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Magnetic Modelling of Synchronous Reluctance
and Internal Permanent Magnet Motors Using

Radial Basis Function Networks
L. Ortombina, F. Tinazzi, Member, IEEE, and M. Zigliotto, Member, IEEE

Abstract—The general trend towards more-intelligent
energy-aware ac drives is driving the development of
new motor topologies and advanced model-based control
techniques. Among the candidates, pure reluctance and
anisotropic permanent magnet motors are gaining popu-
larity, despite their complex structure. The availability of
accurate mathematical models that describe these motors
is essential to the design of any model-based advanced
control. This paper focuses on the relations between cur-
rents and flux linkages, which are obtained through inno-
vative radial-basis function neural networks. These special
drive-oriented neural networks take as inputs the motor
voltages and currents, returning as output the motor flux
linkages, inclusive of any nonlinearity and cross-coupling
effect. The theoretical foundations of the radial basis func-
tion networks, the design hints and a commented series
of experimental results on a real laboratory prototype are
included in the paper. The simple structure of the neural
network fits for implementation on standard drives. The
online training and tracking will be the next steps in FPGA-
based control systems.

Index Terms—Permanent magnet motors, reluctance mo-
tor, artificial neural networks, magnetic flux linkages.

NOMENCLATURE

Variables names convention:
• variable with accent ̂ : estimated quantities
• bold lowercase variable: vectorial quantities

Symbols used:
ud,q(t) Stator voltages
id,q(t) Stator currents
λd,q(id, iq) Magnetic flux linkages
τ(t) Electromagnetic torque
εd,q Voltage estimation errors
Ng
K Number of Gaussian functions
bk Proportional coefficient of the first layer
dmax Diameter of the quadratic training region
nk, xk, ak Input, centre in (d, q) reference frame and out-

put of the kth Gaussian functions
wd,q

k Proportional coefficients of the second layer
M Number of steady state training points

L. Ortombina, F. Tinazzi and M. Zigliotto are with Dept.
of Management and Engineering, University of Padova, Italy.
(e-mail: ludovico.ortombina@studenti.unipd.it, {fabio.tinazzi,
mauro.zigliotto}@unipd.it

Ed,q Quadratic cost functions
Jd,q(wd,q

h ) Jacobian matrices at the hth iteration
I Identity matrix of size equal to Jd,q(wd,q

h )
µh Coefficient to make matrices invertible
εd,qN Normalised flux estimation error

The time dependence (t) is omitted in the rest of the paper
(unless otherwise specified) for the sake of more compact
equations.

I. INTRODUCTION

Permanent Magnet (PM) synchronous motors suffer of the
heavy ecological footprint of rare earth materials and their os-
cillating prices. The research is focusing on a drastic reduction
of the use of PM, to obtain the best balance between the re-
luctance and the PM contributes to the electromagnetic torque.
This is done through the investigation of several structure
alternatives [1], [2]. The best candidates for the substitution
in many applications are the synchronous reluctance (SynR)
and internal permanent magnet (IPM) motors. The marked
anisotropy of both SynR and IPM rotors is a distinctive
advantage and major reason for a choice, since it also enables
the sensorless control down to zero-speed.

To fully exploit the motor anisotropy, advanced control tech-
niques as model reference adaptive control, maximum torque-
per-ampere (MTPA), maximum torque-per-voltage (MTPV),
sensorless control and model predictive control [3]–[5] need
an accurate magnetic model of the motors. Actually, both
SynR and IPM motors lack of the large equivalent airgap
of surface-mounted PM motors and their magnetic circuits
suffer of cross-coupling and saturation effects. The magnetic
model becomes a non-linear set of relations among currents
and flux linkages, usually expressed as two-input maps in a
(d, q) reference frame synchronous to the rotor.

The key point in the choice of the model is the complexity of
the system, which can be either simplified (loosing accuracy)
or tabulate (loosing resolution). The finite element analysis
(FEA) is a first viable way [6], even if it is quite sensitive to
uncertainties in mechanical dimensions and material proper-
ties.

