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The evaporation of droplets within turbulent sprays involves unsteady, multiscale, and
multiphase processes which make its comprehension and modeling capabilities still limited.
The present work aims to investigate the dynamics of droplet vaporization within a
turbulent spatial developing jet in dilute, nonreacting conditions. We address the problem
considering a turbulent jet laden with acetone droplets and using the direct numerical
simulation framework based on a hybrid Eulerian-Lagrangian approach and the point droplet
approximation. A detailed statistical analysis of both phases is presented. In particular,
we show how crucial is the preferential sampling of the vapor phase induced by the
inhomogeneous localization of the droplets through the flow. Strong droplet preferential
segregation develops suddenly downstream from the inflow section both within the turbulent
core and the jet mixing layer. Two distinct mechanisms have been found to drive this
phenomenon: the inertial small-scale clustering in the jet core and the intermittent dynamics
of droplets across the turbulent-nonturbulent interface in the mixing layer, where dry air
entrainment occurs. These phenomenologies strongly affect the overall vaporization process
and lead to an impressive widening of the droplet size and vaporization rate distributions
in the downstream evolution of the turbulent spray.
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I. INTRODUCTION

Turbulent sprays are complex multiphase flows involving unsteady and multiscale phenomena
such as turbulence coupled with a phase transition process. The presence of two distinguished phases
which mutually interact exchanging mass, momentum, and energy makes the description of the
problem extremely challenging. If combustion is considered, chemical reactions and heat release
add some clear complexities. In this scenario, a satisfactory comprehension of the turbulent spray
dynamics has not yet been achieved, and existing models’ capabilities for applications are still limited
[1,2]. Nevertheless, the research progress in this field is crucial for several industrial applications as
well as from an environmental point of view. A typical example can be found in the development
of high-efficiency and low-emission internal combustion engines. In these applications liquid fuel is
directly injected into the combustion chamber where the vaporization of fuel droplets occurs together
with chemical reactions within the turbulent gaseous environment. The formation of pollutants in
turbulent spray combustion is related to complex multiscale phenomena that involve fluctuations of
temperature and reactants concentrations. In particular, soot formation occurs through a pyrolysis
process in fuel-rich regions that experience high temperature without enough oxidizer to react [3–5].
This can be observed within droplet clusters, where the concentration of the fuel droplets can be
even a thousand times higher than its bulk value leading to a peak in the fuel vapor concentration.
Hence, in order to predict and model the soot formation process, an improved understanding of the
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mechanisms that govern the distribution of droplets and fuel-oxidizer mixture within turbulent jet
sprays is mandatory.

A phenomenological description of the overall evolution of the spray dynamics can be found in the
review of Jenny et al. [1]. The process starts with the primary atomization of a high-velocity liquid
jet. As the liquid flow is ejected from a duct into a gaseous environment, interface instabilities such
as Kelvin-Helmholtz and Rayleigh-Taylor fragmentize the jet into large drops and liquid ligaments
[6]. In their downstream evolution liquid ligaments and drops are subjected to aerodynamic forces
induced by the velocity difference at the liquid-gas interface. The stresses induced by aerodynamic
forces produce a further breakup of the liquid phase (secondary atomization) giving origin to a system
of small droplets dispersed within the gaseous turbulent phase. The atomization process occurs in
a so-called dense regime and terminates when the surface tension prevails on aerodynamic stresses
preventing further fragmentation. At this step a dilute regime establishes: droplet mutual interactions
(e.g., collisions and coalescence) are negligible, but the effect of droplets on the carrier flow is still
considerable [7,8]. While in the dense regime the vaporization rate is negligible, in dilute conditions
the vaporization process becomes significant. In this phase of the turbulent spray evolution, most
of the liquid evaporates. Moreover, small droplets evolve preserving a spherical shape due to the
dominance of the surface tension on the aerodynamic stresses. Even if the presence of droplets
exerts a significant effect on the flow in terms of mass, momentum, and energy balance, at this step
the droplet size is usually below or comparable to the smallest scales of the turbulent flow so the
point droplet approximation applies [9]. Hence, in dilute conditions the mathematical description
of droplet-laden flows lends itself particularly well to a hybrid Eulerian-Lagrangian description.
The Navier-Stokes equations govern the dynamics of the continuous phase if distributed sink-source
terms are considered in order to represent the mass, momentum, and energy exchanges between the
Eulerian carrier phase and Lagrangian point droplets.

One of the most peculiar phenomenologies characterizing dispersed multiphase turbulent flows in
dilute conditions is the preferential segregation of particles and droplets as a result of the interaction
of their inertia with the carrier phase turbulent dynamics (see, e.g., Toschi and Bodenschatz [10]). The
mechanisms at the origin of the preferential segregation in free flows have been widely investigated in
the literature for both solid particles and liquid droplets. The intensity of the small-scale segregation
of solid particles in homogeneous turbulence is found to be driven by the Stokes number Stη = τp/τη,
with τp the particle relaxation time and τη the Kolmogorov time scale. More specifically, the intensity
of the small-scale clustering is maximum when the particle relaxation time is of the order of the
Kolmogorov time scale such that the Stokes number Stη � 1 [11–14]. The same behavior is observed
for evaporating droplets which behave as inertial particles [15]. Concerning turbulent jets, a mean
accumulation of the dispersed phase has been observed at specific distances from the inflow section
both experimentally [16] and numerically [17]. Even if the preferential concentration of a dispersed
phase has been well characterized in homogeneous turbulence, a satisfactory comprehension of the
effect of this phenomenology on the overall vaporization process within turbulent jet sprays has not
yet been achieved and constitutes the main focus of this paper.

From a theoretical and numerical point of view, one of the first descriptions of the vaporization of
spherical droplets dragged by a gaseous phase flow was addressed in the seminal works of Spalding
[18] and Godsave [19]. Fixing the environmental vapor concentration, they found that the droplet
surface decreases linearly with time (the d-square law). Maxey and Riley [20] derived an equation
for the motion of a finite size spherical particle or droplet at low Reynolds number. The equation
accounts for the Stokes drag, added-mass effect, and buoyancy force. Dealing with a dispersed phase
with a density much higher than that of the fluid, the Stokes relaxation time τp is an appropriate
time scale in order to describe the drag force effect on the dispersed phase dynamics [21,22].
Abramzon and Sirignano [23] proposed an improved model for droplet vaporization, considering
nonuniform and time-dependent environmental conditions, taking into account forced convection,
molecular diffusion, and the Stefan flow contribution to the vapor transport from the droplet surface
to neighboring environment. Even if several models can be found in literature for the simulation
of turbulent evaporating sprays in the Reynolds averaged Navier-Stokes (RANS) or large-eddy

034304-2



EVAPORATION OF DILUTE DROPLETS IN A TURBULENT JET

simulation (LES) frameworks [1,24], these models lack in capabilities to accurately reproduce
complex phenomena such as strong polydispersity and small-scale clustering of droplets [2]. Despite
the highly demanding computational resources, the use of direct numerical simulation (DNS) allows
one to capture the whole physics of the spray vaporization process in order to understand the complex
phenomena involved. In this context, Mashayek [25] adopted an Eulerian-Lagrangian approach in
order to perform a DNS of low Mach number, homogeneous shear turbulent flows laden with droplets.
Miller and Bellan [26] reported a DNS of a confined three-dimensional, temporally developing gas
mixing layer laden with evaporating hydrocarbon droplets at subsonic Mach number. Reveillon and
coworkers [15] studied the effect of preferential droplet accumulation on the evaporation in isotropic
turbulence showing that different regimes take place depending on the droplet concentration. Recently
Bukhvostova et al. [27] considered the DNS of a turbulent channel flow of a mixture of air and water
vapor laden with water droplets. The work focuses on the comparison between the performances of
an incompressible and a low Mach number asymptotic formulation in reproducing the flow dynamics.
Even if the two formulations show a good qualitative agreement, the low Mach number formulation
is found to be crucial in order to obtain a reliable quantitative prediction of heat and mass transfer.

