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Abstract 

Migraine is a complex brain disorder characterized by recurrent attacks of unilateral 

headache and a global dysfunction in multisensory information processing. Genetic 

studies implicate several ion channel genes in migraine, ether as causative of a 

monogenic subtype (FHM) or possible contributors. Here we mainly discuss functional 

studies in transgenic mice carrying a CaV2.1 mutation causing FHM, and the insights they 

provide into the disease mechanisms, in particular regarding susceptibility to cortical 

spreading depression (CSD), the phenomenon that underlies migraine aura and can 

trigger the headache mechanisms. We also discuss recent findings implicating the ATP-

gated P2X7 receptor in initiation of experimental CSD, and review some properties of the 

channels identified by genome-wide association studies as having a potential role in 

migraine.  
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Introduction 

Migraine is a common, complex brain disorder primarily affecting the sensory nervous 

system; it is characterized by recurrent attacks of severe, unilateral, throbbing headache 

and by a global dysfunction in multisensory information processing, whose principal 

manifestations are amplification of percepts from multiple senses during the headache 

attack and impaired adaptation of sensory and cognitive event-related potentials resulting 

in heightened cortical responses and hypersensitivity to sensory stimuli in the period 

between attacks [1-3]. In a third of migraineurs the headache is preceded by transient 

sensory (most frequently visual) disturbances, the so called migraine aura, whose 

neurophysiological correlate is cortical spreading depression (CSD) [4, 5]. CSD is a self-

sustaining, slowly propagating wave of nearly complete depolarization of brain cells that 

lasts about one minute and silences brain electrical activity for several minutes. CSD can 

be induced in healthy brain tissue by intense depolarizing stimuli that increase the 

extracellular concentration of K+ ions, [K]e, above a critical threshold [4]. 

 

The migraine pain is caused by activation and sensitization of the trigeminovascular pain 

network, beginning with the activation and sensitization of trigeminal sensory afferents, 

that innervate cranial tissues, in particular the meninges, and second order neurons in the 

trigeminal nucleus caudalis (TNC); the TNC projects directly or indirectly to different areas 

of the brainstem and forebrain that are involved in different aspects of pain and other 

aspects of the complex migraine symptomatology (Figure 1)[1-3]. Whereas the properties 

of pial afferents remain largely unknown, the dural afferents have properties typical of 

nociceptors in other tissues [1, 6]. A sterile meningeal inflammation is considered to be a 

key mechanism that may underlie the sustained activation and sensitization of meningeal 

nociceptors during migraine attacks [1, 6].  

 

However, the endogenous processes that activate meningeal nociceptors and promote 

meningeal inflammation during a migraine attack remain incompletely understood. While 

most migraine attacks start in the brain, the mechanisms of the primary brain dysfunction 

that causes migraine and leads to episodic activation-sensitization of the trigeminovascular 

network remain largely unknown. 

 

Key insights into these questions were provided by evidence that a single experimental 

CSD leads to delayed sustained increases in dural blood flow and in ongoing activity of rat 
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dural nociceptors and TNC trigeminovascular neurons as well as delayed sensitization of 

the TNC neurons [7-10]. According to an interesting study, the delayed trigeminal 

activation results from a cascade in which CSD induces opening of neuronal pannexin1 

(panx1) channels and inflammasome activation, which initiate a parenchimal inflammatory 

response leading to dural mast cell degranulation, possibly consequent to release of 

proinflammatory molecules in the meninges via glia limitans [11]. Neuronal panx1 are 

large-pore channels permeable to high-molecular weight molecules like ATP; their opening 

is promoted by conditions occurring during CSD, such as high [K]e, increase of intracellular 

calcium, [Ca]in, NMDAR activation [4, 12, 13] (section 3). Since activation of meningeal 

nociceptors in vivo leads to release of vasoactive proinflammatory peptides from their 

peripheral nerve endings, that produce vasodilation of meningeal blood vessels (mainly 

due to CGRP), plasma extravasation and local activation of dural mast cells [1, 6], the 

algesic signals arising from the parenchimal inflammatory cascade might be amplified by 

the neurogenic inflammation; this CSD-induced inflammatory cascade may provide the 

sustained stimulus required for senzitization of trigeminal nociceptors and lasting pain [11] 

(Figure 1). 