A simpler but not trivial alternative is based on test-bench
measurements. The methods can be classified according to
the speed at which the measurements are carried on. A first
group computes the flux linkages by voltage integration in
the (d, q) reference frame (at standstill) taking advantage of



the zeroing of the cross-coupling terms [7]–[9]. For example,
[7] commendably includes the evaluation of the iron losses
in the injection-based algorithm, investigating the behaviour
of the differential inductances at high-frequency. The methods
[9] and [8] apply a short sequence of bipolar voltage pulses to
estimate the magnetic maps at standstill. The first one proposes
a new flux saturation approximating function, which require
the identification of multiple sets of constants to account for
cross-coupling effect. The second one includes an empirical
choice of some exponents in the mathematical approximation
functions, that are borrowed by [10]. It is worth to note that
in both cases the injection of a voltage excitation forces the
use of a reduced DC bus voltage, which is not an industry
standard. As a general remark, the common flaw of standstill
methods is that they well suit for SynR motors, while they fail
in estimating the PM flux linkage, when present.

As an alternative, two dynamic methods have been proposed
in literature. In [11] the magnetic model is obtained by
evaluating of cross-coupling voltage terms in a steady-state
condition. The well-known influence of the phase resistance
is smoothed by exploiting the flux linkage maps symmetry.
The identification is quite accurate and for this reason they
are often taken as a benchmark for comparisons. The only
disadvantage is represented by the discrete output (look-up
table, LUT), which poses problems of interpolation and dif-
ferentiability. Alternatively, the magnetic model can be derived
from accelerating and braking the rotor, at no load [12]–[14].
A fixed-current condition in the synchronous reference frame
corresponds to a steady torque value that forces a linear speed
ramp, for a mainly inertial load. During the acceleration, also
the flux linkage vector is steady and it can be derived from
the back-EMF estimate. The accuracy may be undermined by
the iron losses, which change during the speed ramp. Also the
speed increase may be a problem, since at no load and under
a constant torque it can rapidly overcome the safety limit.

The present paper illustrates the study and the imple-
mentation of an accurate continuous 2D magnetic model of
any IPM and SynR motor from a different point of view.
The inherent complexity of the interaction between motor
structure, currents and magnetic fluxes is considered as an
ideal candidate for a “black-box” modelling. To this aim,
artificial neural networks (ANNs) were selected as a powerful
tool for mapping unknown non-linear relations [15]–[17]. The
ANN structure of the proposed model is a simple 2-layer radial
basis function (RBF) network, which is mainly composed
by a set of bi-dimensional interconnected Gaussian functions
[18]. The weighted sum of their output realises the non-linear
map between the input (the current space vector) and the
output (the motor flux linkages). To dispel the widespread
belief that ANNs are “inappropriate” for their complexity,
the paper aims at proving that the proposed solution well
fits for implementation in standard drives, bringing inherent
advantages.

In the paper, the theoretical background is presented in
Sect. II, while the details of the RBF network its training al-
gorithm are detailed in Sect. III. The practical implementation
and validation are reported in Sect. V.

Motor (3)

RBF network

motor model (4)

ω

idq

ud

uq

ûd

ûq

εd

εq

+

Fig. 1. RBF network training scheme.

II. THEORETICAL BACKGROUND

The voltage balance equations of a synchronous motor in
the reference frame (d, q) fixed to the rotor are the following:

ud(t) = Rsid(t) +
∂λd(id(t), iq(t))

∂t
− ωmeλq(id(t), iq(t))

uq(t) = Rsiq(t) +
∂λq(id(t), iq(t))

∂t
+ ωmeλd(id(t), iq(t))

(1)

and the electromagnetic torque delivered by the motor is:

τ(t) =
3

2
p(λd(id, iq)iq − λq(id, iq)id) (2)

where for this time the dependence of both flux linkages
on currents is made explicit. This paper proposes a new
identification procedure that returns the (d, q) magnetic model
of the motor, by the accurate measurement of phase currents,
voltages and motor speed. The data are acquired at steady
state, so that the equations (1) lose their derivative terms:

ud = Rsid − ωmeλq(id, iq)

uq = Rsiq + ωmeλd(id, iq)
(3)