The prototypal flow for an evaporating spray is constituted by a turbulent free jet which is
characterized by the effect of environmental gas entrainment. In more detail, a turbulent jet is
constituted by a rotational turbulent core which is continuously entrained by the surrounding
irrotational fluid [28]. In sprays, the entrained dry flow dilutes the vapor concentration and controls
the vaporization process. This phenomenology was found to be of critical importance also in natural
phenomena. One example consists in the effect of entrainment in stratocumulus clouds where it
constitutes a driving parameter in the determination of cloud lifetimes and in turn even in regulating
planetary-scale properties [29]. Moreover, the fast grow rate of the droplet size spectrum in turbulent
warm clouds is a challenging, still not understood problem in cloud physics [30,31], despite its
importance in determining extreme weather conditions.

To the best of the authors’ knowledge, a fundamental study of the effects of the entrainment in
an evaporating turbulent jet spray in combination with an analysis of the preferential segregation
effect is still missing. This work aims to cover this lack considering DNS data of an evaporating
turbulent spray, using a two-way coupling approach between the two phases and accounting for the
entrainment effect. The numerical algorithm adopts a hybrid Eulerian-Lagrangian approach and the
point droplet approximation. In addition, the effect of density variation is accounted by a low Mach
number formulation of the Navier-Stokes equations, even though at lower Reynolds number and in a
slightly different flow configuration, thermodynamic and droplet parameters have been selected to be
similar to the experiments of Refs. [32,33]. Strong droplet preferential segregation is observed over
the whole downstream evolution of the spray, which induces a preferential sampling of the vapor
concentrated regions. Two different mechanisms are found to drive this process, the former due to
the inertial clustering, the latter related to the dynamics of the jet entrainment. This last mechanism
is found to be crucial in the outer part of the jet core, where the evaporation peaks, and strongly
impacts the vaporization process which is characterized by an extreme widening of the droplet size
spectrum.

II. NUMERICAL METHOD AND MODEL

In the present paper we report the results of the DNS of a turbulent evaporating spray in a
hybrid Eulerian-Lagrangian framework. The point droplet approximation is adopted in the two-way
coupling conditions. The governing equations for the Eulerian gaseous phase consist in a low Mach
number asymptotic formulation of the Navier-Stokes equations in an open environment. By the use
of this approach arbitrary density variations can be accounted neglecting acoustics [34]. Within this
framework, the Navier-Stokes equations adopted in the present study can be written as

∂ρ

∂t
+ ∇ · (ρu) = Sm, (1)
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∂

∂t
(ρYv) + ∇ · (ρYvu) = ∇ · (ρD∇Yv) + Sm, (2)

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) = ∇ · τττ − ∇P + Sp, (3)

∇ · u = γ − 1

γ

1

p0

[
∇ · (k∇T ) + Se − L0

vSm

]
, (4)

p0 = ρ RmT , (5)

where u, ρ, T , p0, and P are the velocity, total density, temperature, thermodynamic pressure, and
hydrodynamic pressure fields of the carrier vapor-gas mixture, respectively, and Yv = ρv/ρ is the
vapor mass fraction field, with ρv the vapor partial density. The thermal conductivity of the carrier
mixture and the binary mass diffusion coefficient of the vapor into the gas are k and D, respectively.
The Eulerian carrier phase is assumed to be governed by the state equation (5) where Rm = R̄/Wm

is the gas constant of the mixture with Wm its molar mass and R̄ the universal gas constant. γ =
cp/cv is the specific heat ratio of the carrier mixture with cp and cv the specific heat capacity
at constant pressure and volume, respectively. The viscous stress tensor is τττ = μ(∇u + ∇uT ) −
(2/3)μ (∇ · u) I, with μ the dynamic viscosity. The hypothesis of calorically perfect chemical species
is assumed, and a reference temperature T0 = 0 K is fixed in order to estimate the enthalpies. Under
this assumption we denote the latent heat of vaporization of the liquid phase evaluated at the reference
temperature T0 = 0 K as L0

v . Consistently with previous studies in this field [25–27], the effect of the
dispersed phase on the gaseous carrier phase is accounted for by three sink-source coupling terms in
the right-hand side of the mass, momentum, and energy equations, Sm, Sp, and Se, respectively:

Sm = −
∑
i=1

dmd,i

dt
δ(x − xd,i), (6)

Sp = −
∑
i=1

d

dt
(md,iud,i)δ(x − xd,i), (7)

Se = −
∑
i=1

d

dt

(
md,iclTd,i

)
δ(x − xd,i), (8)

where xd,i , md,i , ud,i , and Td,i are the ith droplet position, mass, velocity, and temperature,
respectively, and cl is the liquid specific heat. The sum is taken over the whole droplet population
located within the domain, and the delta function expresses that the sink-source terms act only
at the domain locations occupied by the point droplets. In the numerical algorithm, the Eulerian
terms (6)–(8) are calculated in correspondence of each grid node by volume averaging the mass,
momentum, and energy sources from all droplets located within the cell volume centered around the
considered grid point.

The droplets are treated as rigid evaporating spheres, and the liquid phase properties (e.g.,
temperature) are assumed to be uniform inside each droplet. In addition, being the present work
restricted to the investigation of dilute conditions, droplet mutual interactions (e.g., collisions,
coalescence) are neglected. Given their importance, the validity of the preceding assumptions will be
briefly discussed here. Under these hypotheses, the dynamics of the droplets is completely described
by the following Lagrangian equations:

dxd

dt
= ud , (9)

dud

dt
= f

τd

(u − ud ), f = 1 + 0.15Red
0.687, (10)
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dmd

dt
= −1

3

md

τd

Sh

Sc
Hm, Hm = ln(1 + Bm), (11)

dTd

dt
= 1

3τd

[
Nu

Pr

cp,g

cl

(T − Td ) − Sh

Sc

Lv

cl

Hm

]
, (12)

where cp,g is the gas specific heat capacity at constant pressure and τd = 2ρlr
2
d /(9μ) is the droplet

relaxation time, with ρl the liquid density. Lv is the latent heat of vaporization evaluated at the droplet
temperature. The Schiller-Naumann correlation is adopted in Eq. (10) in order to account for the effect
of the finite droplet Reynolds number on the drag. The mass diffusivity and the thermal conductivity
are accounted for in Eqs. (11) and (12) through the Schmidt and Prandtl numbers, respectively:
Sc = μ/(ρD) and Pr = μ/(cpk). The Nusselt number, Nu0, and the Sherwood number, Sh0, are
estimated as a function of the droplet Reynolds number, Red = 2ρ||u − ud ||rd/μ, according to the
Frössling correlation:

Nu0 = 2 + 0.552 Red
1
2 Pr

1
3 , (13)

Sh0 = 2 + 0.552 Red
1
2 Pr

1
3 . (14)

A correction is then applied to Nu0 and Sh0 in order to account for the Stefan flow [23]:

Nu = 2 + (Nu0 − 2)

FT

, FT = (1 + Bt )0.7

Bt

Ht , (15)

Sh = 2 + (Sh0 − 2)

FM

, FM = (1 + Bm)0.7

Bm

Hm. (16)

The parameters Hm and Ht are defined as Hm = ln(1 + Bm) and Ht = ln(1 + Bt ) with Bm and Bt

the Spalding mass and heat transfer number, respectively, the former being the driven parameter for
the vaporization rate:

Bm = (Yv,s − Yv)

(1 − Yv,s)
, (17)

Bt = cp,v

Lv

(T − Td ), (18)

where cp,v is the constant pressure coefficient of the vapor, Yv is the vapor mass fraction field
evaluated at droplet center, and Yv,s is the vapor mass fraction evaluated at droplet surface. This
latter parameter corresponds to the mass fraction of the vapor in a saturated vapor-gas mixture at the
droplet temperature. In order to estimate Yv,s we assume the Clausius-Clapeyron relation to apply:

χv,s = pref

p0
exp

[
Lv

Rv

(
1

Tref
− 1

Td

)]
, (19)

with χv,s the vapor molar fraction at droplet surface, p0 the thermodynamic pressure, pref , and Tref an
arbitrary reference pressure and temperature and Rv = R̄/Wl the vapor gas constant. The saturated
vapor mass fraction is then

