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Abstract: This paper focuses on the effect of swingarm deformability on motorcycle stability and in 

particular on the weave mode. Multibody models for the analysis of stability and handling of single track 

vehicles require a lumped element representation of the deformability of the critical structural elements of 

the vehicle. The twist axis method is used to identify lumped stiffness and damping elements able to 

represent bending and torsion deformability of the swingarm. Experimental tests and identification results 

dealing with two different swingarms are presented. The identified lumped stiffness and damping elements 

are implemented in a multibody code and some numerical stability analyses are carried out. Calculated 

results show that swingarm deformability has a small effect on the stability of super sport motorcycles, 



whereas the stability of the weave mode of enduro motorcycles is affected by swingarm deformability in a 

specific range of speeds. 
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1 Introduction 
Stability and handling of motorcycles are strongly influenced by the typical modes of vibration of this class 

of vehicles. In particular the weave and wobble modes are the main concerns of designers and engineers. 

Wobble is a high frequency mode (810 Hz), which chiefly involves the rotation of the front frame about the 

steer axis, whereas weave is a low frequency mode (14 Hz), which involves the whole vehicle with relevant 

roll, yaw and steer rotations and lateral displacement of the rear frame [1] [2]. 

The basic mathematical model for studying handling and stability has 4 degrees of freedom (DOF) 

associated with steer, roll, yaw and lateral displacement and has to include at least a linear tire model with 

relaxation properties [2]. 



In recent years, owing to the development of multibody codes, a relevant progress has been made in the 

study of stability of single track vehicles.  

Stability in cornering and during acceleration/braking has been studied [3] surpassing the limits of the first 

studies, which dealt with linear stability about straight running motion at constant speed. 

Many improvements of the model of the system have been made. The rider is an important part of the 

system, since his/her mass is an important share of the total mass, modern multibody models take into 

account steer impedance due to the rider’s arms [4], bending and torsion deformability of the rider’s body 

[5]. In [6] the kinematics of the vehicle has been improved taking into account the actual point of contact of 

toroidal tires. Improvements in the description of tire deformability and relaxation properties have been made 

in [7] and [8]. 

Rather early riders and engineers discovered that the stiffnesses of front fork, swingarm and chassis play an 

important role in motorcycle stability. After the first studies of Sharp and Alstead [9] further improvements 

have been made by introducing in the multibody codes lumped stiffness elements to represent the critical 

stiffness of the structural elements of motorcycles [10] [11].  

The improvement of knowledge of motorcycle stability and handling has required not only a research effort 

in the fields of modeling and numerical methods, but also a research effort in the fields of experimental 

methods and identification [12] in order to identify the mechanical properties of tires, structural components 

and riders that are needed by advanced multibody codes. 

This paper focuses on the effect of swingarm stiffness and damping properties on motorcycle stability, since 

this aspect has been scarcely addressed by previous research papers.  

The first part of the paper deals with the identification of the stiffness and damping properties of swingarms. 

Actually a swingarm is a continuous system, but a lumped element representation of stiffness and damping 

properties is needed to model the structural-dynamic behavior of the swingarm in a multibody code. In order 

to define the values and the position of the lumped stiffness and damping elements, the twist axis approach is 

adopted.  

The twist axis was first introduced by Giles and Sharp in 1982 [13] and it was defined as the intersection 

between the symmetry plane of the vehicle and the plane of the wheel (front or rear) in loaded condition. A 

rotation about the twist axis causes a displacement and a rotation of the wheel equal to the ones caused by 

the actual compliance of the structural element that supports the wheel. Static tests make it possible to 

identify the static twist axis and twist stiffness, which is the rotational stiffness about the twist axis. In this 

paper, by means of dynamic tests, the twist axes of the bending and torsion modes of the swingarms are 

identified as well and, then, twist stiffness is decomposed into the bending and torsion components. 

Therefore, information about swingarm deformability that takes into account the modal properties of the 

component is obtained. 