The estimated voltages ûd and ûq , necessary for the com-
parison with the measured ones, are obtained as:

ûd = Rsid − ωmeλ̂q(id, iq)

ûq = Rsiq + ωmeλ̂d(id, iq)
(4)

where λ̂d(id, iq) and λ̂q(id, iq) are the estimated flux linkages
that represents the output of the RBF network. The errors εd

and εq are calculated as:

εd = ud − ûd = ud −Rsid + ωmeλ̂q

εq = uq − ûq = uq −Rsiq − ωmeλ̂d
(5)

Provided that voltages, currents, speed and resistance are
known, the zeroing of both errors will result in the fulfilment
of the equalities:

λd(id, iq) = λ̂d(id, iq) λq(id, iq) = λ̂q(id, iq) (6)

The block schematic of the training procedure is reported in
Fig. 1. It recalls a model reference adaptive system, in which
the adaptive model is represented by a combination of a motor
model and the RBF network. The training is based on the
voltage estimation errors (5) and the parameters adaptation
mechanism of the RBF network will be described in Sec. III.
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III. RBF NETWORK FUNDAMENTALS AND DESIGN

In principle, artificial neural networks can be considered as
universal function approximators. There exist several types,
that differ for topology and learning process. The choice must
be application-oriented. This paper proposes a radial basis
function neural network, which enables an easy implemen-
tation and, in perspective, an efficient online training and
updating. The two-layer structure of the RBF network can be
described with the aid of Fig. 2.

A. First layer
The hidden layer of a conventional multilayer perceptrons

neural network (MLP-NN) is usually made of sigmoid func-
tions [19], which are global functions, in the sense that their
output is not zero even when the net input tends to infin-
ity. Conversely, this paper proposes the innovative adoption
of Gaussian functions in the hidden layer, in place of the
sigmoids. These functions present a local characteristic, which
means that the output is close to zero if inputs are conveniently
far from the centre of the Gaussian. To understand the scope
of the choice, it is worth to consider that, in general, the MLP-
NN creates a distributed representation for each input, with the
hidden layer functions collaborating and overlapping. Since in
a RBF network each Gaussian function is active only around
its centre, for any given input only few Gaussian functions
will be active at a time. Such local property is interesting in
perspective, because it facilitates the development of online

RBF updating algorithms at steady state. While being out of
the scopes of the present work, it will be one of the next
research steps.

As indicated in Fig. 2, the input to the RBF network is the
phase current space vector idq , defined within a circular region
in the R2 plane (Fig. 3). For an easier implementation, the
RBF network training region was extended to the square that
circumscribes the circumference. Each dot in Fig. 3 represents
the centre of a Gaussian function. The layout of the centres
is a degree of freedom in the design of the RBF network. A
comprehensive analysis is given in [20], that proposes either
a fixed layout, with random positioning of the centres, or
adaptive RBF centres. The conclusion is that the non-linear
optimisation of the first layer parameters is beneficial only
when a minimal network is required to solve a given problem.
This is achieved at the cost of an overall increased complexity
of the system.

For the present work (oriented to simple ac drives hardware)
it has been found that a regular spacing of the RBF centres
is a satisfactory solution. The lower the number of Gaussian
functions, the lighter the implementation. To the authors
experience, a good trade-off consists in spacing the Gaussian
centres of about the 25% of the nominal current, in both axes
directions. The result are Ng×Ng functions, with Ng = 9. As
regards the parameters bk (Fig. 2), a good guess is suggested
in [19]:

bk =

√
K

2dmax
(7)

where K = N2
g is the number of Gaussian functions and dmax

is the maximum distance as defined in Fig. 3.
The hidden layer computes the Euclidean distance between

each Gaussian centre xk = (xdk + jxqk) and the input vector
idq = id+jiq . The result is then multiplied by the coefficients
bk and sent as input to the Gaussian functions:

nk = ‖idq − xk‖bk k = 1 . . .K (8)

B. Second layer
The second layer is the conventional one adopted in most of

MLP-NN. Only four Gaussian functions are drawn in Fig. 2,
but actually many others are present and cover with the due
resolution the whole input range.