 

Several findings support a pivotal role of CGRP in migraine, including the efficacy of 

CGRP receptor antagonists in migraine treatment and the induction of delayed migraine-

like headache in a large fraction of migraineurs, but not in controls, suggesting that many 

migraineurs are hypersensitive to CGRP-mediated modulation of nociceptive pathways. 

The mechanisms underlying this hypersensitivity and the mechanisms of action of CGRP 

during a migraine attack remain unclear, although the therapeutic efficacy of monoclonal 

antibodies against CGRP (CGRP-mAb) point to peripheral mechanisms [1, 14]. Notably, 

CGRP-mAb treatment inhibited the CSD-induced activation of Aδ nociceptors the 

activation-sensitization of high-threshold TNC neurons [15, 16].  

 

The findings just reviewed support the idea that CSD not only causes migraine aura but 

may also trigger migraine headache. However, the mechanisms underlying susceptibility 

to “spontaneous” CSDs in migraine remain largely unknown. 

 

Migraine is a complex polygenic genetic disorder, with heritability estimates as high as 50 

% [17, 18]. The largest genome-wide association study (GWAS) of migraine so far led to 

the identification 38 genomic loci as likely susceptibility genes, three of which contain ion 
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channel genes: TRPM8, KCNK5, GJA1; these genes encode the non-selective cation 

channel TRPM8, a member of the family of transient receptor potential channels,  the 

TASK2 (TWIK-related acid sensing K) channel, a member of the family of K+ channels with 

two pore-forming domains (K2P) giving rise to “leak” currents, and Cx43, a member of the 

connexins family, respectively [19]. However, most of our current molecular understanding 

of migraine comes from studies of familial hemiplegic migraine (FHM), a rare monogenic 

subtype of migraine with aura (MA) [17, 18], with three causative genes: CACNA1A 

(FHM1), ATP1A2 (FHM2) and SCNA1A (FHM3) [20-22]. CACNA1A and SCNA1A encode 

the pore-forming subunits of the voltage-gated ion channels CaV2.1 and NaV1.1, while 

ATP1A2 encodes the alpha2 Na, K ATPase. Apart from the motor aura and the possible 

longer aura duration, typical FHM attacks resemble common MA attacks, but some 

patients can also have atypical severe attacks and/or permanent cerebellar symptoms 

[18]. The generation of four FHM knockin (KI) mice, carrying the FHM1 R192Q or S218L 

and the FHM2 W887R or G301R mutations in the orthologous genes, provided the unique 

opportunity to study the primary brain dysfunctions of a migraine disorder [23-26].  

Here, we will focus on the functional studies in FHM1 KI mice carrying the CaV2.1 channel 

mutation R192Q, which causes typical FHM attacks in humans [20], and on the insights 

into migraine pathophysiology and the mechanisms underlying the susceptibility to CSD 

obtained from these studies. We will only briefly discuss the different findings in the S218L 

FHM1 mouse model, that may give insights into the additional clinical features of the 

severe syndrome caused by the S218L mutation [24]. We will also discuss recent findings 

implicating novel ion channels in the induction of experimental CSD, besides the 

established glutamate NMDA receptors (NMDARs) [4]. Finally, we will briefly discuss the 

properties of the channels whose potential role in migraine was indicated by the recent 

GWAS [19].  

 

1. CaV2.1 channels and FHM1  

CaV2.1 channels are widely expressed in the nervous system, including all structures 

implicated in the pathogenesis of migraine, and play a dominant role in controlling 

neurotransmitter release, particularly at central synapse; their somatodendritic localization 

points to additional postsynaptic roles ([27] and references therein) (Figure 2). Analysis of 

the single channel properties of mutant recombinant human CaV2.1 channels and of the 

CaV2.1 current in neurons of FHM1 KI mice revealed that the mutations produce gain of 

function, mainly due to increased channel open probability and channel activation at lower 
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voltages; the gain-of-function effect may be dependent on the specific CaV2.1 splice 

variant and/or auxiliary subunit ([27] and references therein). Indeed, neuron-specific 

effects have been uncovered in FHM1 mice, likely due to expression of specific CaV2.1 

splice variants and/or auxiliary subunits [28, 29], which may help to explain why a mutation 

in a channel widely expressed in the nervous system produces the specific neuronal 

dysfunctions leading to migraine (see below).  