Yv,s = χv,s

χv,s + (1 − χv,s)
Wg

Wl

, (20)

where Wg and Wl are the molar mass of the gas and liquid phases, respectively.
In the present flow configuration, the ex post analysis of the cumulative distribution function of

the droplet Reynolds number computed over the whole droplet population shows that Red varies in
the range 0 < Red < 2 with a probability P � 0.99 (not reported). In these conditions the Nusselt
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TABLE I. Thermodynamic and physical properties of acetone and dry air. The pressure p0 is constant
both over time and in space due to the low Mach number formulation and open environmental conditions.
The temperature, T0, the bulk velocity, U0, and dynamic viscosity, μ, are evaluated at the inflow section. The
parameters cp,g , cp,v , and cl are the specific heat capacity at constant pressure of the gas and vapor and the liquid
specific heat capacity, respectively. Wg , Wl , kg , and kl are the molar mass and the thermal conductivities of the
gas and the liquid. D is the mass binary diffusion coefficient of the vapor into the gas. ρl and Lv are the liquid
density and latent heat of vaporization evaluated at the inflow temperature, respectively.

p0 [Pa] 101300 Wg [kg/mol] 2.90 × 10−2

T0 [K] 275.15 Wl [kg/mol] 5.81 × 10−2

U0 [m/s] 8.10 kg [W/(m K)] 2.43 × 10−2

μ [kg/(m s)] 1.75 × 10−5 kl [W/(m K)] 1.83 × 10−1

cp,g [J/(kg K)] 1038 D [m2/s] 1.10 × 10−5

cp,v [J/(kg K)] 1300 ρl [kg/m3] 800
cl [J/(kg K)] 2150 Lv [J/kg] 530 000

and Sherwood numbers, regulating the convective heat and mass transfer rates, slightly vary around
Nu = 2 and Sh = 2. Then, according to Bukhvostova et al. [27], the droplet Biot number, which
quantifies the ratio of heat convection and heat conduction, can be estimated as Bid � kg/kl � 0.13,
with kg and kl the thermal conductivities of gas and liquid, respectively. Hence, the temperature in
each droplet can be assumed constant. The bulk volume fraction of the liquid phase prescribed at the
inflow section is 	 = 8 × 10−5. However, inside droplet clusters the liquid volume fraction may be
significantly greater than its bulk value so that the effect of the droplet collisions and coalescence
could be relevant. This aspect has been found to be of critical importance in turbulent channel flows
where, besides small-scale clustering, turbophoresis increases the mean liquid volume fraction at the
wall even by orders of magnitude. In these flow configurations, even with bulk volume fractions of
the order of 10−4, the effect of droplet collisions is significant (see, e.g., Kuerten and Vreman [35]).
In the present work collisions and coalescences have not been considered and will be investigated in
dedicated future studies. Nonetheless, the ex post analysis of the local liquid phase volume fraction
shows that the 99% of the overall events are located within the interval 0 < 	 < 2 × 10−4. Hence,
in the large part of the present flow configuration the volume fraction can be assumed to be small
enough such that the effect of the droplet collisions and coalescence is negligible.

The present DNS reproduces the dynamics of liquid acetone droplets dispersed within a turbulent
air-acetone vapor jet. The gas-vapor mixture is injected into an open environment through an orifice
of radius R = 5 × 10−3 m at a bulk velocity U0 = 8.1 m/s. Liquid acetone monodisperse droplets
with an initial radius rd,0 = 6 μm are randomly distributed over the inflow section. The ambient
pressure is set to p0 = 101 300 Pa while the injection temperature is fixed to T0 = 275.15 K for
both the droplets and the carrier mixture. The injection flow rate of the gaseous phase is kept
constant fixing a bulk Reynolds number Re = 2U0R/ν = 6000, with ν = 1.35 × 10−5 m2/s the
kinematic viscosity. At the inflow section a nearly saturated condition is prescribed for the air-acetone
vapor mixture, S = Yv/Yv,s = 0.99, with Yv the actual vapor mass fraction and Yv,s(p0,T0) the
vapor mass fraction saturation level evaluated at the actual inflow temperature and thermodynamic
pressure. The acetone mass flow rate is set by the mass flow rate ratio � = ṁact/ṁair = 0.28,
with ṁact = ṁact,l + ṁact,v the sum of liquid and gaseous acetone mass flow rates and ṁair the
gaseous one. The correspondent bulk volume fraction of the liquid phase is set to 	 = 8 × 10−5, as
previously mentioned. All the thermodynamic and physical properties of the vapor, gas, and liquid
phases are reported in Table I. The thermodynamic conditions of the flow at the inlet section are
comparable to that adopted in the well-controlled experiments on dilute coaxial sprays published by
the group of Masri and coworkers (see, e.g., Chen et al. [32]). They used acetone droplets dispersed
in air at the temperature of 275.15 K in both nonreactive and reactive conditions, but at higher
Reynolds number.
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TABLE II. Taylor λc and Kolmogorov ηc microscales along the jet axis at different z/R.

z/R = 20 z/R = 40 z/R = 60

λc/R 0.21 0.37 0.49
ηc/R 0.013 0.021 0.03

The numerical code consists of two different modules. An Eulerian algorithm directly evolves the
gaseous phase dynamics solving the Low-Mach number formulation of the Navier-Stokes equations
(1)–(5) (see, e.g., Refs. [36,37] and references therein for validations and tests). A second-order
central finite differences scheme is adopted on the staggered grid for space discretization [38], while
the temporal evolution is performed by a low-storage third-order Runge-Kutta scheme. A Lagrangian
solver evolves the droplet mass, momentum, and temperature laws (9)–(12). Actually, in order to
mitigate numerical stability issues when the droplet size becomes small, the Lagrangian solver
numerically evolves the following equation for the droplet square radius instead of the equivalent
equation (11):

dr2
d

dt
= −Sh

Sc

ρg

ρl

νgHm. (21)

The temporal integration uses the same Runge-Kutta scheme adopted by the Eulerian algorithm.
Second-order accurate polynomial interpolations are used to calculate the Eulerian quantities at the
droplet positions. The computational domain consists of a cylinder extending for 2π × 22 R × 70R

in the azimuthal, θ , radial, r and axial, z, directions. The domain has been discretized by Nθ ×
Nr × Nz = 128 × 225 × 640 points using a nonequispaced, staggered mesh in the radial and axial
direction. The mesh has been stretched in order to be of the order of the Kolmogorov length scale
η = (ν3/ε)1/4 (ε turbulent energy dissipation) in the downstream evolution of the spray. At the jet inlet
section the maximum of the typical mesh size on the Kolmogorov length, �/η = [(r�θ )�r�z]1/3/η,
is about 2.4 and is kept around this value during the downstream jet evolution. It should be noted that
the initial resolution is critical for turbulent jets since in the far field all length scales increase linearly
with the axial distance, while the Reynolds number is constant. Even in the present case, we found
that the Taylor-scale Reynolds number is approximatively constant, i.e., Reλ = u′λ/ν � 77 ± 14
(λ = √

(15ν/ε)u′ and u′ the root-mean-square of velocity fluctuations), while the typical turbulent
scales increase almost linearly; see Table II. The flow is injected at the center of one base of the
cylindrical domain and streams out towards the other base. A convective condition is adopted at the
outlet, and an adiabatic traction-free condition is prescribed at the side boundary. This side boundary
condition makes the entrainment of external fluid possible, which is dry air in the present case.
Time-dependent inflow boundary conditions are prescribed. A fully turbulent velocity is assigned at
the jet inflow section (Dirichlet condition) by means of a cross-sectional slice of a companion fully
developed DNS of a pipe flow. The flow is injected through a center orifice while the remaining
part of the domain base is impermeable and adiabatic. The turbulent periodic pipe extends for
2π × 1R × 8R in the azimuthal, θ , radial, r , and axial, z, directions. The domain is discretized with
an equispaced staggered mesh containing Nθ × Nr × Nz = 128 × 80 × 128 nodes in order to match
the corresponding jet computational grid at the pipe discharge. A sketch of the cylindrical domain
together with the turbulent periodic pipe is provided in Fig. 1. A statistical characterization of the
inflow is provided at the end of this section along with additional data for validation; see Fig. 2.