The hidden layer Gaussian outputs are ak = e−n2
k . The flux

linkages space vector estimate λ̂dq can be expressed as linear
combinations of those outputs, weighted by the coefficients
wd,q

k (Fig. 2):

λ̂d =

K∑
k=0

wd
ke

−n2
k λ̂q =

K∑
k=0

wq
ke

−n2
k (9)

The RBF weights wd,q
k will be the object of the training

procedure described in Sec. IV.
In real-time applications the computational burden of (9)

exceeds that of LUT-based methods. On the other hand, one
may appreciate the advantages brought about by the continuity
of the proposed functions-based model and some practical
tricks can be adopted to smooth the gap. In the present
work, the exponentials of (9) were approximated by means of



polynomial functions of fifth order. Their computation required
about the 25% of the control cycle, which was of 100µs, so
that enough time was left for the remaining control tasks.

IV. RBF NETWORK TRAINING

The RBF weights training procedure consists of two steps.
It starts by the acquisition of voltages, currents and speed
measurements in multiple steady state conditions, followed by
an offline training.

A. Data acqisition
In order to minimise the errors due to temperature varia-

tions, the motor is first warmed up to the thermal equilibrium.
Two current references, namely i∗d and i∗q , are imposed to the
motor under test, which is driven at fixed speed by a second
independent motor unit. The speed reference comes out as a
design trade-off. On one hand, the speed should be low to
reduce the influence of iron losses, which drain part of the
stator current deputed to the flux production, [21]. On the other
hand, there is the request of good signal-to-noise ratio for the
voltage measurement, which gets better at higher speed. The
experimental RBF training was performed at 100 rpm.

The region of Fig. 3 was gridded to get current references
equally spaced-out from each other. The total number of
successive steady state training points was:

M = (2IN/∆I + 1)
2 (10)

where ∆I = IN/10 is the result of a design trade-off between
resolution and data storage space. For each of the M steady
state working points, the voltage and currents were sampled
every Tc = 100µs and averaged over a complete mechanical
revolution. This smooths possible disturbances occurring at
either the electrical or mechanical frequency, caused by me-
chanical and winding asymmetries.

At the end of the first step, M reliable samples of the vectors
udq, idq and the speed ωme are available, for the subsequent
training of the RBF network.

B. Offline network training
Two different sets of weights wd = [wd

1 . . . w
d
K ] and wq =

[wq
1 . . . w

q
K ] are used for each flux linkage estimate, as shown

in Fig. 2. During the training, they were iteratively adjusted
by means of the Levenberg-Marquardt (LM) algorithm, chosen
for its documented property of fast convergence, even from a
rather wrong initial guess [19]. Essentially, LM is a damped
least-squares method that calculates the weights with the goal
of minimising the two quadratic cost functions defined as:

Ed(wq) =
1

2

M∑
i=1

(εdi )2 =
1

2
(εd)T εd

Eq(wd) =
1

2

M∑
i=1

(εqi )2 =
1

2
(εq)T εq

(11)

As shown in Fig. 1, in this case the inputs to the LM algo-
rithm were the voltage estimation errors εd = [εd1, ε

d
2, . . . , ε

d
M ]

and εq = [εq1, ε
q
2, . . . , ε

q
M ]. These errors were obtained from

the measurements, according to (5) and can be both initialised
to zero.

It is worth to note that the cost function Ed depends on λ̂q ,
due to the motional cross-coupling terms in (5). Therefore, Ed

is function of wq and vice versa for Eq . This cross-dependence
has been made explicit in (11).

Assuming that wd
h and wq

h are the weight sets that minimise
the cost functions Ed, Eq at the h-th iteration of the LM
algorithm, let the Jacobian matrix Jd(wd

h) of the vector-valued
function εq(wd

h) be defined as:

Jd(wd
h) =



∂εq1(wd
h)

∂wd
1

∂εq1(wd
h)

∂wd
2

...
∂εq1(wd

h)

∂wd
K

∂εq2(wd
h)

∂wd
1

∂εq2(wd
h)

∂wd
2

...
∂εq2(wd

h)

∂wd
K

...
...