 

A key migraine-relevant consequence of gain-of-function of mutant brain CaV2.1 channels 

is increased susceptibility to experimentally induced CSD, as revealed by a lower 

threshold for CSD induction and an increased rate of CSD propagation in FHM1 KI mice in 

vivo [23, 24]. During CSD, the increase of [Ca]in in neurons, axons and dendrites and the 

decrease of tissue oxygenation were both larger in FHM1 compared to wild-type (WT) 

mice; after CSD, the reduction of cerebral blood flow was more prolonged [30, 31]. CSD 

more readily propagated into the striatum and produced more severe and prolonged motor 

deficits (including hemiplegia) in FHM1 mice [32-34]. In good correlation with the larger 

CaV2.1 gain-of-function produced by the S218L compared to the R192Q mutation [23, 24, 

35, 36], the strength of CSD facilitation as well as the severity of the post-CSD 

neurological motor deficits and the propensity of CSD to propagate into subcortical 

structures were larger in S218L compared to R192Q KI mice [23, 24, 32-34].  

 

The study of cortical synaptic transmission in R192Q mice revealed enhanced excitatory 

neurotransmission, due to enhanced action-potential (AP) evoked Ca2+ influx through 

mutant presynaptic CaV2.1 channels and enhanced probability of glutamate release at 

cortical pyramidal cell synapses [37]. Congruently, short-term synaptic depression during 

trains of APs was also enhanced. In vivo evidence of enhanced glutamatergic 

neurotransmission in R192Q mice was recently obtained from measurements of CA1 field 

potentials in response to stimulation of anterior hippocampal commissure. Interestingly, 

LTP at these synapses was also stronger in R192Q mutants, although paradoxically 

learning and memory were impaired [38]. Although indirect, evidence for gain-of-function 

of excitatory neurotransmission was also obtained at parallel fibers-Purkinje cell synapses 

in cerebellar slices [39] and at excitatory synapses onto dorsal suprachiamastic nucleus 

neurons of R192Q mice [40].  
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In striking contrast with the enhanced glutamatergic transmission, inhibitory GABAergic 

transmission at cortical fast-spiking (and other multipolar) interneuron synapses was 

unaltered in R192Q mice, despite being initiated by CaV2.1 channels [29, 37]. This is likely 

due to the expression of interneuron-specific CaV2.1 channels whose gating properties are 

barely affected by the FHM1 mutation [29].  

 

As a consequence of the differential effect of FHM1 mutations on excitatory and inhibitory 

synaptic transmission, one predicts functional alterations of the highly interconnected 

cortical microcircuits, in which three main microcircuits core motifs composed of excitatory 

and inhibitory neurons can be recognized [41] (Figure 3). Although functional alterations in 

these microcircuits are expected to result in dysfunctional regulation of the cortical 

excitatory/inhibitory (E/I) balance and altered processing of sensory information, it is not 

straightforward to predict the effect of FHM1 mutations on microcircuit and network 

function, because in the cortex excitation and inhibition are inseparable events. Indeed, an 

enhanced excitatory transmission at the synapses onto inhibitory interneurons may lead to 

increased inhibition due to increased interneurons recruitment, and the net effect may be 

inhibitory in certain conditions. This might possibly explain the reduced neuronal calcium 

responses to repeated whisker stimulation in anesthetized R192Q mice in [31].  

 

CSD rescue experiments support a causative link between increased glutamatergic 

transmission at cortical synapses and facilitation of initiation and propagation of 

experimental CSD in R192Q KI mice. In fact, when AP-evoked glutamate release at 

pyramidal cell synapses was brought back to WT values by partially inhibiting the CaV2.1 

channels, the facilitation of CSD in R192Q cortical slices was completely eliminated [37]. 

The finding that propagation of CSD to striatum and hippocampus in R192Q mice is 

eliminated by systemic treatment with pregabalin, which reduces excitatory transmission in 

R192Q hippocampal slices [34], suggests that the increased propensity of CSD to 

propagate into subcortical structures is also linked to increased excitatory 

neurotransmission. The key role of excessive cortical glutammatergic transmission in CSD 

facilitation is further supported by the recent findings that heterozygous FHM2 KI mice, 

carrying a loss-of-function mutation in the astrocytic alpha2 Na,K ATPase that in humans 

cause typical FHM attacks [25], show reduced rate of glutamate clearance by cortical 

astrocytes during neuronal activity and reduced density of glutamate transporters GLT1 at 

perisynaptic astrocytic processes; notably, the defective glutamate clearance may largely 
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account for the lower threshold for CSD induction in the FHM2 mice [42]. A loss-of-function 

mutation in the glial glutamate transporter EAAT1 was recently identified in a man with MA 

including hemiplegia [43].  

