9]) and (2n − 1)-dimensional Lagrangian tori of the fully
planar problem (discussed in [8]) once inclinations go to zero is naturally
expected but, up to now, remains unproved. Compare also the arguments
in [28, 11] on this issue. As mentioned in the previous section, we recall that
a controversial (indeed, erroneous) continuity argument between the planar
Delaunay coordinates and the spacial planetary coordinates obtained via
Jacobi reduction of the nodes was argued by Arnold [2] in order to infer
non-degeneracy of BNF of the spacial three-body problem.
• Recall the definitions of Fε, F∗ε in Theorem 1.2. In both the cases discussed

above (partial and full reduction), the “density” of F∗ε inside of Fε, i.e., the
ratio

d :=
meas F∗ε
meas Fε

goes to 1 as ε → 0. That is, one has to keep more and more close to the
co-inclined, co-circular configuration in order to encounter more and more
tori. In [5] it has been proved that one can take

d = 1−
√
ε.

Note in fact that the perturbative technique which leads to Theorem 1.2
(or to its improvement discussed in [5]) is developed with respect to ε,
rather than with respect to the initial parameter µ appearing in (1). This
circumstance is an intrinsic consequence of the fact that the tori obtained
via Theorem 1.2 bifurcate from the elliptic equilibrium and that, in general,
the Birkhoff series (11) diverges.



66 GABRIELLA PINZARI

• In [2], Arnold realized that, in the case of the planar three-body problem,
the series (11) is instead convergent (in this case fav

P is integrable). This
allows him to prove

d = 1− χ(µ)

where χ(µ)→ 0 as µ→ 0. For this particular case, the tori do not bifurcate
from the elliptic equilibrium, but a different quasi-integrable structure is
exploited in [2] (besides also a different perturbative technique in place of
Theorem 1.2). In [24], a slightly weaker result has been proved for the case
of the spacial three-body problem and the planar general problem:

d = 1− χ(µ, α)

where α denotes the maximum semi-axes ration and χ(µ, α) goes to 0 as
(µ, α)→ 0. Note that for such cases fav

P is not integrable.
• From the astronomical point of view, the investigation mentioned in the

two last items is motivated by the fact that, for example, asteroids or
trans-Neptunian planets exhibit relatively large inclinations or eccentric-
ities. From the theoretical point of view, the question is to understand
whether it is possible to find different quasi-integrable structures in the
planetary N -body problem besides the one determined by the elliptic equi-
librium.

We prove the following result.

Theorem 2.1. Assume that the semi-major axes of the planets are suitably spaced;
let α denote the maximum of such ratios. If α is small enough and the mass ratio
µ is small with respect to some power of α, one can find a number ε0 and a positive
measure set F∗α,µ ⊂ F := Fε0 of Lagrangian, (3n − 2)-dimensional, Diophantine
tori, the density of which in F goes to one as (α, µ)→ (0, 0). Letting the maximum
of the mutual inclinations go to zero, such (3n− 2)-dimensional tori are closer and
closer to Lagrangian, (2n − 1)-dimensional, Diophantine tori of the corresponding
planar problem.

In the next sections, we provide the main ideas behind the proof of Theorem 2.1,
without entering into the (technical) details of the estimate of the density of F∗α,µ
for length reasons.

3. Tools and sketch of proof

The proof of Theorem 2.1 relies upon four tools.

3.1. A symmetric reduction of the SO(3)-symmetry. The first tool is a new
set of canonical action-angle coordinates which perform a reduction of the total an-
gular momentum in the (1+n)-body problem, and, simultaneously, keep symmetry
by reflection and are regular for planar motions. Their definition is as follows.