The second part of the paper deals with the effect of swingarm deformability on motorcycle stability. The 

lumped element representation of swingarm stiffness and damping obtained by means of the twist axis 

approach is introduced in the multibody model of two motorcycles and analyses are carried out to highlight 

the effect of swingarm characteristics on motorcycle stability. 

2 Experimental equipment and tests 
Two swingarms have been tested in the framework of this research. The first swingarm is mounted on super-

sport motorcycles, presents a bulky and compact design and its weight is 6.96 kg. The second swingarm, on 



the contrary, is designed for enduro motorcycles, it is characterized by a simple geometry and its weight is 

5.45 kg. Both swingarms are made of aluminum alloys. During the experimental tests, a fake spindle has 

been mounted on the rear wheel hub of the swingarms in order to avoid unrealistic motions between the two 

arms.  

2.1 Testing equipment and methods 
The measurement of stiffness has been carried out on the specific testing rig of the University of Padova, 

which is shown in Figure 1. It consists of a stiff column, a servo-hydraulic actuator, and a system of sensors. 

The column is clamped to  a grooved plate and is equipped with metal jaws which make it possible to 

constrain the motorcycle swingarm by locking the swingarm pivot. During the tests, the stem of a hydraulic 

actuator is connected with two ball-and-socket joints to the rear wheel hub of the swingarm and excites the 

swingarm in the lateral direction. The actuator is powered by a hydraulic unit, and can produce a static force 

up to 5000 N. A load cell aligned with the actuator axis is used to measure the force applied by the actuator. 

The measurement system includes three laser sensors that are used to measure the motion of the component 

under test. The laser sensors have a measurement range of 20 mm and a max resolution of 4 μm.  

This testing rig is used to carry out static tests, which aim to identify the twist stiffness and the deformation 

pattern of the swingarm (described by means of the static twist axis) when a static load is applied to the rear 

wheel hub. In more detail, the position of the static twist axis is identified monitoring the motion of a metal 

reference plate that is stiffly attached to the swingarm close to the force’s application point. The motion of 

the plate is measured by means of the laser sensors and the outputs of the three lasers are employed for 

calculating the equation of the plane defined by the metal plate in the loaded and unloaded conditions. From 

the intersection between two planes, it is possible to identify the position of the static twist axis.  

The described method corresponds to a more general definition of the twist axis as well. When a nearly 2D 

structure (like a swingarm) has an end fixed and an end loaded on one side by an out-of-plane force, a stiff 

reference plate clamped to the other side of the loaded end of the structure follows the motion of the loaded 

end of the structural element and behaves like a rigid body. For this reason the basic concepts of rigid body 

mechanics can be adopted to study the motion of the reference plate. An important result of rigid body 

mechanics is that a generic differential spatial rigid motion can be considered an helical motion about an axis 

that coincides with the twist axis defined as the intersection between unloaded and loaded planes [14]. 

 

Figure 1. Picture of the testing rig. 

The displacement of the force’s application point in the lateral direction ( laty ) can be calculated from the 

equation of the reference plane in the loaded condition. The lateral stiffness is defined as: 
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Lateral displacement laty can be expressed also as a function of twist angle  tw  and twist arm twa : 

lat tw twy a       (2) 

The twist stiffness is defined as the ratio between the torque and the rotation about the twist axis: 
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Substituting rotation tw  in equation (2), the expression for the calculation of the twist stiffness from static 

tests is obtained: 
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Actually, the system shown in Figure 1 is well suited for static tests, but it shows some limits in dynamic 

tests: the connection between the stem of the hydraulic actuator and the swingarms alters the behavior of the 

motorcycle components; moreover, the actuator cannot operate above 50 Hz. For these reasons, in order to 

perform dynamic tests, a different technique has been adopted: the hydraulic actuator has been removed, the 

swingarms have been excited by means of a hammer for modal testing and the motion of the reference plate 

has been measured by means of three accelerometers. The dynamic tests aim to identify at the various 

frequencies the deformation pattern of the swingarm, which is described by means of the dynamic twist axis. 