The DNS reported in the present paper was performed on Galileo cluster at CINECA Institute,
Bologna, Italy. Galileo is a tier-1 cluster IBM NeXtScale made of 516 nodes of dual eight-cores
Intel Haswell processors. To perform the simulation 32 cores distributed over two nodes were used
for a total amount of about 10 000 core hours, corresponding to a bulk time of about one month.
The time step is set to �t/t0 = 0.002 where the reference time scale is t0 = R/U0 = 6.2 × 10−4 s.
In order to achieve the prescribed mass flow rate, 69 acetone monodisperse droplets with radius
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FIG. 1. A sketch of the 3D cylindrical domain and the turbulent periodic pipe. A representative ensemble
of the whole droplet population is plotted with black points. The colors contour the vapor mass fraction field
within the jet and the axial instantaneous velocity of the turbulent pipe, respectively.

rd,0 = 6 μm are randomly distributed over the inflow section at each step of the time integration
algorithm. The injection velocity of each droplet is prescribed to be equal to the local velocity of
the turbulent carrier phase. The simulation is initialized considering only the single-phase flow until
statistical steady conditions have been attained (about 500R/U0 time scales). From this step, droplets
are continuously injected, and the simulation is run for about 200R/U0 time scales in order to reach

FIG. 2. (a) Mean axial velocity profile of the turbulent pipe expressed in internal coordinates. U+ = Uz/uτ

and y+ = yuτ /ν with uτ = √
τw/ρ the friction velocity, Uz = 〈uz〉 the mean axial velocity, and y = R − r

the distance to the wall. The plot is log-linear. Within the viscous sublayer the velocity profile follows the
linear law U+ = y+. In the outer layer the log law U+ = 1/k ln(y+) + B provides a good fit of the mean
velocity profile with k = 2.8 and B = 4.5. The red square-dotted line represents the present DNS data, and the
black triangles correspond to the DNS reported in Eggels et al. [39]. (b) Root mean square of the azimuthal
u+

t,rms, radial u+
r,rms, and axial u+

z,rms velocities of the turbulent pipe expressed in internal coordinates vs r/D.
The numerical data set is compared to the fully turbulent pipe DNS of Eggels et al. [39] reported by symbols.
(c) Inverse of the mean centerline axial velocity of the unladen jet at Re = 3000, U0/Uc, with U0 the jet bulk
velocity at the inflow section. In the far field of the jet, z/R > 20, the centerline axial velocity follows a linear
trend, U0/Uc � 1/(2B)(z/R − z0/R). The decaying constant estimated from the interpolation of the data set
in the far field is B � 7.5 while the virtual origin of the jet is found to be z0/R � 0.25.
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a statistical steady condition for the two-phase evaporating flow before collecting the data set. All
the statistics presented in the following are computed considering around 100 samples separated in
time by R/U0 = 1.

In the following, some numerical issues arise concerning the numerical stability of the evolution of
tiny droplets. Droplets whose radius decreases under a fixed stability threshold, rd,th, are discarded
from the simulation. In the present case, the threshold radius is set to rd,th = 0.5 μm with the
time step set to �t/t0 = 0.002. With the initial droplet radius set to rd,0 = 6 μm, this means that
droplets are suppressed only after the 99.95% of their initial mass has evaporated. In the preliminary
small-scale tests we found that changing this threshold from rd,th = 0.5 μm to rd,th = 0.75 μm does
not affect the results in similar conditions. Within the nonresolved droplet framework, which is
adopted in the present simulation, the droplet diameter must be smaller than the Kolmogorov length
scale and the mesh size. Since the droplet diameter decreases in the downstream evolution of the
spray, the most critical zone for this condition to be satisfied is the inlet region in proximity to the axis.
In this region the ratio between the droplet diameter and the mesh characteristic size is dp/� � 0.33,
with � = [(r�θ )�r�z]1/3.

In order to prove the reliability of the simulation we report some statistics concerning both
the turbulent periodic pipe DNS, which provides the jet inflow condition, and the corresponding
single-phase jet DNS. It should be noted that the resolution of the turbulent pipe flow simulation
matches that of the initial part of the jet. Figures 2(a) and 2(b) provide a sketch of the mean axial
velocity and the root-mean-square azimuthal, radial, and axial velocities within the turbulent periodic
pipe expressed in internal coordinates. The friction Reynolds number obtained through the estimation
of the actual wall friction in the turbulent pipe is Reτ = uτR/ν = 203, with uτ the friction velocity,
ν the kinematic viscosity, and R the pipe radius. The actual Reynolds number based on the bulk
velocity is set to Re = U0R/ν = 3000, consistently with the jet bulk Reynolds number. A best fit of
the logarithmic velocity distribution of the pipe flow is given by U+ � 2.8 ln(y+) + 4.5. Results are
in close agreement with both the numerical and experimental findings of Eggels et al. [39] in similar
conditions. Figure 2(c) provides the inverse of the normalized mean centerline axial velocity of the
jet, U0/Uc. In the far field of a turbulent jet the average centerline velocity is known to be inversely
proportional to the axial distance from the inlet:

U0

Uc

= 1

2B

( z

R
− z0

R

)
, (22)

where B is an empirical, nonuniversal, constant and z0 is the so-called virtual origin of the jet,
representing the location of an equivalent point source of momentum originating the jet in the far
field. We estimate the values of the decaying constant, B, and the position of the virtual origin of the
jet, z0, by interpolating the mean centerline velocity of the jet in the far field, z/R > 20; see the figure
caption. Fitting values are similar with those found for round jets, especially those generated by a
fully turbulent inflow [16,40]). The capabilities of the numerical code concerning the reproduction
of the evaporation dynamics have been preliminarily tested considering two different test cases. The
former case concerns a liquid water droplet carried by a laminar dry air jet. In these extremely dilute
conditions the Spalding d-square law is a valid analytical solution for the time evolution of the droplet
radius; see Fig. 3(a). In the latter case, a water droplet freely falling in wet air is considered, and the
numerical solution for the evolution of the temperature is compared to an experimental data set; see
Fig. 3(b).

III. RESULTS AND DISCUSSIONS

A general overview of the instantaneous vapor mass fraction field together with the instantaneous
distribution of the droplet population is provided in Fig. 4. Droplets populate only the turbulent jet
core, while they are not present in the outer dry region. In addition, the droplet distribution is strongly
inhomogeneous over the whole downstream evolution of the spray and clustering is apparent. There
are several mechanisms driving the preferential concentration of droplets in a turbulent flow, the
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FIG. 3. (a) Evolution over time of the radius of a single water droplet in a dry air laminar jet. The ambient
pressure and temperature are set to p = 101 300 Pa and T = 273.15 K. The inlet radius and the bulk velocity
of the jet are, respectively, R = 5 × 10−3 m and U0 = 1.7 m/s. The droplet is injected at the local carrier
phase velocity. The initial droplet radius is set to rd,0 = 5 μm and the temperature to Td,0 = 273.15 K. The
droplet radius and the time are scaled by the droplet initial radius and the reference time scale t0 = R/U0,
respectively. The continuous line represents the analytical solution computed by the Spalding d-square law,
rd/rd,0 = √

1 − k t/t0, where k = (ρ Sh R2)/(Re ρl Sc r2
d,0) ln(1 + Bm). The symbols represent the numerical

results. (b) Temperature evolution over time of a water droplet freely falling in air at pressure p = 101 300 Pa,
temperature T = 301.45 K, and relative humidity χ = 0.22. Droplet is initially at rest with an initial temperature,
Td,0, equal to the environmental air one. The temperature is scaled by the initial droplet temperature, Td,0, while
time is scaled by droplet thermal relaxation time, τt . This latter is defined as the time required by droplet
temperature to change by the 63% of its total change between initial temperature and regime temperature. The
continuous line represents the result of the simulation while the symbols report an experimental data set [41]. The
regime temperature of droplet corresponds to the ventilated wet bulb temperature at prescribed environmental
pressure and actual temperature, which is Twb = 288.15 K.