Let a(i) ∈ R+, P (i) ∈ R3, with |P (i)| = 1, and e(i), denote, respectively, the
semi-major axis, the direction of the perihelion and the eccentricity of the ith

instantaneous ellipse Ei through (x(i), y(i)); let A(i), with 0 ≤ A(i) ≤ A(i)
tot =

π(a(i))2
√

1− (e(i))2, be the area spanned by x(i) on Ei with respect to P (i) and

C(i) = x(i) × y(i) the ith angular momentum. Define the following partial sums

S(j) :=

n∑
k=j

C(k) 1 ≤ j ≤ n (16)
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so that S(1) := C is the total angular momentum, while S(n) = C(n). Define, finally,
the following n couples of P-nodes, (ν̃j , ñj)1≤j≤n

ν̃1 := k(3) × C, ñj := S(j) × P (j), ν̃j+1 := P (j) × S(j+1), ñn := P (n) (17)

with 1 ≤ j ≤ n− 1. Then define the coordinates

P = (Λ, χ,Θ, `, κ, ϑ) (18)

where

Λ = (Λ1, · · · ,Λn) ∈ Rn ` = (`1, · · · , `n) ∈ Tn

χ = (χ0, χ̄) ∈ R× Rn−1 κ = (κ0, κ̄) ∈ T× Tn−1

Θ = (Θ0, Θ̄) ∈ R× Rn−1 ϑ = (ϑ0, ϑ̄) ∈ T× Tn−1

with

χ̄ = (χ1, · · · , χn−1) κ̄ = (κ1, · · · , κn−1)

Θ̄ = (Θ1, · · · ,Θn−1) ϑ̄ = (ϑ1, · · · , ϑn−1),

via the following formulas.

Θj−1 =

{
C3 := C · k(3)

S(j) · P (j−1) ϑj−1 =

{
ζ := αk(3)(k

(1), ν̃1) j = 1
αP (j−1)(ñj−1, ν̃j) 2 ≤ j ≤ n

χj−1 :=

{
G = |S(1)|
|S(j)| κj−1 :=

{
g := αS(1)(ν̃1, ñ1) j = 1
αS(j)(ν̃j , ñj) 2 ≤ j ≤ n

Λi := Mi

√
mia(i) `i := 2πA

(i)

A(i)
tot

:= mean anomaly of x(i) on Ei

(19)

Note the following.

• The variables (18) are very different from the planetary Deprit variables
(Λ,Γ,Ψ, `, γ, ψ) mentioned in the previous section. For example, they do
not provide the Jacobi reduction of the nodes when n = 2. Indeed, the
definition of (18) is based on 2n nodes (17), the nodes between the mutual
planes orthogonal to S(j) and P (j) and P (j) and S(j+1). Deprit’s reduction
is instead based on n nodes, the nodes among the planes orthogonal to the
S(j)’s. Let us incidentally mention that, for the three-body case (n = 2), the
variables (19) are trickily related to certain canonical variables introduced
in §2.2 of [24]. This relation will be explained elsewhere.
• While, in the case of the variables (Λ,Γ,Ψ, `, γ, ψ), inclinations among the

S(j)’s cannot be zero, it is not so for the variables (19), where the planar
configuration can be reached with regularity. And in fact, in the planar
case, the change between planar Delaunay variables (Λ,Γ, `, g) and the
planar version (Λ, χ, `, κ) of (19) reduces to{

Λ = Λ
` = `

{
χi−1 =

∑n
j=i Γn

κi−1 = gi − gi−1
1 ≤ i ≤ n

with g0 ≡ 0. Note incidentally that the variables (19) are instead singular
in correspondence to the vanishing of the inclinations about P (j) and S(j)

or S(j+1) and P (j); configurations with no physical meaning.
• The variables (18) have in common with the variables (Λ,Γ,Ψ, `, γ, ψ) and

the Delaunay variables (Λ,Γ,H, `, g, h) the fact of being singular for zero
eccentricities (since in this case the perihelia are not defined). We however
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give up any attempt to regularize such vanishing eccentricities. The rea-
son is that the Euclidean lengths of the C(j)’s are not8 actions (apart from
χn−1 = |C(n)|) and hence the regularization does not seem9 to be (if exist-
ing) easy. Note that, since we are interested in high eccentricities motions,
we shall have to stay away from these singularities.
• Another remarkable property of the variables (18), besides the one of being

regular for zero inclinations, is that they retain the symmetry by reflec-
tions, as explained in Proposition 3.1 below. This does not happen for the
variables (Λ,Γ,Ψ, `, γ, ψ). As we shall explain better in the next section,
such symmetry property plays a role in order to highlight a global10 quasi-
integrable structure of Hχ0 in (20) below and, especially, to have an explicit
expression of it.