When the frequency of excitation coincides with a natural frequency of the swingarm the deformation pattern 

coincides with the mode of vibration and the dynamic twist axis becomes the modal twist axis [15]. 

Experimental measurements included also a preliminary modal analysis of the swingarms, aimed to identify 

the natural frequencies of the bending and torsion modes and their damping coefficients. Modal analysis has 

been performed exciting the motorcycle components by means of a hammer impact and measuring the 

vibrations by means of a tri-axial accelerometer. The axes of the accelerometer were oriented as follows: x-

axis aligned with the travel direction (pointing backwards), z-axis aligned with the vertical direction 

(pointing upwards) and y-axis as the vector product between x and z. Vibrations have been measured on 18 

points for swingarm 1 and 6 points for swingarm 2, whereas the impact has been exerted on the rear wheel 

hub. Experimental frequency response functions (FRFs) have been calculated as the ratios between the cross-

spectrum of input signal (force) and output signal (acceleration) and the auto-spectrum of input signal; for 

each point, the average of three different measurements has been examined.  

2.2 Tests on swingarm 1 
The moduli of the FRFs measured on swingarm 1 are shown in Figure 2. Three large peaks are evident in the 

range 0-300 Hz. The first peak corresponds to the bending mode of the swingarm (in which the two arms 

move in the y direction), whereas the second peak corresponds to the torsion mode of the motorcycle 

component (in which the two arms move in opposition in the z direction). The third peak is due to the 

longitudinal mode of the swingarm (the two arms move in the z direction) This is an in-plane mode of the 

vehicle, which is not interesting in the framework of this research that focuses on out-of-plane stability. 



 

Figure 2. Overlays of FRFs measured on swingarm 1. 

Figure 3 shows the results of the tests carried out on swingarm 1 for the identification of the static and 

dynamic twist axes. The black thick line is the static twist axis, the black thick point is the point where the 

force has been applied and the small red points are the points in which the displacement has been measured 

by means of the laser sensors. The static twist axis is almost orthogonal to the swingarm and intersects the 

motorcycle component rather close to the stiff column of the testing rig (swingarm pivot). Shifting the 

attention to the dynamic twist axes in resonance conditions, it is interesting to notice that the dynamic twist 

axis identified at the natural frequency of the bending mode is very close to the static twist axis and crosses 

the swingarm almost orthogonally, because the swingarm chiefly vibrates in the lateral direction. On the 

contrary, at the natural frequency of the torsion mode, the dynamic twist axis is almost orthogonal to the 

previous one and parallel to the swingarm. 

 

 

Figure 3. Static and dynamic twist axes of swingarm 1. 

2.3 Tests on swingarm 2 
Figure 4 shows the overlay of the FRFs measured on swingarm 2. Also for this swingarm, three resonance 

frequencies are evident in the range 0-300 Hz.  



 

Figure 4. Overlays of FRFs measured on swingarm 2. 

Figure 5 shows the results of the tests carried out on swingarm 2 for the identification of the static and 

dynamic twist axes. The static twist axis intersects the swingarm at about one third of its length and is almost 

orthogonal to its major axis. This result is in satisfactory agreement with the theory of solid mechanics about 

the twist axis of a cantilever beam locked at one end and loaded by a static force at the free end [14], it 

confirms that this swingarm can be approximated as a cantilever beam due to its simple geometry. Coming to 

the dynamic twist axis, at the natural frequency of the bending mode the axis crosses the swingarm almost 

orthogonally; at the natural frequency of the torsion mode, on the contrary, the dynamic twist axis is almost 

parallel to the swingarm. 

 

Figure 5. Static and dynamic twist axes of Swingarm 2. 