most relevant of them being the small-scale clustering [10,42], the accumulation of droplets along
jet axis [16,17], and, as we will show below, the intermittent droplet dynamics in the jet mixing
layer. The small-scale clustering consists in a phase segregation occurring when the dissipative time
scale of the flow is of the same order of the droplet inertial time scale. In addition, within turbulent
jets, a mean accumulation of the dispersed phase has been observed at specific distances from the
inflow section. This location is determined by the matching of the droplet time scale and the local
large-scale time of the jet, which quadratically decreases with the downstream axial distance [16,17].
Independently by the mechanisms driving the droplet segregation, the vapor mass fraction increases
rapidly inside the clusters of evaporating droplets due to their high local concentration. As the vapor
concentration increases, the local evaporation rate is reduced. The vaporization process may even
be completely blocked if the vapor concentration reaches the saturation level, Yv,s(p0,T ). In this
case a nonevaporating, fully saturated core appears around the cluster [43]. It is then clear how the
preferential segregation phenomenology can strongly affect the overall vaporization process (e.g.,
evaporation length) by locally reducing the rate of vaporization.

Figure 5(a) provides the average distribution of the liquid mass fraction over the spray, � =
ml/mg , where ml and mg are the mean mass of the liquid acetone and of the gaseous phase inside
each mesh cell. The overall vaporization length can be defined as the axial distance from the inflow
section where the 99% of the injected liquid mass has transitioned to the vapor phase. According
to this definition, the vaporization process is terminated at about z/R � 44. The volume fraction 	,
also reported in the same plot, shows small and streamwise diminishing values, so droplet-droplet
interactions are expected to be globally negligible, as assumed. However, the liquid mass fraction is
significant in the spray core affecting the turbulent gaseous phase in this region. This distribution is
consistent with the field of the average saturation field, S, reported in Fig. 5(b). The flow is almost
saturated near the inlet section due to the prescribed inflow conditions, then the saturation level
gently decreases in the downstream evolution, maintaining a sharp gradient towards the outer jet
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FIG. 4. (a) A radial-axial slice of the turbulent spray. The black points represent a subset of the whole
droplet population constituted by droplets located within a distance h/R = 0.01 from the slice plane. Each
point size is proportional to the corresponding droplet radius (scale factor 100). The carrier phase is contoured
according to the instantaneous vapor mass fraction field, Yv , which is bounded between 0 and 0.18, the former
corresponding to the dry condition and the latter to the 99% saturation level prescribed at inlet. (b) Enlargements
of two different jet regions centered at z/R = 20 (lower panel) and z/R = 30 (upper panel).

region. Indeed, the turbulent spray is constituted by a spreading and slowly decaying turbulent core
which is surrounded by the dry and irrotational environmental gas. The turbulent core is continuously
entrained by the environmental air, which mixes with the turbulent air-vapor mixture, thus reducing
the vapor concentration. Since the inner core fluid cannot reach the outer region, the spray core shows
a higher saturation level over the whole downstream evolution of the flow. The effect of the dry air
entrainment is crucial on the overall vaporization process. The dilution of the vapor concentration
is indeed fundamental in order to allow the vaporization process to advance. The mean droplet
radius and vaporization rate distributions are reported in Figs. 6(a) and 6(b), respectively. According
to the discussed entrainment effect, the droplet vaporization rate is maximum in the mixing layer
separating the jet core and outer regions. The peak value is reached in the shear layer immediately
downstream the inflow section, where large droplets enter in direct contact with the dry environmental
air. Consequently, at each axial distance from the jet inlet, the largest droplets can be found in the
spray core, where the vaporization process is slowed by the high vapor concentration, while the
smallest ones can be found towards the outer jet region where the vaporization proceeds faster.

The power required by the vaporization process is proportional to the evaporation rate. Indeed,
the transition of the liquid acetone to vapor requires an amount of energy per unit mass equal to the
latent heat of vaporization. The overall energy required by the vaporization process is provided by
the internal energy of both the gaseous carrier phase and the liquid dispersed phase, thus resulting in
an overall cooling of the spray in the downstream evolution. The average distribution of the carrier
phase and the droplet temperature is reported in Fig. 7. In the outer spray region the small droplets,
surrounded by low-saturated gas, are colder than the core droplets due to the higher evaporation
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FIG. 5. (a) Mean liquid mass fraction, � = ml/mg , where ml and mg are the mean mass of liquid acetone
and air inside each mesh cell, respectively. It should be noted that each isoline of the mass fraction field is
also an isoline of the liquid volume fraction field, 	 = �ρg/ρl , with ρl/ρg the mean density ratio. The labels
show different distances from the jet inlet section, z/R, in correspondence of which the 50%, 90%, 99%, and
99.9% of the injected liquid mass is evaporated. (b) Average saturation field, S = Yv/Yv,s , where Yv is the actual
vapor mass fraction field and Yv,s = Yv,s(p0,T ) is the value of vapor mass fraction corresponding to the local
saturation condition.

rate. Nevertheless, the carrier phase shows an opposite behavior: the spray core is sensibly colder
than the shear layer, and the minimum gas temperature can be observed between z/R = 30 and
z/R = 40. This behavior is due to the distribution of the liquid phase mass fraction. Figure 8 reports
the mean distributions of the mean mass source term, Sm, and the mean sensible energy source term,
Se,s = Se − L0

vSm. Near the jet inlet, the mass and energy exchanges peak in the mixing layer. The
vaporization rate is indeed extremely small in the spray core where a nearly saturated condition
subsists. Nevertheless, the maxima of the energy and mass exchange distributions are located in the
spray core, where the liquid mass represents a significant part of the overall spray mass. Hence,
the cooling effect due to vaporization is much more intense in this region where a large amount
of droplets slowly evaporates. We have noted the existence of a strong preferential segregation of
the dispersed phase, focusing in particular on the effect of this inhomogeneous distribution on the
overall vaporization process dynamics. In the literature, several approaches have been proposed in
order to measure the intensity of the droplet segregation (see, e.g., Shaw et al. [44]). We measure the
intensity of the clustering in each point of the inhomogeneous turbulent jet spray using the following
clustering index [45]:

K = (δn)2

n
− 1, (23)

where n and (δn)2 are the mean and the variance of the number of droplets in a small sampling
volume �V , respectively. In order to compute this statistic a Cartesian, equispaced sampling mesh
has been considered. The cells are cubic with an edge size of L/R = 0.2. If droplets were completely
randomly located, their distribution would be determined by a Poisson process in which mean and
variance coincide. Hence, where clustering is not present and particles are randomly distributed,
K = 0. On the other hand, if K > 0 the variance exceeds the mean value, indicating that droplets
preferentially segregate in clusters. Figure 9(a) shows the clustering index, K , computed over the
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FIG. 6. (a) Mean droplet radius rescaled by the droplet initial radius rd,0 = 6 μm. (b) Mean droplet
vaporization rate divided by the reference scale defined as ṁd,0 = md,0/τd,0 with md,0 the initial droplet mass
and τd,0 the initial droplet relaxation time.

whole spray domain. Large positive values of K correspond to a strong preferential segregation of
droplets. It should be noted that droplets are initially randomly located and develop clustering in their
downstream evolution. In particular, near the inflow section K assumes positive values only in the
mixing layer. In this region the local droplet concentration is intermittent because of the fluctuation
of the turbulent-nonturbulent interface which separates the turbulent core, populated by droplets, and
the outer region depleted of droplets. The air regions entrained from the environment in the jet core
are almost droplet-free and enhance the fluctuation levels of the droplet concentration even in the

FIG. 7. (a) Mean gas phase temperature, T , rescaled by the injection temperature, T0. (b) Mean droplet
temperature, Td , rescaled by droplet initial temperature, Td,0. The reference temperature scales are equal,
Td = Td,0.
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FIG. 8. (a) Mean nondimensional mass source term, S∗
m = SmR3τd,0/md,0, with R3 the inlet radius, and md,0

and τd,0 the initial mass and relaxation time of the monodisperse droplets, respectively. (b) Mean nondimensional
sensible energy source term, S∗

e,s = (Se − L0
vSm)R3τd,0/(md,0clTd,0), with L0

v the latent heat of vaporization,
Td,0 the initial droplet temperature, and cl the liquid-specific heat capacity.