Proposition 3.1. The action-angle coordinates (18) are canonical. Moreover, let-
ting Hχ0

the system (1) in these variables, (Θ0, ϑ0, χ0) are integrals of motion for
Hχ0

, which so takes the form

Hχ0 = hK(Λ) + µfχ0(Λ, χ̄, Θ̄, `, κ̄, ϑ̄). (20)

Finally, in such variables, the reflection11 transformation

(y
(i)
1 , y

(i)
2 , y

(i)
3 , x

(i)
1 , x

(i)
2 , x

(i)
3 )→ (y

(i)
1 ,−y(i)

2 , y
(i)
3 , x

(i)
1 ,−x(i)

2 , x
(i)
3 ) (21)

is

(Λ, χ,Θ, `, κ, ϑ)→ (Λ, χ,−Θ, `, κ, 2πZn − ϑ).

Therefore, any of the points

(Θ, ϑ) = (0, πk) k ∈ {0, 1}n ϑ mod 2πZn (22)

which represent a12 planar configuration, is an equilibrium point for the function
(Θ̄, ϑ̄)→ fχ0(Λ, χ̄, Θ̄, `, χ̄, ϑ̄).

3.2. An integrability property. The second tool is an integrability property of
the planetary system. To describe it, we generalize the situation some, introducing
the concept of a Kepler map.

Given 2n positive “mass parameters” m1, . . . ,mn,M1, . . . ,Mn, a set X ⊂ R5n

and a bijection

τ : X→
{

(E1, · · · ,En) ∈ (E3)n,Ei : ellipse
}

X ∈ X→
(
E1(X), · · · ,En(X)

)
which assigns to any X ∈ X a n-plet of ellipses (E1, · · · ,En) in the Euclidean space
E3 with strictly positive eccentricities and having a common focus S, we shall say
that an injective map

φ : (X, `) ∈ D6n := X× Tn → (yφ(X, `), xφ(X, `)) ∈ (R3)n × (R3)n

8 Indeed, for 1 ≤ j ≤ n− 1, |C(j)|2 = χ2
j−1 + χ2

j − 2Θ2
j + 2

√
(χ2
j −Θ2

j )(χ
2
j−1 −Θ2

j ) cosϑj .
9 Recall that e(j) = 0 corresponds to |C(j)| = Λj .
10 With a remainder independent of eccentricities and inclinations; compare Proposition 3.3.
11 Note that the reflection in (21) is slightly different from R−2 in (8). This is not important,

since indeed in (6) the signs si and ri may be chosen independently.
12 Depending on the signs of the cosines of the mutual inclinations, there are 2n−1 planar

configurations. The one with all the C(i) parallel and in the same verse corresponds, in the
variables (19), to (Θ, ϑ) =

(
(0, · · · , 0), (π, · · · , π)

)
.
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is a Kepler map if φ associates to (X, `) ∈ X × Tn, with ` = (`1, · · · , `n) (mean
anomalies) an element

(yφ(X, `), xφ(X, `)) = (y
(1)
φ (X, `1), · · · , y(n)

φ (X, `n), x
(1)
φ (X, `1), · · · , x(n)

φ (X, `n))

in the following way. Letting, respectively, P
(i)
φ (X), a

(i)
φ (X), e

(i)
φ (X), and N

(i)
φ (X) be

the direction from S to the perihelion, the semi-major axis, the eccentricity and a

prefixed direction of the plane of Ei(X), x
(i)
φ (X, `i) are the coordinates with respect

to a prefixed orthonormal frame (i, j, k) centered in S of the point of Ei(X) such

that 1
2a

(i)
φ

√
1− (e

(i)
φ )2`i (mod πa

(i)
φ

√
1− (e

(i)
φ )2) is the area spanned from P

(i)
φ (X)

to x
(i)
φ (X, `i) relatively to the positive (counterclockwise) orientation determined by

N
(i)
φ (X) and

y
(i)
φ (X, `i) = mi

√
Mi

(a(i))3
∂`ix

(i)
φ (X, `i). (23)

A Kepler map will be called canonical if any X ∈ X has the form X = (P,Q,Λ)

where Λ = (Λ1, · · · ,Λn) = (m1

√
M1a

(1)
φ , · · · ,mn

√
Mna

(n)
φ ), P = (P1, · · · ,P2n),

Q = (Q1, · · · ,Q2n) and the map

(Λ, `,P,Q)→ (y, x) = (y(1), · · · , y(n), x(1), · · · , x(n))

preserves the standard 2-form:

n∑
i=1

dΛi ∧ d`i +

2n∑
i=1

dPi ∧ dQi =

n∑
i=1

3∑
j=1

dy
(i)
j ∧ dx

(i)
j .