2.4 Mass properties 
In order to have a more realistic model of the swingarm in the motorcycle model, the mass properties have 

been measured by means of laboratory tests. The center of gravity (CoG) has been measured on a specific 

testing rig equipped with four load cells which support the motorcycle component under testing, as shown in 

Figure 6. The machine can be tilted from 0° to 30° with a step increment angle of 3°. For each angle the 

output of the load cells is recorded and the collected data are processed in order to identify the CoG position 

according to the reference system shown in figure 6. Assuming xz-plane as a symmetry plane of the 

swingarm, the y-coordinate of the center of gravity is equal to zero. 



 

Figure 6. Swingarm 1 on the machine for the identification of the CoG. 

 

Figure 7. Swingarm 1 on the trifilar pendulum. 

For the calculation of the moments of inertia of the swingarms, a trifilar pendulum has been used as shown in 

figure 7. The pendulum consists of a plate hung to a frame by means of three stiff wires. If the inertial 

characteristics of the plate are known, it is possible to identify the moment of inertia of the swingarm about 

the vertical axis of the pendulum from the measurement of the natural frequency of the pendulum about the 

vertical axis. Different setups of the swingarm on the plate make it possible to measure the moments of 

inertia about different axes. The following table summarizes the geometric and inertial characteristics of the 

two swingarms that have been tested. 

 

Table 1. Geometric and inertial properties of the swingarms. 

 Mass CoG Position Moments of inertia about CoG 

m(kg) x(mm) z(mm) Ixx (kgm
2
) Iyy (kgm

2
) Izz (kgm

2
) 

Swingarm 1 6.96 0.299 0.027 0.11 0.27 0.34 

Swingarm 2 5.45 0.196 0.015 0.08 0.21 0.28 

 

 



3 Identification of lumped stiffness and damping coefficients 

3.1 Stiffness decomposition 
The static and modal twist axes of the swingarms can be identified by means of the measurements techniques 

described in the previous sections. Then it is possible to decompose the twist stiffness into the bending and 

torsion components that will be introduced in the model of the swingarm for numerical simulations. Under 

the assumption of small rotations, stiffness decomposition is carried out according to two basic properties: 

a) The lateral displacement of the swingarm due to a rotation about the twist axis is equal to the sum of 

the displacements caused by the rotations about the bending and the torsion axes. 

b) The rotation of the reference plate about twist axis is equal to the sum of rotations of this rigid body 

about bending and torsion axes. 

Property a) leads to the following equation: 

 

lat tw tw b b t t
y a a a          (5) 

  

in which, tw , b and t  are twist, bending and torsion angles, twa , ba  and ta  are twist, bending and 

torsion arms, which can be calculated from the measured positions of the static and dynamic twist axes. 

Since twist, bending and torsion angles are given by: 
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equation (5) becomes: 
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Property b) leads to the following equations: 

 

cos( ) cos( ) cos( )tw b b t t          (8) 
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in which   is the angle from x axis to static twist axis, 
b

  is the angle from x axis to the twist axis of the 

bending mode and 
t

  is the angle from x axis to the twist axis of the torsion mode, see figure 8. 

If equations (6) are introduced into equations (8) and (9) and the ratio between these equations is calculated, 

equation (10) is obtained, which correlates the angle of the static twist axis with the angles of the modal twist 

axes: 
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       (10) 

 

Bending and torsion stiffnesses can be calculated solving the system of equations (7) and (10). 
 



 

Figure 8. Stiffness decomposition. 

Tables 2 and 3 summarize the identified static and dynamic properties of the swingarms. 

Table 2. Static and dynamic properties of swingarm 1. 

Static properties 

Linear stiffness 1083 kN/m  
Twist arm 0.477 m  
Twist stiffness 246.4 kNm/rad  
Bending arm 0.451 m  
Bending stiffness 222.4 kNm/rad  
Torsion arm 0.026 m  
Torsion stiffness 77.4 kNm/rad  

Dynamic properties  

Bending mode 134 Hz  
Hysteretic damping 0.74 %  
Torsion mode 208 Hz  
Hysteretic damping 0.97 %  

 

Table 3. Static and dynamic properties of swingarm 2. 