jet core (see the snapshots reported in Fig. 4). Further downstream clustering appears in the whole
turbulent jet core. We attribute this phenomenology both to the developing of small-scale turbulent
clustering and to the intermittent droplet dynamics in the mixing layer.
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FIG. 9. (a) Droplet clustering index, K . (b) Evolution over the jet axis of the mean droplet Stokes
number based on the Kolmogorov dissipative scale, Stη = τd/τη. The turbulent dissipation is computed in
correspondence of each mesh node in the range 0 < r/R < 0.2. The local dissipative time scale is then adopted
in order to estimate the Stokes number of droplets located within the correspondent cell. The average of these
values is then considered as the mean droplet Stokes number on the jet axis at a given distance from the inflow
section, z/R.
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The main mechanism driving the small-scale clustering relies on the competition between the
droplet inertia and the Stokes drag. The drag tends to trail the droplets according to the highly
convoluted local turbulent structures while the droplet finite inertia prevents them to follow exactly
the turbulent flow motion. By this mechanism droplets heavier than the fluid tend to be ejected
from the vortex cores [12]. The small-scale droplet distribution is governed by the Stokes number,
Stη, which is defined as the ratio of droplet response time, τd , and the characteristic time of the
dissipative scale, τη = (ν/ε)1/2. The droplets with Stη 	 1 act as ballistic particles with respect
to the smallest scales of turbulence. These droplets move across the smallest turbulent structures
being only weakly perturbed and showing a negligible small-scale preferential segregation. On the
other hand, droplets with Stη 
 1 act as passive tracers which move according to the local turbulent
motion without exhibiting clustering. Preferential segregation is maximum when Stη ∼ 1. Figure 9(b)
provides the Stokes number, Stη, of the droplets located within a small radial distance from the jet
centerline, i.e., r/R = 0.2. The Stokes number decreases in the downstream evolution of the spray
assuming unity value around z/R � 25. Hence, we infer that preferential segregation is promoted by
the intermittent entrainment process until z/R � 25. Further downstream, the small-scale clustering
adds its contribution to the overall droplet segregation dynamics. In order to quantify the importance of
the droplet preferential segregation on the evaporation process we provide a comparison between the
mean vapor concentration field felt by the droplets (droplet conditioned),YV,DC , and the unconditional
Eulerian one, YV,U . YV,DC is obtained through the ensemble average of the vapor mass fraction
field conditioned by the droplet presence in a given point. Figure 10 reports the radial profiles
of YV,DC and YV,U at different axial distances from the jet inflow, z/R. Globally, the vapor mass
fraction sampled by the droplets is often higher than the correspondent unconditional value. We will
show that the preferential sampling operated by the droplets on the vapor concentration field can
be related to different mechanisms. The primary contribution is given by the vapor self-produced
by the droplets. Indeed, given the small Stokes number, the vapor atmosphere surrounding each
droplet moves together with it increasing the vapor concentration sampled by the droplet itself. The
small-scale clustering and the intermittent jet entrainment process add a significant contribution to
this phenomenon that will be discussed in the following.

When droplets travel in clusters, even a small rate of evaporation suddenly brings to saturation
the vapor cloud surrounding the cluster itself. This phenomenon occurs in all turbulent evaporating
flows as already observed by Reveillon and Demoulin [43]. In the first part of the jet, i.e., z/R < 20,
we note that the unconditional mean vapor concentration curve and the droplet conditional one are
almost identical in the turbulent jet core while they differ in the outer jet layer. This behavior can
be understood considering that clustering is weak near the inflow with the exception of the mixing
layer. Further downstream, we note that the droplet conditioned vapor concentration is, in average,
higher of about 10%–60% than the unconditioned one even in the jet core. We remark that in this
region the turbulent small-scale clustering is strong. To better characterize the droplet dynamics in
the mixing layer, we need to discern between the inner turbulent jet core and the irrotational outer
region. The two regions are separated by an almost sharp fluctuating layer, the so-called turbulent-
nonturbulent interface [28], that is highly convoluted over a wide range of turbulent scales. The most
used observable adopted to characterize the two regions is the local enstrophy, ζ 2 = ||∇ × �u||2. The
inner turbulent core is characterized by large fluctuations of enstrophy, while in the outer region
enstrophy is null. Thus, fixing an enstrophy threshold, ζth, it is possible to distinguish if a point is
located into the turbulent region or not:

I (�x,t) = H
[
ζ 2(�x,t) − ζ 2

th

]
, (24)

with H the Heaviside function. I = 1 denotes a turbulent event, while I = 0 an irrotational one. It
has been shown [28] that the interface separating the rotational and irrotational regions is almost
sharp and the conditional statistics weakly depend on the threshold value. Consistently, we observed
a negligible influence on the statistics changing the value of ζ 2

th = 0.36 U 2
0 /R2 by a factor 2 (this

threshold value is around one order of magnitude smaller than the typical enstrophy values in the
range 20 < z/R < 30). Adopting the index I we can define an enstrophy conditional average for
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FIG. 10. Radial profiles of the average vapor mass fraction field at four different axial distances from the
origin: (a) z/R = 10, (b) z/R = 20, (c) z/R = 30, and (d) z/R = 40. Each plot shows the enstrophy-threshold
conditional average, YV,EC , the droplet-presence conditional average, YV,DC , and the unconditional Eulerian
one, Yv . The enstrophy-threshold conditional average is calculated by sampling the vapor mass fraction only
over turbulent core events (I = 1), that is, when local enstrophy exceeds a fixed threshold. YV,DC is the vapor
concentration field obtained by a conditional average on the droplet presence in a given point.

the vapor concentration field, YV,EC , by sampling the vapor mass fraction only over turbulent core
events. Besides the unconditioned and the droplet conditioned statistics, Fig. 10 also provides YV,EC ,
which can be seen as the mean concentration field of the turbulent region, called in the following
turbulent conditioned statistics and droplet conditioned statistics, respectively. In the first part of
the jet, i.e., z/R � 20, we note that the unconditional and both the conditional statistics are almost
identical in the jet core. Hence, the vapor self-produced by the droplets weakly affects the dynamics
in this region (the jet inflow is nearly saturated). However, in the shear layer, the turbulent conditioned
mean vapor profile is similar to the droplet conditioned curve and is higher than the unconditional
one. This indicates that droplets traveling towards the outer jet region are surrounded by a gaseous
envelopment rich with vapor ejected from the turbulent jet core. Simultaneously, droplet-free dry air
regions are engulfed in the jet core enhancing the fluctuation of droplet and vapor concentrations.
Hence, on average, droplets evaporating in the mixing layer do not feel the unconditional mean vapor
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FIG. 11. (a) Radial and axial positions of two droplets “1” and “2”: the former has completely evaporated
around t/t0 � 45, the latter at t/t0 � 85. (b) Square droplet radius, r2

d /r2
d,0, and saturation, Sd , of the two droplets

1 and 2.

concentration, but a higher level. The contribution of this preferential sampling mechanism appears
dominant in the mixing layer, while the effect of the small-scale clustering appears more evident
in the far field evolution of the jet core, i.e., z/R > 20. In fact, as shown in Fig. 10(c) and 10(d),
the droplet conditional mean vapor concentration profiles reveal the same shape of the turbulent
averages, but translated of a nearly constant value. The combination of the two phenomenologies
strongly reduces the vaporization rate with respect to that estimated using unconditioned statistics.
We believe that, both these dynamics need to be accounted in the modeling of jet spray evaporation
in order to improve the accuracy of models.