Examples of canonical Kepler maps include

(a) The map φDel which defines the Delaunay variables (Λ,Γ,H, `, g, h);
(b) The map φDep which defines the planetary Deprit variables (Λ,Γ,Ψ, `, γ, ψ);
(c) The map φP which defines the variables P = (Λ, χ,Θ, `, κ, ϑ) in (19).

The following classical relations then hold for (not necessarily canonical) Kepler
maps.

1

2π

∫
T

d`i

|x(i)
φ |

=
1

a
(i)
φ

,
1

2π

∫
T
y

(i)
φ d`i = 0,

1

2π

∫
T

x
(i)
φ

|x(i)
φ |3

d`i = 0. (24)

Given a canonical Kepler map φ, put Hφ := Hhel ◦ φ, where Hhel is as in (1).
Then

Hφ = hK(Λ1, · · · ,Λn) + µ fφ(X, `1, · · · , `n)

where hK is as in (4) and

fφ(X, `1, · · · , `n) :=
∑

1≤i<j≤n

(
y

(i)
φ (X, `i) · y(j)

φ (X, `j)

m0
− mimj

|x(i)
φ (X, `i)− x(j)

φ (X, `j)|
)

is the perturbing function (1) expressed in the variables (Λ, `,P,Q). Imposing a
suitable restriction of the the domain so as to exclude orbit collision, one has that
the secular φ-perturbing function, i.e., the average

(fφ)av(X) :=
1

(2π)n

∫
Tn
fφ(X, `1, · · · , `n)d`1 · · · d`n
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is well defined. Due to (23), the “indirect” part of the perturbing function, i.e., the

term
∑

1≤i<j≤n

y
(i)
φ (X, `i) · y(j)

φ (X, `j)/m0 has zero average and hence (fφ)av is just

the average of the Newtonian (or “direct”) part:

(fφ)av(X) =
∑

1≤i<j≤n

(f
(ij)
φ )av

with

(f
(ij)
φ )av := −mimj

(2π)2

∫
T2

d`id`j

|x(i)
φ (X, `i)− x(j)

φ (X, `j)|
i < j.

If we consider the expansion

(f
(ij)
φ )av = (f

(ij)
φ )(0)

av + (f
(ij)
φ )(1)

av + (f
(ij)
φ )(2)

av + · · ·

where

(f
(ij)
φ )(k)

av (X) := −mimj

(2π)2

1

k!

dk

dεk

∫
T2

d`id`j

|ε x(i)
φ (X, `i)− x(j)

φ (X, `j)|

∣∣∣
ε=0

,

we have that, in this expansion, the two first terms depend only on Λj . More
precisely, due to (24),

(f
(ij)
φ )(0)

av = −mimj

a(j)
, (f

(ij)
φ )(1)

av = 0.

Therefore, the term (f
(ij)
φ )

(2)
av carries the first non-trivial information. In the case

of the map φ = φP , we have the following.

Proposition 3.2. .

(i) The functions (f
(ij)
φP

)
(2)
av (more generally, (f

(ij)
φP

)av) depend only on Λi, Λj,
Θi, . . . ,Θj∧(n−1), χi−1, . . . , χj∧(n−1), κi, . . . , κj−1, ϑi, . . . , ϑj∧(n−1) where
a ∧ b denotes the minimum of a and b.

(ii) In particular, for any 1 ≤ i ≤ n−1, the nearest-neighbor terms (f
(i,i+1)
φP

)
(2)
av

(more generally, (f
(i,i+1)
φP

)av) depend only on the following. Λi, Λi+1, χi−1,
χi, χ(i+1)∧(n−1), Θi, Θ(i+1)∧(n−1), κi, ϑi, ϑi+1∧(n−1).

(iii) The function (f
(n−1,n)
φP

)
(2)
av depends only on Λn−1, Λn, χn−2, χn−1, Θn−1,

and ϑn−1, while it does not depend on κn−1. Then it is integrable.