 

Gain-of-function of additional CaV2.1-dependent processes, besides enhanced 

glutamatergic synaptic transmission, likely underlie the particularly high susceptibility to 

CSD and the unique propensity of CSD to spread into subcortical structures in S218L KI 

mice [30, 34, 44]. A specific feature of cortical excitatory synapses in (even heterozygous) 

S218L KI mice not observed in homozygous R192Q KI mice is the presence of a fraction 

of mutant CaV2.1 channels that is open at resting potential; this was revealed in cortical 

slices by sensitivity of miniature excitatory postsynaptic currents (mEPSCs) to CaV2.1 

block [44], and, in vivo, by increased baseline [Ca2+]in in layer 2/3 axonal boutons and 

shafts [30](cf also [45] for similar findings at Calyx of Held synapses). In contrast, the 

mEPSCs frequency was not altered in R192Q KI mice, indicating that presynaptic CaV2.1 

channels carrying the R192Q mutation are closed at resting potential [37, 46].  

 

Overall, the findings in FHM1 (and FHM2) KI mice support i) a model of initiation of 

experimental CSD in which excessive glutamatergic transmission and activation of NMDA 

receptors are key elements in the positive feedback cycle that ignites CSD, with glutamate 

and K+ clearance by astrocytes exerting a dampening role [4] (section 3); ii) the view of 

migraine as a disorder of brain excitability characterized by dysfunctional regulation of the 

E/I balance in specific neural networks [42, 47], which likely underlies the typical 

alterations in multisensory information processing. To explain the ignition of “spontaneous” 

CSDs, it seems plausible to hypothesize that dysfunctional regulation of the cortical E/I 

balance may, in certain conditions, lead to overexcitation and network hyperactivity, with 

consequent excessive K+ increase and NMDAR activation, thus creating the conditions for 

initiation of the positive feedback cycle that ignites CSD [4] (section 3) (Figure 3).  

R192Q KI mice do not show an overt phenotype [23], but when subjected to novelty or 

restrain stress show behavioral changes suggestive of unilateral head pain [48]. Relatively 

few studies investigated whether and how the trigeminovascular pain network is altered in 

FHM1 KI mice. Given the evidence that CaV2.1 channels are involved in controlling CGRP 

release from capsaicin-sensitive perivascular terminals of meningeal nociceptors, in tonic 

inhibition of TNC neurons with input from the dura, and in descending inhibitory and 

facilitatory pathways that regulate pain transmission ([27] and references therein), one 
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may expect alterations at different levels of the trigeminovascular system in FHM1 

mutants.  

However, measurements of CGRP release from dura mater in fluid-filled hemisected skulls 

revealed that neither basal nor K+-evoked CGRP release were significantly different in 

adult R192Q KI compared to WT mice [49, 50]. This findings is consistent with lack of 

effect of the FHM1 mutation on CaV2.1 channels at the peripheral terminals of CGRP-

expressing dural afferents. Indeed, the CaV2.1 current in small capsaicin-sensitive TG 

neurons dissociated from adult R192Q KI mice, which constitute the majority of small dural 

afferents, was not affected by the FHM1 mutation [49]; likely, most of these neurons 

coexpress CGRP [1, 51]. Congruently, dural artery vasodilation induced in vivo by 

systemic capsaicin was not increased in R192Q KI mice; actually, vasodilation induced by 

both systemic CGRP and capsaicin was decreased [50], suggesting downregulation of 

blood vessels CGRP receptors, perhaps as a compensatory mechanism in response to 

frequent activation of meningeal nociceptors by CSD. A lower fraction of CGRP-

expressing TG neurons and a less dense plexus of dura CGRP fibers may be additional 

compensatory mechanisms [52]. Although it remains unknown whether the FHM1 mutation 

enhances the CaV2.1 current in pial meningeal afferents (and in dural afferents of medium-

large size), the findings in R192Q KI mice argue against the idea that facilitation of CGRP-

dependent processes at the dura (e.g. vasodilation and mast cell degranulation) contribute 

to the generation of migraine pain in FHM1.  