Static properties  

Linear stiffness  623 kN/m  
Twist arm  0.375 m  
Twist stiffness  87.6 kNm/rad  
Bending arm  0.388 m  
Bending stiffness  94.2 kNm/rad  
Torsion arm  0.014 m  
Torsion stiffness  55.2 kNm/rad  

Dynamic properties  

Bending mode 115 Hz  
Hysteretic damping 1.73 %  
Torsion mode 184 Hz  
Hysteretic damping 1.02 %  



It is worth highlighting that the twist axis in pure bending conditions could be evaluated by applying a lateral 

force on the elastic axis of the swingarm, which is the locus of the points of application of a lateral force that 

produces deflection without torsion; but the determination of the elastic axis requires some specific tests. The 

twist axis in pure torsion condition could be identified by applying a torque to the swingarm, but, again, 

specific testing equipment is needed. The decomposition method based on the modal twist axes does not 

require specific equipment, but the axes of the bending and torsion modes do not coincide exactly with the 

axes that can be found by means of static tests. This happens because in actual structures the bending-

dominated mode includes also some torsion deformation and the torsion-dominated mode includes some 

bending deformation. 

A closer inspection of the identified stiffness values of swingarm 1 highlights that the twist stiffness is larger 

than the bending and torsion stiffnesses. Actually, this result is due to the fact that the stiffness are referred to 

different axes, according to the experimental measurements. In order to compare the stiffnesses in the proper 

way, they have to be referred to the same axis. When a multibody system is characterized by linear kinematic 

relations, stiffness about an axis (k) can be reduced to an equivalent stiffness (k') about another axis, making 

use of the ratio of velocities (τ) about the two axes [16]: 

 

' 2k k   (11) 

For the bending and twist axes the velocity ratio τ can be calculated considering that twist velocity and 

bending velocity have to give the same lateral velocity of the wheel:  
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and reduced bending stiffness becomes: 
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In a similar way torsion stiffness can be reduced to the twist axis: 
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Global stiffness about the twist axis can be considered as the series of reduced bending and torsion 

stiffnesses: 
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If equations (14) and (15) are introduced in (16) the following relation between reduced stiffnesses is 

obtained: 
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Table 4 shows the values of bending and torsion stiffness reduced about the twist axis: the twist stiffness is 

lower than its components. 

Table 4. Reduced stiffness values for swingarms 1 and 2. 

 ktw (kNm/rad) kb’ (kNm/rad) kt’ (kNm/rad) 

Swingarm 1 246.4 248.8 26050 
Swingarm 2 87.6 88 39600 

 

It is worth highlighting that if both sides of equation (17) are multiplied by 
2

twa , equation (7) is obtained 

again. 

3.2 Damping coefficient identification 
Since the bending and torsion modes are well separated in frequency, the damping coefficients cb and ct can 

be identified by means of a 1DOF approach: 

2b b b bc k J    2t t t tc k J   (18) 

in which Jb and Jt are the moment of inertia of the swingarm about the bending and torsion axes and ζb and ζt 

are the viscous damping ratios. From the equation of the natural frequency f of a 1DOF system, the moment 

of inertia can be calculated as: 
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Equation (19) can be introduced in the formula for the identification of the damping coefficient, which 

becomes: 
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in which the natural frequency and the viscous damping are known from modal analysis results (the viscous 

damping is equal to half of the measured hysteretic damping). 