(iv) (f
(n−1,n)
φP

)
(2)
av is integrable in the Arnold-Liouville sense: there exists a suit-

able global neighborhood B2 of 0 ∈ R2 (where 0 corresponds to C(ν−1) ‖
C(n)), a set A ⊂ R4 and a real-analytic, canonical change of coordinates

φ1 :
(

(Λn−1,Λn, χn−2, χn−1), (˜̀
n−1, ˜̀

n, κ̃n−2, κ̃n−1), (pn−1, qn−1)
)

→
(

(Λn−1,Λn, χn−2, χn−1), (`n−1, `n, κn−2, κn−1), (Θn−1, ϑn−1)
)

defined on A×T4×B2 which transforms (f
(n−1,n)
φP

)
(2)
av into a function h

(2n+1)
χ0

depending only on Λn−1, Λn, χn−2, χn−1,
p2n−1+q2n−1

2 .
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Note the following.

• The main point of Proposition 3.2 is that the action χn−1 = |C(n)| is an

integral for (f
(n−1,n)
φP

)
(2)
av . Clearly, this is general: whatever φ is, |C(j)|

is an integral for (f
(ij)
φ )

(2)
av . This fact has been observed firstly, for the

case of the three-body problem, in [15], using Jacobi reduction of the

nodes. In that, case Harrington observed that (f
(12)
φJac

)
(2)
av depends only on

(Λ1,Λ2,Γ1,Γ2,G, γ1) and that the integrability is exhibited via the couple
(Γ1, γ1). As we already observed, in such case the planetary Deprit vari-
ables and the variables obtained by Jacobi reduction of the nodes are the
same.
• An important issue that is used in the proof of Theorem 2.1 (precisely, in

order to check certain non-degeneracy assumptions involved in Theorem 3.1

below) is the effective integration of (f
(n−1,n)
φP

)
(2)
av . Clearly, in principle, this

could be achieved using any of the sets of variables mentioned in the two
previous items: planetary Deprit variables (Λ,Γ,Ψ, `, γ, ψ) or the variables
(18). However, the integration using planetary Deprit variables carries
considerable analytic difficulties and has been performed only qualitatively
[21, 14]. Using the variables (18), such integration can be achieved by a
suitable convergent Birkhoff series, exploiting the equilibrium points in (22).
Compare also Proposition 3.3 and the comments below.

3.3. Global quasi-integrability of the planetary system. The third tool is
the following.

Proposition 3.3. There exist natural numbers m, ν1, . . . , νm with ν1 + · · ·+ νm =
3n − 2 > m and a positive real number s such that, if the semi-major axes of the
planets are suitably spaced and the maximum semi-axes ratio α is sufficiently small,
for any positive number K̄ sufficiently small with respect to some positive power of
α−1 and any µ small with respect to some power of α, one can find a number
ρ(α, K̄) which goes to 0 as a power law with respect to α and 1

K̄
, positive numbers

γ1, . . . , γm depending only on α and µ, a domain D ⊂ R3n−2, a global neighborhood
B2(n−1) of 0 ∈ R2(n−1), and, if C ⊂ R2n−1 is as in Theorem 3.1 with ν = 3n − 2
and ` = n− 1, a real-analytic and symplectic transformation(

(Λ̂, χ̂), (ˆ̀, κ̂), (p̂, q̂)
)
∈ Cρ × T2n−1

s ×B2(n−1)√
2ρ

→
(
(Λ, χ̄), (`, κ̄), (Θ̄, θ̄)

)
,

which conjugates the Hamiltonian in (20) to

Ĥχ0
= ĥχ0

(Λ̂, χ̂, p̂, q̂) + µf̂χ0
(Λ̂, χ̂, ˆ̀, κ̂, p̂, q̂) (25)

where ĥχ0
(Λ̂, χ̂, p̂, q̂) depends on (p̂i, q̂i)1≤i≤n−1 only via

Ĵ(p̂, q̂) :=
(
p̂21+q̂21

2 , . . . ,
p̂2n−1+q̂2n−1

2

)
and letting ω be the gradient of ĥχ0

with respect to (Λ̂, χ̂, Ĵ), then

D ⊇ ω−1(DK̄,3n−2
γ1,··· ,γm,τ ) ⊃ ∅.