Depending on the study, K+-evoked CGRP release from isolated trigeminal ganglia was 

either increased [49] or unaltered [50] in adult R192Q mice; in the latter study, also CGRP 

release from TNC was unaltered in the mutants (but note that, since the FHM1 mutations 

shift channel activation without affecting maximal open probability [53], the K+ 

concentration in [50] was likely too high to be able to reveal increased CGRP release). 

Enhanced K+-evoked CGRP release from R192Q trigeminal ganglia implies gain-of-

function of CaV2.1 channels in some TG neurons; this was indeed shown in a 

subpopulation of small capsaicin-insensitive TG neurons, which do not innervate the dura 

[49]. Although one predicts enhanced transmitter release from these neurons upon 

activation (given the larger AP-evoked CaV2.1 current [49]), their function, transmitters and 

possible involvement in migraine pain remain unknown.  

  

In cultured TG neurons from R192Q pups, also basal (besides K+-evoked) CGRP release 

was increased, suggesting opening of mutant CaV2.1 channels at resting potential [54]. 
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Indeed these cultured TG neurons show interesting CaV2.1-dependent alterations such as 

increased immunoreactivity for activated CaMKII and loss of constitutive inhibition of ATP-

gated P2X3 receptors (P2X3Rs) by brain natriuretic peptide receptors, which leads to 

increased ATP-gated P2X3R current and enhanced excitability in response to ATP [55-

57]. Blocking the CGRP receptors eliminated both the neuronal upregulation of the P2X3R 

function and the recently uncovered upregulation of P2X7Rs function in SGCs and 

macrophages, suggesting that the increased basal release of CGRP promotes 

sensitization of P2X3R-expressing TG neurons, cross-talk between neurons and SGCs 

and macrophages, resulting in a local persistent inflammatory environment [54, 58, 59]. 

However, basal release of CGRP was not increased in trigeminal ganglia from adult 

R192Q KI mice [28, 50], suggesting caution in drawing conclusions regarding migraine 

pain mechanisms from pups TG cultures findings. Whether the adult TG shows a 

constitutive inflammatory phenotype in R192Q mutants remains unclear, since in FHM1 

ganglia the number of active macrophages was increased (in all divisions), but the protein 

level of the pro-inflammatory cytokines IL1beta, IL6 and TNFalpha was unaltered [60].  

 

2. NaV1.1 and FHM3 

In several brain areas including the cerebral cortex, NaV.1.1 channels are highly expressed 

in inhibitory interneurons, especially at the axon initial segment, and play a key role in 

interneurons (but not excitatory neurons) excitability, particularly in sustaining high-

frequency firing [61-63] (Figure 2). Indeed loss-of-function mutations in NaV.1.1 channels 

cause a spectrum of epilepsy syndromes [64]. Conflicting findings were obtained from the 

analysis of the functional consequences of FHM3 mutations on recombinant human 

NaV1.1 channels expressed in non-neuronal cells, pointing to either gain- or loss-of-

function effects depending on the mutation and/or the NaV1.1 splice variant [65-68]. 

However, the L1649Q mutant Nav1.1, that was non-functional when expressed in a non 

neuronal cell line because of lack of plasma membrane delivery, showed an overall gain-

of-function phenotype and could sustain high-frequency firing better than the WT channel 

when expressed in cortical interneurons [69]. Overall the data suggest that, most likely, 

FHM3 is associated with gain-of-function of NaV1.1 channels and consequent selective 

hyperexcitability of cortical interneurons.  

 

3. Ion channels in initiation of experimental CSD 
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Despite important progress, the mechanisms underlying the initiation of experimental CSD 

remain incompletely understood. However, the generation of a self-sustaining neuronal net 

inward current and regenerative local K+ and glutamate release are considered essential 

components of the positive feedback cycle that confers to CSD its all-or-none 

characteristics and causes complete neuronal depolarization if the removal of K+ and 

glutamate from the interstitium does not keep pace with release [4]. There is strong 

pharmacological evidence that the key ion channel involved in initiation of experimental 

CSD is the NMDAR (reviewed in [4]). The findings in FHM mouse models are consistent 

with a key role of both NMDARs and CaV2.1 channels in CSD initiation.  