A. Lagrangian statistics

Turbulent fluctuations induce extremely different Lagrangian behaviors of evaporating droplets.
Figure 11 reports the histories of droplet positions, square radius, r2

d /r2
d,0, and saturation, Sd , for

two droplets showing opposite dynamics. The former, droplet 1, evaporates in about the half time
of droplet 2. Both are initially nested into a fully saturated region located at inlet. Nevertheless,
droplet 1 quickly moves into the dry environment surrounding the jet core (r/R > 1 near the inlet),
thus sampling a lower saturation level, Sd � 0.5. Conversely droplet 2 remains entrapped into the
turbulent jet core for a long time experiencing a high level of saturation which is weakly lowered
by the turbulent mixing. Hence droplet 2 reaches a distance of about three times that of droplet
1 before fully evaporating. In order to statistically characterize the droplet vaporization dynamics,
we consider the probability density function of the vaporization length and time computed over
the whole droplet population. In analogy with the overall vaporization length previously introduced
[Fig. 5(a)], the single-droplet vaporization length will be defined as the axial distance from the jet
inlet, ze, necessary for the droplet radius to decrease from rd,0 to a threshold radius rd,th = 0.1rd,0

(99.9% of mass evaporated). The vaporization time te is the corresponding amount of time. The PDFs
of the droplet evaporation length and time are reported in Figs. 12(a) and 12(b), respectively. The
mean, standard deviation, skewness, and kurtosis are reported in Table III and show a nearly Gaussian
behavior with significant standard deviations. We note that a Gaussian behavior in turbulent flows
is usually associated to fluctuations induced by the large-scale motions. However, it is remarkable
how different the droplet histories are: half of injected droplets are present at about z/R � 30 where
about 90% of the injected liquid mass fraction is evaporated [see Fig. 5(a)]. This aspect is connected
to the high polydispersity developed by the droplets in their downstream evolution.

Figure 13 shows the joint probability density function (JPDF) of the droplet vaporization lengths
and times computed over the whole droplet population. A strong linear correlation is observed
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FIG. 12. (a) Probability density function of the nondimensional droplet vaporization length, ze/R, with R

the jet inlet radius. (b) Probability density function of the nondimensional droplet vaporization time, te/t0, with
t0 the reference time scale, t0 = R/U0. The PDFs are computed over the entire droplet population injected into
the computational domain. See the text for detailed definition.

between the droplet vaporization length, ze/R, and time, te/t0. We note that there is a certain number
of droplets that completely evaporate in the spray zone located between the jet inlet and z/R � 10,
but survive in the liquid state for a considerable amount of time before being completely vaporized,
te � 30t0. This behavior can be explained considering that droplets injected close to the wall at
the nozzle edge have low axial velocities. In particular, these droplets originate from the viscous
sublayer of the inlet turbulent pipe and move away from the saturated spray core towards the outer dry
environment due to the radial velocity fluctuations induced by the turbulent carrier phase. Figure 14
shows the JPDF of the droplet axial velocity and radial position conditioned on the droplets which
quickly evaporate, i.e., with ze � 10R. The largest part of these droplets slowly moves in the flow
direction with axial velocities in the range 0 < ud,z < 0.2U0. This velocity range is comparable to
the mean velocity of the viscous sublayer in the injection pipe, Uvs/U0 = 2.5 uτ /U0 � 0.17, with
uτ = 0.067 U0 the friction velocity in the pipe and U0 the bulk velocity. At the inflow section these
droplets are surrounded by a fully saturated gas that prevents the vaporization process from starting.
However, as they move away from the fully saturated jet core towards the outer dry environment
their vaporization rate increases. The evaporation time of this subset of droplets can be estimated
through the d-square law:

te

t0
= Re Sc

Sh

ρl

ρg

r2
d,0

R2

1

Hm

, Hm = ln

(
1 − Yv

1 − Yv,s

)
. (25)

The physical parameters reported in Table I and the average value of Hm ∼ 0.052 (computed on
the droplets that completely evaporate with ze/R � 10) lead to an estimated vaporization time
te � 30t0, which is consistent with present results. It emerges that even droplets which evaporate at
short distances from the inlet need a relatively long time to escape from their initially nearly saturated
conditions. Figure 15(a) shows the probability density function of the droplet radius at different axial

TABLE III. The mean, μ, standard deviation, σ , kurtosis, K , and skewness, Sk, of the PDFs of droplet
evaporation length and time with μ = E[X], σ =

√
E[(X − μ)2], K = E[(X − μ)4]/E[(X − μ)2]2, and Sk =

E[(X − μ)3]/E[(X − μ)2]3/2. All variables are nondimensional.

μ σ K Sk

ze/R 30.64 10.22 2.39 −0.010
te/t0 60.22 14.06 2.71 −0.378
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FIG. 13. JPDF of the vaporization lengths and times of the droplets computed over the whole droplet
population. See the text for detailed definition.

distances from the origin. Even starting from a monodisperse suspension, we suddenly observe a
radius distribution which spans around one decade after 10 jet radii from the inlet (the PDF sharply
ends because droplets with radius rd < 0.5 μm are removed from the simulation). It should be
remarked that this quantity results in differences of droplet volumes of about 103. Wide droplet size
distributions are consistent with experimental observations in turbulent sprays [32]. We attribute this
intense spread of the droplet size spectrum to the strong fluctuations of the vapor concentration felt by
the droplets because of the complex preferential segregation dynamics. This finding could be critical
in modeling where polydispersity is often not considered. The heterogenous conditions shown by
droplets which travel in an inhomogenous field and in aggregates with different sizes and histories
are reflected in the wide variations exhibited by the vapor saturation level at the droplet surface; see
Fig. 15(b). At z/R = 10, the PDF shows values ranging between zero, i.e., dry gas, and above 1,
i.e., supersaturation with condensation. Further downstream, z/R = 20, the spreading trend inverts

FIG. 14. JPDF of the droplet axial velocity, uz/U0, and radial position, r/R, computed over the droplets
that have a vaporization length ze/R < 10.
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FIG. 15. PDF of Lagrangian observables. (a) PDF of nondimensional droplet radius, rd/rd,0, where rd,0

is the initial radius of the injected droplets. (b) PDF of the saturation field at droplet surface, Sd = Yv,s/Yv ,
where Yv,s = Yv,s(Td,p) is the vapor mass fraction at saturation computed as a function of the droplet actual
temperature and the carrier phase thermodynamics pressure, p0. Yv is the actual vapor mass fraction in the
carrier gaseous mixture evaluated at droplet position. (c) PDF of nondimensional droplet temperature, Td/Td,0,
where Td,0 is the initial temperature of the injected droplets. (d) PDF of nondimensional droplet vaporization
rate, −ṙd τd,0/rd,0, where τd,0 and rd,0 are the initial relaxation time and radius of the injected droplets. The PDF
plots (a), (b), and (c) are log-linear, and plot (d) is log-log.

and droplets are subjected to progressively more uniform saturation levels. The different evaporation
dynamics caused by the saturation level felt by the droplets induces a similar statistical behavior
for the temperature PDF, reported in Fig. 15(c). The temperature PDF appears flat even at z = 10R

with the highest variance shown in the downstream evolution. In addition to differential diffusion
processes, the observed supersaturation can be attributed to inertial effects of the droplet dynamics.
An evaporating droplet tends to increase the saturation level because of two contributions. On one
hand it emits vapor increasing the surrounding vapor concentration, Yv , and on the other hand it
reduces the saturated vapor mass fraction, Yv,s , because of the lower droplet (and gas) temperature.
For fast evaporating droplets, it can happen that the droplet temperature strongly reduces inducing
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FIG. 16. Joint probability density functions of liquid phase volume fraction, 	, versus droplet vaporization
rate, drd/dt (a and b) and saturation field sampled by droplets, S (c and d). Both statistics are computed
at two different axial distances from the jet inflow, z/R = 10 and z/R = 20. Droplet vaporization rate is
nondimensional. The reference scale is defined as rd,0/τd,0, with rd,0 and τd,0 initial droplet radius and relaxation
time.