Finally, the following holds. If L, E, ρ̂ are as in Theorem 3.1, then one can take
ρ̂ = ρ, L = L0(α)/µ, E = µE0(α)e−K̄s, where L0(α), E0(α) do not exceed some
power of α−1.
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Here are some comments of the proof of Proposition 3.3.

• The function ĥχ0 is a sum

ĥχ0
=

2n−1∑
i=1

ĥ(i)
χ0

(26)

where
ĥ(1)
χ0
, · · · , ĥ(n)

χ0

are close to the respective Keplerian terms

h
(1)
K , · · · , h(n)

K

in (2), while

ĥ(n+1)
χ0

, · · · , ĥ(2n+1)
χ0

are as follows. ĥ
(2n+1)
χ0 is close to the function µh

(2n−1)
χ0 , where h

(2n−1)
χ0 is

defined in the last item of Proposition 3.3. For n ≥ 3 and 2n − 2 ≥ i ≥
n+1, inductively, ĥ

(i)
χ0 is as follows. Consider the “projection13 over normal

modes” of (f
(i−n,i−n+1)
φP

)
(2)
av ◦φ1 ◦ · · · ◦φ2n−1−i with respect to the variables

(pj , qj) with j ≥ i− n+ 1 and (χi, κ̃i) with i ≥ i− n. This is a function of

Λi−n, · · · ,Λn, χi−n−1, · · · , χn−1,Θi−n, ϑi−n,
p2
i−n+1 + q2

i−n+1

2
, · · · ,

p2
n−1 + q2

n−1

2

and is integrable in the sense of Liouville-Arnold: there exists φ2n−i which

lets this projection into a function h
(i)
χ0 of

Λi−n, · · · ,Λn, χi−n−1, · · · , χn−1,
p2
i−n + q2

i−n
2

, · · · ,
p2
n−1 + q2

n−1

2
.

Then ĥ
(i)
χ0 is close to µh

(i)
χ0 .

• The exponential decay of E with respect to K̄ follows from a suitable
averaging technique derived from [26], carefully adapted to our case.
• The functions in (26) are of different strengths, with respect to the mass

parameter µ and the semi-mjor axes ratios αi := a(i)

a(i+1) . The first n ones,
which are, as said, close to be Keplerian, are of order

∼ 1

a(1)
, · · · , 1

a(n)
.

The remaining (n− 1) ones are much smaller:

∼ µ (a(1))2

(a(2))3
, · · · , µ (a(n−1))2

(a(n))3

(they have the strength of µ(f
(1,2)
φP

)
(2)
av , . . . , µ(f

(n−1,n)
φP

)
(2)
av , which are so).

Therefore, in order to apply a KAM scheme to the Hamiltonian (25), we
need a formulation suitably adapted to this case. This is given in the
following section.

13 By “projection over normal modes” of a given function

f(I, ϕ, p, q) =
∑

(a,b)∈Nm×Nmκ∈Zn
fk(I)ekk·ϕ

m∏
i=1

(
ui − ivi√

2

)ai (ui + ivi

i
√

2

)bi
,

we mean the function
∑
a∈Nm f0(I)

∏m
i=1(

u2
i+v

2
i

2i
)ai .
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3.4. Multi-scale KAM theory. The fourth tool is a multi-scale KAM Theorem.
To quote it, let us fix the following notations.

Given m, ν1, . . . , νm ∈ N, ν := ν1 + · · ·+ νm, let us decompose

Zν \ {0} =

m⋃
i=1

Li \ Li−1

where

Zν =: L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lm = {0}

is a decreasing sequence of sub-lattices defined by

Li :=
{
k = (k1, · · · , km) ∈ Zν = Zν1 × · · · × Zνm : k1 = · · · = ki = 0

}
.

Next, given γ, γ1, . . . , γm, τ ∈ R+, define the “multi-scale Diophantine” number
sets

Dν,K,iγ;τ :=
{
ω ∈ Rν : |ω · k| ≥ γ

|k|τ
∀k ∈ Li−1 \ Li, |k|1 ≤ K

}
Dν,Kγ1···γm;τ :=

m⋂
i=1

Dν,K,iγi;τ

Dνγ1···γm;τ :=
⋂
K∈N
Dν,Kγ1···γm;τ .