 

A recent study revealed that also the ATP-gated P2X7 receptors (P2X7Rs) play an 

important role in induction of CSD by electrical or KCl stimulation [70]. The unique C-

terminal tail makes P2X7Rs able to form a large pore permeable to high-molecular weight 

molecules (including ATP and glutamate) upon prolonged exposure to ATP. Although it is 

still debated whether this is an intrinsic property of the P2X7R protein or whether a large-

pore channel (in particular panx1) is associated with P2X7R, converging evidence 

suggests that it is an intrinsic property [12, 71, 72]. In any case, opening of the large pore 

associated with activation of P2X7Rs is critically involved in CSD initiation, as revealed but 

the much lower threshold for CSD induction in mice with a spontaneous P2X7R mutation, 

which partially impairs the large- pore formation [70]. The mechanism by which P2X7Rs 

affect induction of experimental CSD remains unclear, also because there is an ongoing 

discussion regarding the presence or absence of P2X7Rs in neurons [73] [74]. While it is 

clear that P2X7Rs are expressed in the major non-neuronal cell types in the brain, the 

neuronal mRNA expression seems to be restricted to CA3 hippocampal neurons [75]. On 

the other hand, it is unclear whether panx1 is expressed in adult astrocytes in vivo [13]. 

Specific inhibition of panx1 channels increased the electrical CSD threshold, although not 

to the same extent as P2X7R inhibition [70], but did not affect CSD induced by pinprick 

([11]; cf also unaltered SDs induced by focal cerebral ischemia in [72]).  

 

4. Ion channels implcated in migraine from GWAS 

TRPM8. The TRPM8 channel is activated by chemical cooling agents and temperatures 

below 26 °C, and is essential for detection of cool to noxious cold temperatures [76]. In 

rodents, TRPM8 is primarily expressed in the sensory ganglia, in about 10% of small-

diameter neurons, which do not express CGRP [77]. The abundance of TRPM8-
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expressing neurons in the dural TG afferents is lower than in the total TG [78]. It is 

unknown whether the TRPM8-expressing dural afferents are nociceptors, and whether 

activation of TRPM8 in the meninges leads to an increase or decrease in pain, in that 

activation of TRPM8-expressing fibers may be pro- or anti-nociceptive depending on 

context, in particular on the absence or presence of inflammation [76, 79, 80]. The 

endogenous mechanisms that may activate TRPM8 in the meninges are unknown. 

TASK2. The TASK2 K+ channel is prominently expressed in the kidney and is not, or only 

weakly expressed in the brain, where its expression is restricted to a few brainstem areas, 

including the dorsal raphae nucleus and the retrotrapezoid nucleus, where TASK2 plays a 

role in O2 chemoreception [81, 82]. TASK2 is also expressed in the dorsal root ganglion, 

particularly in small neurons [83]. It is unknown whether these neurons are nociceptors 

and whether TASK2 is expressed in TG meningeal afferents. TASK2 is highly sensitive to 

external pH in the physiological range, its open probability increasing with increasing pH 

[81]. Notably, a loss-of-function mutation in the gene encoding the TRESK channel, a 

member of the K2P family highly expressed in TG, cosegregated with MA in a large family 

[84]. Expression of mutant TRESK in TG neurons resulted in a decrease of the 

endogenous TRESK current and in hyperexcitability of TG neurons [85]. However, another 

TRESK loss-of-function mutation was found in both migraineurs and controls, suggesting 

that a single non-functional TRESK variant may be not sufficient to cause migraine ([86]; 

but cf [87]).  

Cx43. Cx43 forms two types of channels: gap junction channels (GJCs) allowing direct 

cytoplasm-to-cytoplasm communication and hemichannels (HCs) that, like pannexins, 

mediate release and uptake of ions and small molecules. Because of this double function 

CX43 has many physiological roles in the brain, where it is not expressed in neurons but 

highly expressed in astrocytes [88]. In its GJC function, CX43 is involved in e.g. 

propagation of Ca2+ waves between astrocytes and K+ spatial buffering by astrocytes  [88, 