Equations (18) cannot be employed for the identification of the damping coefficient about the static twist 

axis because the twist stiffness has been identified by means of static tests and no natural frequency and 

damping coefficient have been measured. For this reason, in order to identify the coefficient ctw, an energy 

approach has been adopted. According to the law of conservation of energy, the work dissipated for 

performing a rotation about the twist axis must be equal to the sum of the work dissipated for performing 

rotations about the bending and torsion axes, according to the following equation: 

tw b tW W W        (21) 



Considering that the work is equal to the viscous moment multiplied by the rotational displacement, the 

equation (21) becomes:  
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If we isolate ctw, the previous equation becomes: 
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Since twist, bending and torsion angles are given by equation (6), it is possible to calculate the following 

ratios: 
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which hold true also for velocities and differential rotations since ab, atw, kb, ktw are constant.  Introducing 

equations (24) into equation (23), ctw is calculated: 
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The identified damping coefficients are summarized in Table 5. 

 

Table 5. Identified damping coefficients for swingarms 1 and 2. 

 cb (Nms/rad) ct (Nms/rad) ctw (Nms/rad) 

Swingarm 1 1.97 0.58 2.18 
Swingarm 2 2.25 0.49 2.09 

 

4 Numerical simulations 
In order to understand the effect of swingarm deformabilities on motorcycles stability, the FastBike 

multibody code has been used; more details about this software can be found in [17]. Two different 

numerical models have been built, considering that the tested swingarms are mounted on different 

motorcycles. In particular, swingarm 1 has been inserted in the model of a super-sport motorcycle, whereas 

swingarm 2 has been inserted in the model of an enduro motorcycle. The main parameters of the analyzed 

vehicles are reported in the Table 6. The rider is assumed to be a rigid body stiffly attached to the saddle. 

Both models have 9 degrees of freedom (DOF) related to the gross motion of the motorcycle: the position 

and orientation of the chassis (6 DOFs), the steer rotation (1 DOF), the wheels rotations (2 DOFs). 

Other degrees of freedom are added to simulate the structural flexibilities measured by means of laboratory 

tests. In particular, for each motorcycle four cases are taken into account: model with rigid swingarm, model 

1 with a rotation DOF about the bending axis to represent bending deformability, model 2 with a rotation 

DOF about the torsion axis to represent torsion deformability and, finally, model 3 with a rotation DOF 

about the twist axis to represent twist deformability.  



Table 6. Motorcycle parameters used in the models. 

 Supersport  Enduro  

Mass of the whole motorcycle 166.2 kg 190.4kg 

Rider mass 77.5 kg 77.5 kg 

Height of the centre of gravity from the ground (vehicle + rider) 0.672 m 0.697m 

Longitudinal position of the centre of gravity, from rear contact point 

(vehicle + rider) 

0.698 m 

 

0.623m 

Wheelbase 1.430 m 1.497m 

Caster Angle 23.7° 29.8° 

Normal trail 0.086 m 0.104 m 

Roll moment of inertia (vehicle + rider) 26.7 kg m
2
 33.4 kg m

2 

Pitch moment of inertia (vehicle + rider) 51.0 kg m
2
 64.9 kg m

2
 

Yaw moment of inertia (vehicle + rider) 28.1 kg m
2
 39.4 kg m

2
 

Product of inertia (vehicle + rider) 3.2  kg m
2
 1.98 kg m

2
 

Front rolling radius 0.315 m 0.321m 

Front tire cornering stiffness per unit load 12.3 rad
-1 

9.09 rad
-1 

Front tire camber stiffness per unit load 1.24 rad
-1

 1.67 rad
-1

 

Front tire self-aligning moment stiffness per unit load -0.45 m rad
-1

 -0.44 m rad
-1

 

Front tire twisting moment stiffness per unit load 0.032m rad
-1

 0.035 m rad
-1

 

Rear rolling radius 0.300 m 0.289 m 

Rear tire cornering stiffness per unit load 10.1 rad
-1

 11.8 rad
-1

 

Rear tire camber stiffness per unit load 1.52 rad
-1

 1.71 rad
-1

 

Rear tire self-aligning moment stiffness per unit load -0.47 m rad
-1

 -0.22 m rad
-1

 

Rear tire twisting moment stiffness per unit load 0.054 m rad
-1

 0.038 m rad
-1

 

 

The simulations have been performed at speed ranging from 0 to 40 m/s for the enduro motorcycle and from 

0 to 50 m/s for the super sport bike, with an increment of 1 m/s per step for both simulations; the limited top 

speed is related to the power train characteristics of the motorcycles.  