saturated conditions which block the evaporation even without high values of vapor concentration.
Then, because of inertia, if the droplet moves into a higher vapor concentration region, still keeping
its low temperature, supersaturation conditions occur. The PDF analysis shows how different are the
histories of the initial monodisperse droplets in the turbulent spray. This strong heterogeneity should
be accounted in models where few representative droplets are considered. The high polydispersity
combined to the wide spectrum of saturation levels sampled by the droplets induces a nontrivial
behavior of the vaporization rate PDF. Even though we cannot provide an argument, we find that
the PDFs of the droplet radius change rate [Fig. 15(d)] appear to follow a power law with exponent
about −3, independent of the axial distance from the jet inlet and in turn on the local average
conditions. This behavior means that extreme evaporating events are relatively frequent and are
presumably excited by turbulent fluctuations. The liquid phase volume fraction around (sampled
by) the droplets provides a measure of local preferential concentration of droplets themselves and
can be contrasted to droplet vaporization rate, drd/dt , and saturation level sampled by droplets, S.
The correlation among these quantities elucidates the effect of clustering on the local event of the
evaporation dynamics. Figure 16 provides the joint probability density functions of these observables
versus volume fraction sampled by droplets, 	. When droplets are not in clusters, i.e., low volume
fraction 	, we note a clear correlation between vaporization rate drd/dt with 	 and saturation level
S with 	. Nevertheless, at the same time we also observe a large variance of both vaporization rate
and saturation level around their mean conditional values. This denotes that in dilute regions the
vaporization rate is higher in average as expected, but large deviations from the mean are frequently
induced by turbulent fluctuations of vapor concentration and temperature. We also note that, in
dilute conditions, turbulent fluctuations may bring the local conditions at supersaturation levels,
S > 1, such that condensation occurs: drd/dt > 0. Conversely, in regions where the liquid volume
fraction is higher, the saturation sampled by droplets is distributed over a narrow range close to
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FIG. 17. Joint probability density function of droplet square diameter and flight time, jf (t,d2
d ). Also the

mean square droplet diameter as a function of the flight time, 〈d2
d /d

2
d,0〉(t/t0), and the mean droplet flight time

as a function of the square droplet diameter, 〈t/t0〉(d2
d /d

2
d,0).

fully saturated conditions, S = 1, with a nearly vanishing vaporization rate. This behavior can be
attributed to a “collective inertia” induced by the high droplet concentration which tends to keep
around nearly saturated conditions the local vapor phase. In these regions, indeed, a small perturbation
of saturation is immediately balanced by an opposite fluctuation of overall evaporation rate due to
the large number of droplets constituting the clusters. This mechanism rapidly brings the system to
the local equilibrium. Hence, in these conditions, the evaporation dynamics shows small fluctuations
around mean values and is always close to equilibrium.

The strongly inhomogenous conditions shown by the evaporating droplets impact on the possibility
of a simple prediction of the spray vaporization length and time. In this context, the d-square law
provides a valuable analytical tool often used to estimate the time evolution of the droplet size with
the main assumption based on the reference environmental state, e.g., bulk vapor concentration. In
these conditions, the d-square law estimates a linear behavior for the square of the droplet diameter,
i.e., 〈d2

d /d2
d,0〉 � 1 − k t/t0 with k = (ρ Sh R2)/(Re ρl Sc r2

d,0)〈ln(1 + Bm)〉 the evaporation rate
constant. Figure 17 provides the joint probability density function of the droplet radius and flight
time, jf (t,d2

d ). This latter parameter is computed as the time interval within the droplet injection
time and the sampling one. The figure provides also the evolution of the average droplet square
diameter versus time, 〈d2

d /d2
d,0〉(t/t0), and the evolution of the droplet mean flight time as a function

of the square droplet diameter, 〈t/t0〉(d2
d /d2

d,0). It should be remarked that, by the definition of the
JPDF, the mean square droplet diameter and mean flight time curves can be calculated as conditional
averages:

〈
d2

d

〉
(t) =

∫ ∞

0
d2

d jf
(
t,d2

d

)
dd2

d (26)

〈
t
〉(
d2

d

) =
∫ ∞

0
t jf

(
t,d2

d

)
dt. (27)

034304-22



EVAPORATION OF DILUTE DROPLETS IN A TURBULENT JET

The mean square droplet diameter (black line with triangles) does not show any range where a
linear behavior is attained. For small times, the deviation from the d-square law can be explained
considering that droplets are injected in a saturated gas stream that needs some space (and time)
before can be diluted via the jet entrainment process. Hence, the reference environmental conditions
strongly change impacting on the assumption of the d-square law. For long times, the deviation
from the linear profile can be understood considering the high polydispersity in combination with
the prescribed positivity of the square droplet diameter. In this regime the most part of the droplets
disappear because completely evaporated. These features induce the strong bending of the mean
square droplet diameter from the linear behavior showing a heavy tail. Conversely, the mean flight
time, 〈t/t0〉(d2

d /d2
d,0), shows a closer agreement with a linear law if excluding the small time behavior.

Although similar to the mean square droplet diameter up to t/t0 < 40, then the flight time shows
an approximatively linear trend from t/t0 > 30. It should be noted that the mean flight time is
not affected by the positivity of the square droplet diameter when a polydisperse distribution is
considered. Hence, the mean droplet flight time appears as the most reliable observable in order to
characterize and model the evaporation in jet sprays. However, we also note that using the d-square
law with present environmental conditions for an a priori estimate of the vaporization time would
give a value around 7 t0, which is smaller by one order of magnitude with respect to what has been
found from DNS data. This large difference is the result of the complex heterogenous dynamics here
described for the turbulent spray evaporation process.

IV. FINAL REMARKS

A turbulent evaporating spray is investigated by means of a direct numerical simulation. The
simulation reproduces an acetone-air spray evolving in an open environment considering dilute,
nonreacting conditions and accounting for the full coupling between the two phases due to mass,
momentum, and energy exchanges. The entrainment of external dry air is also accounted for. Liquid
acetone monodisperse droplets are continuously injected within the turbulent gaseous phase at a
bulk Reynolds number Re = U0R/ν = 3000. A complete description of both the instantaneous and
average fields of Eulerian and Lagrangian observables is provided. The distribution of droplets
is strongly inhomogeneous, and clustering is apparent. In particular, droplet clusters promote the
formation of and persist in high vapor concentration regions reducing the vaporization rate. The
intensity of the preferential segregation has been measured by the clustering index. Preferential
segregation develops downstream the jet inlet, first in the mixing layer and then in the turbulent core.
In particular, two different mechanisms driving the inhomogeneous droplet distribution are identified:
inertial small-scale clustering and droplet segregation induced by the entrainment process across the
turbulent-nonturbulent interface. The former one is the result of the competition between droplet
inertia and the Stokes drag and is found to be responsible for droplets’ preferential accumulation
mainly in the spray core and in the far field evolution of the flow. The latter one mainly affects
the mixing layer and consists in the entrapment of droplets in turbulent structures with high vapor
concentration which are originated in the core and protract towards the droplet-free dry environment.
Simultaneously, droplet-free dry air regions are engulfed in the jet core diluting it. This mechanism
induces a high correlation between the vapor and droplet concentrations in the mixing layer. Both
these processes affect the droplet dynamics and result in an oversampling of the vapor concentration
experienced by each droplet, affecting also the overall vaporization length and time. Probability
density functions of droplet observables have been reported at different axial distances from the inlet.
An impressive increase of the droplet polydispersity is found to arise in the downstream evolution
of the spray, resulting in an extreme widening of the droplets size spectrum. This intense spread
is attributed to the heavy-tail PDF of the droplet radius vaporization rate which is the result of the
complex dynamics coupling the droplet and the vapor concentration fields. Because of these strong
inhomogeneities, the behavior of the mean square droplet diameter is found to be different from the
classical d-square law. For long times, a nearly linear behavior is shown by the mean flight time,
which appears the most reliable observable in order to characterize the droplet evaporation.
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The mechanisms discussed in the present study are expected to be important in all turbulent flows
characterized by a mixing layer with entrainment of dry air, e.g., plumes and clouds. The proper
modeling of these mechanisms is critical in order to improve LES and RANS model capabilities to
accurately reproduce the turbulent vaporization dynamics for both reacting and nonreacting sprays.
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