89]. Notably, probably as a consequence of impairment of the latter, astrocyte-directed 

inactivation of Cx43 facilitates CSD induction and increases the velocity of CSD 

propagation [90]. Cx43 HC activity in astrocytes is associated with release of 

gliotransmitters such as ATP, glutamate and D-serine, and hence with modulation of basal 

synaptic transmission and plasticity [88, 91-93]. Cx43 HC activity increases in pathological 

conditions, such as inflammation, possibly contributing to the activation of the 

inflammasome pathway [88, 92]. Cx43 is also expressed in SGCs in the trigeminal 

ganglion, where its expression increases after nerve injury; knockdown of CX43 
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expression reduced pain behaviour in the neuropatic rats, but increased pain behaviour in 

control rats [94]. Increasing coupling among SCGs is a consistent feature of different pain 

models, which might contribute to peripheral sensitization [95]. 

 

Although the functional consequences of the migraine-associated variants remain 

unknown, it seems plausible that alterations in TRPM8 and TASK2 might contribute to 

migraine by making the meningeal afferents hyperexcitable, while those in Cx43 might 

contribute by altering brain synaptic transmission and plasticity and by increasing CSD 

susceptibiliy besides facilitating pain mechanisms. 

 

 

Figure legends  

Figure 1 
From cortical spreading depression (CSD) to trigeminovascular nociception and 

migraine pain. The right panel illustrates the changes in extracellular potential (Vo) and 

extracellular concentrations of K+, Na+, Ca2+ and glutamate during the CSD depolarization, 

which propagates from right to left; the red dashed line represents the CSD wavefront. 

CSD underlies migraine aura. CSD induces a pannexin1-dependent parenchimal 

inflammatory cascade, dural mast cell degranulation and neurogenic inflammation, which 

lead to activation and sensitization of meningeal trigeminovascular afferents (left panel) 

and of central trigeminovascular neurons in the trigeminal nucleus caudalis (TNC) and 

C1/C2 dorsal horns; these neurons make direct ascending connection with thalamic nuclei 

and different areas in the brainstem (including the superior salivatory nucleus, SSN, the 

locus ceruleus (LC), the periaqueductal grey (PAG)) and hypothalamus); the third order 

thalamocortical neurons project to several cortical regions, including somatosensory (S1, 

S2), insula, and visual (V1, V2) (central panel). Activation and sensitization of this 

trigeminovascular network underlies migraine pain. 

 

Figure 2 
Ion channels implicated in migraine pathophysiology. A. Cellular and subcellular 

localization of ion channels implicated in migraine in the cerebral cortex. B. ion channels 

implicated in migraine in the trigeminal ganglion and in dural afferents.  

Only channels implicated by human genetic studies are considered, with the exception of 

channels involved in initiation of experimental CSD. Mutations in the neuronal CaV2.1 and 
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NaV1.1 channels cause FHM1 and FHM2, respectively; mutant astrocytic α2 Na, K 

ATPases (α2 NKA) cause FHM2. CaV2.1 are localized at synaptic terminals, but also in the 

somatodendritic compartment, while Nav.1.1 are mainly localized at the axon initial 

segment of inhibitory neurons. GWAS indicate that alterations in neuronal TRPM8 and 

TASK2 channels and glial Cx43 channels are possibly implicated in migraine. NMDA and 

P2X7 receptors and possibly pannexin1 (panx1) are involved in initiation of experimental 

CSD. Panx1 is involved in the CSD-induced parenchimal inflammatory cascade.  

 

Figure 3 

Functional consequences of FHM1 mutations in the cerebral cortex. Analysis at the 

cellular and synaptic level in a FHM1 mouse model revealed differential effects on CaV2.1 

channel function in excitatory and inhibitory interneurons and on excitatory and inhibitory 

synaptic transmission. One predicts altered function, that remains to be investigated, of the 

cortical microcircuit motifs composed of excitatory and inhibitory neurons, which mediate 

feedback recurrent and lateral inhibition, feedforward inhibition and dishinibition; these 

microcircuits are essential for gain control and correct processing of sensory information 

and to dynamically maintain the excitatory-inhibitory (E/I) balance necessary for the 

transfer of information while preventing runaway excitation [ ]. Analysis of experimental 

CSD revealed a lower threshold for CSD induction and enhanced rate of CSD propagation 

due to excessive glutamatergic transmission. It remains to be investigated whether, in 

certain conditions, the dysfunctional regulation of E/I balance may lead to overexcitation 

and network hyperactivity creating the conditions for ignition of “spontaneous” CSD, as 

hypothesized.  
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Annotated references: 

[19] Gormley et al, Nat Genet 2016** 
This is the largest genetic study of migraine so far, involving 60000 migraineurs and 
300000 controls; it identifies 44 disease-associated single nucleotide polymorphisms that 
implicate 38 genomic loci as the likely susceptibility genes (28 of which were not reported 
before), including 3 genes encoding ion channels only one of which was reported before. 
Several of the 38 genes are expressed and specifically active in the brain while many 
others are involved in arterial and smooth muscle function.  
  