The stability analysis test is divided into three phases. In the first phase, the motorcycle trim is computed by 

solving the non-linear equations of the model for the chosen dynamics conditions (with a speed range from 0 

to 40 m/s or from 0 to 50 m/s depending on the model considered, with no longitudinal or lateral 

acceleration). The second phase consists in transforming the non-linear equations into linear equations 

resulting in a state-space matrix. The standard formula for the linear system is: 

x ̇ =  Ax +  Bu 
(26) 

The last phase is the calculation of the eigenvalues of state-space matrix A.  

Frequency (f) and damping ratio (ξ) are calculated from the real part (real) and the imaginary part (imag) of 

the eigenvalues of each vibration mode: 

f = 
imag

2π
 

ξ = −
real

√real2+imag2
 

(27) 

Simulations results are collected in terms of root-loci in which the x coordinate is the real part of the 

eigenvalue, whereas the y coordinate is the natural frequency, see Figure 9. For the four cases described 

above, weave and wobble modes are plotted in the graphs. The arrows show the direction of increasing 

speed.  



 

Figure 9.Root-loci: super-sport (1) vs. enduro (2) motorcycle. 

In both graphs, weave and wobble modes are clearly evident. Focusing on the root-locus of the super-sport 

motorcycle, the wobble mode occurs at about 10 Hz, it is stable in the whole range of investigated speeds 

and its frequency is not significantly affected by the speed of the vehicle. The weave mode occurs at lower 

frequencies (about 0.5-4 Hz), it is unstable for very low speeds, which are not realistic in normal riding 

conditions, and it is stable in the remaining speed range. No effect due to the introduction of swingarm 

structural deformability can be observed on the wobble mode, since the wobble involves only the front frame 

of the motorcycle. On the contrary, swingarm compliances affect the weave mode, actually the effect is not 

strong if compared to the rigid model, owing to the high stiffness values of the super-sport swingarm. 

Coming to the root-locus of the enduro motorcycle, the wobble mode occurs at a lower frequency due to 

different tires and inertial properties of the enduro motorcycle and it is more affected by the speed of the 

vehicle. The weave mode occurs at about 0.5-3.5 Hz and it is stable in the whole speed range. As for the 

super-sport motorcycle, no effect due to swingarm deformability can be observed on the wobble mode. On 

the contrary, the effects of swingarm deformability on the weave mode are more evident, owing to the larger 

differences in terms of stiffness between the rigid model and the models that include torsion, bending and 

twist compliances. 

The modes due to the introduction of swingarm structural deformability are not shown in the graphs because 

they occur at high frequencies: for the super-sport model the bending mode appears at about 52 Hz and the 

torsional mode appears at 65 Hz; for the enduro models they occur at about 38 and 60 Hz, respectively. 

 

Figure 10. Real part of weave mode for the super-sport (left) and enduro (right) motorcycles  

for speed from 10 to 40 m/s. 
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Figure 10 highlights the effects of the swingarm deformability on the real part of the eigenvalue (i.e. on the 

stability) of the weave mode for speeds in the range 10-40 m/s. Similar trends can be observed in both 

motorcycles, the enduro (right) shows larger variations than the super sport (left). At low speed (up to 17 

m/s), the four models present no significant differences in the stability behaviour; from 17 to 26 m/s, the 

model 2 is the most stable while model 1 and 3 are the least stable. Increasing the speed, the effects of the 

structural deformability tend to disappear and the modulus of the real part decreases with a tendency towards 

instability. 

 

Figure 11. Real part of weave mode for the super-sport (left) and enduro (right) motorcycles 

for speed from 10 to 40 m/s, (doubled compliances). 