Explicitly, a number ω = (ω1, · · · , ωm) ∈ Rν = Rν1×· · ·×Rνm belongs to Dνγ1···γm;τ

if, for any k = (k1, · · · , km) ∈ Zν1 × · · · × Zνm \ {0},

∣∣∣∣∣∣
m∑
j=1

ωj · kj

∣∣∣∣∣∣ ≥


γ1

|k|τ
if k1 6= 0;

γ2

|k|τ
if k1 = 0, k2 6= 0;

· · ·
γm
|km|τ

if k1 = · · · = km−1 = 0, km 6= 0.

Note that the choice m = 1 gives the usual Diophantine set Dνγ1,τ . The m = 2 case,
with γ1 = O(1) and γ2 = O(µ), has been considered in [2] (and [5]) for the proof of
Theorem 1.2.

Theorem 3.1 (Multi-scale KAM Theorem). Let m, `, ν1, . . . , νm ∈ N, with ν :=
ν1+· · ·+νm ≥ `, τ∗ > ν, γ1 ≥ · · · ≥ γm > 0, 0 < 4s ≤ s̄ < 1, ρ > 0, D ⊂ Rν−`×R`,
A := Dρ, B2` a neighborhood (with possibly different radii) of 0 ∈ R2` such that, if

Ī(u, v) := (
u2
1+v21

2 , · · · , u
2
`+v

2
`

2 ), then ΠR`D = Ī(B2`), C := ΠRν−`D and let

H(I, ϕ, u, v) = h(I, u, v) + f(I, ϕ, u, v)

be real-analytic on Cρ × Tν−`s̄+s × B2√̀
2ρ

, where h depends on (u, v) only via Ī(u, v).

Assume that ω0 := ∂(I,Ī)h is a diffeomorphism of A with non singular Hessian

matrix U := ∂2
(I,Ī)

h and let Uk denote the (νk + · · ·+ νm)× ν submatrix of U , i.e.,

the matrix with entries (Uk)ij = Uij, for ν1 + · · · + νk−1 + 1 ≤ i ≤ ν, 1 ≤ j ≤ ν,
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where 2 ≤ k ≤ m. Let

M ≥ sup
A
‖U‖, Mk ≥ sup

A
‖Uk‖, M̄ ≥ sup

A
‖U−1‖, E ≥ ‖f‖ρ,s̄+s

M̄k ≥ sup
A
‖Tk‖ if U−1 =

 T1

...
Tm

 1 ≤ k ≤ m.

Define

K :=
6

s
log+

(
EM2

1 L

γ2
1

)−1

where log+ a := max{1, log a}

ρ̂k :=
γk

3MkKτ∗+1
, ρ̂ := min {ρ̂1, · · · , ρ̂m, ρ}

L := max
{

M̄,M−1
1 , · · · ,M−1

m

}
Ê :=

EL

ρ̂2

Then one can find two numbers ĉν > cν depending only on ν such that, if the
perturbation f is so small that the following “KAM condition” holds

ĉνÊ < 1,

then, for any ω ∈ Ω∗ := ω0(D) ∩ Dνγ1,··· ,γm,τ∗ , one can find a unique real-analytic
embedding

φω : ϑ = (ϑ̂, ϑ̄) ∈ Tν → (v̂(ϑ;ω), ϑ̂+ û(ϑ;ω),Rϑ̄+ū(ϑ;ω)w1, · · · ,Rϑ̄+ū(ϑ;ω)w`)

∈ ReCr × Tν−` × ReB2√̀
2r

where r := cνÊρ̂ such that Tω := φω(Tν) is a real-analytic and ν-dimensional
H-invariant torus, on which the H-flow is analytically conjugated to ϑ→ ϑ+ ω t.

Theorem 3.1 is essentially Proposition 3 of [5] suitably adapted to our case.

Applying Theorem 3.1 to the Hamiltonian (25) (with I := (Λ̂, χ̂), ϕ := (ˆ̀, κ̂),
(u, v) := (p̂, q̂), ν = 3n− 2, ` = n− 1, m, ν1, . . . , νm as in Proposition 3.3) gives the
proof of Theorem 2.1. More details will be published elsewhere, [25]. �
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