[30] Eikermann-Haerter et al, Ann Neurol 2015* 
In this elegant in vivo study, multiphoton Ca imaging of layer 5 pyamidal cell dendrites and 
contralateral hemisphere axons, using a genetically encoded Ca2+-indicator, reveals 
increased resting [Ca]in in layer 2/3 boutons, loss of [Ca]in compartmentalization, and 
altered synaptic morphology in heterozygous S218L FHM1 KI mice. If these changes will 
turn out to be specific for the S218L mutation, they might contribute to the severe clinical 
syndrome caused by the mutation. This study also shows a faster and larger neuronal 
[Ca]in surge during CSD and a more severe post-CSD oligemia and hemoglobin 
desaturation in the S218L FHM1 brain. 
 

Cain et al, PNAS 2017* 
Using a customized diffusion-weighted DW-MRI methodology to measure the spread of 
CSD through the brain with spatiotemporal accuracy, this study shows propagation of CSD 
to striatum and hippocampus with a significant delay after passage through the cortex in 
FHM1 mice with the mild R192Q mutation, but almost simultaneous propagation in the 
mutants with the severe S218L mutation. Pregabalin inhibits excitatory transmission at 
hippocampal CA3-CA1 synapses and propagation of CSD to subcortical structures in 
R192Q mutants, but not S218L mutants. These data confirm the importance of the gain-of-
function of excitatory neurotransmission for CSD facilitation in R192Q KI mice and point to 
additional effects of the S218L mutation that remain to be clarified. 
 
Dilekoz et al, J Neurosci 2015** 
First in vivo evidence of enhanced hippocampal excitatory synaptic transmission and 
enhanced hippocampal LTP (with unaltered LTD) in a FHM1 mouse model. Paradoxically 
learning and memory were impaired in hippocampus-dependent fear conditioning and 
water maze tests, but unaltered in novel object recognition tests, which rely on a more 
distributed network. These findings might provide a possible explanation for cognitive 
changes detected in FHM. 
 

Capuani et al, EMBO Mol Med 2016* 
This study combines patch-clamp recordings from astrocytes in acute cortical slices and 
immunogold electron microscopy to show, for the first time, that reduced expression of the 
α2 Na,K ATPase in heterozygous FHM2 knockin mice leads to reduced rates of glutamate 
and K+ clearance by cortical astrocytes during neuronal activity and reduced density of 
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GLT-1 glutamate transporters in perisynaptic astrocytic processes. Using ceftriaxone 
treatment of FHM2 mutants and partial inhibition of glutamate transporters in wild-type 
mice, the study provides evidence that defective glutamate clearance can account for most 
of the facilitation of CSD initiation in FHM2 knockin mice, pointing to excessive 
glutamatergic transmission as a common feature of FHM1 and FHM2. 
 
Chen et al, Brain 2017** 
This study reveals for the first time an important role of the ATP-gated P2X7 receptors in 
initiation of experimental CSD in wild-type mice in vivo and shows that opening of the large 
pore associated with activation of P2X7Rs is critical (although, as a consequence of the 
complex P2X7Rs pharmacology, the study does not fully clarify whether the large pore is 
an intrinsic property of P2X7Rs or it involves panx1, as proposed). The study also shows 
the critical involvement of P2X7Rs in downstream consequences of repeated CSDs such 
as upregulation of interleukin-1 beta, inducible nitric oxide synthase and cyclooxygenase-2 
in the cortex. 
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Highlights 

We recapitulate current understanding of migraine pathophysiology. 

We discuss how disease-causing CaV2.1 mutations affect cortical and trigeminal 
physiology 

We discuss novel ion channel mechanisms in cortical spreading depression 

We describe the ion channels in migraine genome-wide association studies 
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