 

In order to emphasize the effect of structural deformability on the weave mode, the experimental stiffness 

values have been halved. Damping coefficient has been divided by √2, in order to maintain the same 

damping ratio according to (18). Figure 11 shows the results of the simulations: the general trend of the 

models is the same of Figure 10, but the curves exhibit larger percentage variations of the real part with 

respect to the rigid model, especially in the range 17-26 m/s. 

For both motorcycles the maximum stability of weave occurs at about 18 m/s and the maximum effect of 

swingarm deformability appears around this speed. 

   

Figure 12. Modal shapes of the weave mode for the enduro motorcycle (model with torsion deformability). 

In order to understand the reason of this behaviour, the modal shapes of the weave mode of the enduro 

motorcycle at three forward speeds have been represented by means of compass plots (Figure 12), in which 

each modal component is represented by a vector. 
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The amplitudes of the rotations have been normalized with respect to the largest one and the phase of the 

steering angle has been set to 0°. Under the assumption of small displacements, the lateral displacement has 

been converted into an angle by normalizing it with respect to the wheelbase of the motorcycle. In agreement 

with [4] and [5] the yaw angle ψ is almost in opposition with respect to the steer angle δ and the roll angle φ 

is almost 90° out-of-phase with respect to the steer angle; the amplitude and the phase of the lateral 

displacement increase with the speed. Torsion component is not represented, since it modulus is much 

smaller than the others, nevertheless it reaches the largest amplitude at 18.5 m/s. 

From the point of view of vehicle stability, it is worth highlighting that at the speed of maximum stability 

(18.5 m/s) the amplitudes of roll, yaw and torsion components of weave mode reach their maximum. 

Therefore it is possible that the stiffness and damping characteristics of the swingarm have the largest effect 

on stability at 18.5 m/s because at this speed the weave mode involves the swingarm more than at other 

speeds. 

It is interesting to notice that, at this speed, the model with torsion deformability is the most  stable, this 

phenomenon can be caused by the torsion gyroscopic effect that has been found in scooters [10]. In 

motorcycles this effect can be larger than in scooters, owing to the larger ratio between the spin moment of 

inertia of the wheel and the moment of inertia of the swingarm about the twist axis. 

 

5 Concluding remarks 
The value and the position of the lumped element stiffness that represents the deformability of a swingarm 

have been evaluated by means of a simple static test carried out on a test bench that has been developed 

according to the twist axis concept. Dynamic tests carried out by means of standard equipment for modal 

testing have made it possible to identify the torsion and bending components of swingarm stiffness and to 

evaluate swingarm damping. There are very few data about swingarm stiffness in the literature, the stiffness 

values identified in the present research are in agreement with the ones reported by other authors [1] [18] 

[19] [20] and, as predictable, larger than the ones of scooters [10]. 

The identified stiffness and damping values have been implemented in the multibody models of a super sport 

and an enduro motorcycle and specific simulations have been carried out to highlight the effect of the various 

components of swingarm deformability. Results show that swingarm deformability has a small effect on the 

stability of super sport motorcycles, but has an interesting effect on the stability of the weave mode of enduro 

motorcycles in a specific range of speeds. 
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Nomenclature 
F    lateral force 

laty    lateral displacement 

latk    lateral stiffness 

twM    twist torque 

twk , bk , tk   twist, bending and torsion stiffnesses 

twa , ba , ta   twist, bending and torsion arms 

tw , b , t   twist, bending and torsion angles 

    ratio of velocities 

     angle from x axis to static twist axis 

b , t    angles from x axis to the dynamic axes of the bending mode and the torsion mode 

twc
,

,b tc c
  damping coefficients 

,b tJ J
   moment of inertia of the swingarm about the bending and torsion axes 

,b t 
   viscous dampings 

, ,tw b tW W W
  work dissipated for performing a rotation about the twist bending or torsion axis 
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