...
∂εqM (wd

h)

∂wd
1

∂εqM (wd
h)

∂wd
2

...
∂εqM (wd

h)

∂wd
K


(12)

A similar definition holds for Jq(wq
h). The M current vector

measurements are proposed in sequence to the network input,
and the related estimation errors are computed accordingly.
Then the LM weights updating laws are applied:

wd
h+1 = wd

h − [Jd
TJd + µhI]

−1Jd
T εqh

wq
h+1 = wq

h − [Jq
TJq + µhI]

−1Jq
T εdh

(13)

As a distinctive feature of the LM algorithm, the coefficient
µh is added to make the two matrices [Jd,q

TJd,q + µhI]
certainly invertible.

Provided that the data set is well conditioned (i.e. the
measurements are well spaced in the training region), the
coefficient µh can be set very close to zero, speeding up the
training process. At least, when µh = 0, the search of the
optimal weight vectors is performed in a single iteration only.

Each element of the matrix (12) can be made explicit by
using (5). For example, for the first element it holds:

∂εq1(wd)

∂wd
1

=
∂(uq −Rsiq − ωmeλ̂d(wd))

∂wd
1

(14)

It is worth to note that the stator resistance Rs is supposed to
be known, and uq , iq e ωme are measurements, independent
from wd

1 . With reference to (9) and the symbols used in Fig. 2,
equation (14) is simplified as follows:

∂εq1
∂wd

1

= −ωme
∂λ̂d
∂wd

1

= −ωme

∂
( K∑
k=1

akw
d
k + wd

b

)
∂wd

1︸ ︷︷ ︸
a1

(15)

In the light of (15), the computation of Jd(wd
h) and Jq(wq

h) is
trivial, since the ak terms are already available (because they
are used to compute the voltage estimation errors εd,q).

It is worth to note that Jd,q are M × K matrices, which
are the number of measurements and the number of Gaussian
functions, respectively. Their size increases rapidly, with heavy
implications on the eventual online version of the algorithm.



TABLE I
SYNCHRONOUS MOTORS NAMEPLATE DATA

IPM SynR

Nominal current (IN ) 4.2 A 4 A
Nominal speed (ωm,N ) 3000 rpm 1500 rpm
Nominal Torque (τN ) 4.5 N m 5.5 N m
Pole pairs (p) 2 2
Stator resistance (Rs) 2.73 Ω 4.76 Ω
Ld inductance (unsat.) 21 mH 380 mH
Lq inductance (unsat.) 114 mH 85 mH
PM flux linkage (Λmg) 0.23 V s –
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Fig. 4. 3D magnetic maps of the SynR motor (experimental).

With the actual standard ac drives computational power, and
as long the LM algorithm is maintained in this form, the
RBF training can be performed offline only. However, it is
believed that the growing popularity of very fast devices,
as field programmable gate array (FPGA), along with some
mathematical optimisation, will rapidly lead to a complete
online RBF network training.

V. EXPERIMENTAL RESULTS

The experiments were performed on both an IPM motor and
a SynR motor, whose parameters are reported in TABLE I.
The motors under test were fed by a two-level three-phase
IGBT voltage inverter, controlled by a fast control prototyping
system featuring and programmed in C-language. The motor
under test was current-controlled and the current references
were generated as explained in Sec. IV. The motor phase-
to-phase voltages (two out of three) were measured with a
custom digital measurement system, based on fast PWM signal
oversampling, post-processed by a dedicate FPGA chip [22].

The stator resistance Rs has to be known with good ac-
curacy, to compute (11). A precise online tracking algorithm,
based on a modified version of that proposed in [23], was

−4
−2

0
2

4

−4
−2

0
2

4

−2

0

2

Id (A)Iq (A)

E
rr

or
ε
d N

(%
)

−4
−2

0
2

4

−4
−2

0
2

4

−5

0

5

Id (A)Iq (A)

E
rr

or
ε
q N

(%
)

Fig. 5. SynR motor flux linkages mismatch, proposed method vs.
estimate obtained as in [11].
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Fig. 6. 3D magnetic maps of the IPM motor (experimental).

implemented, achieving a tracking accuracy within the 3% of
the nominal value at 25 ◦C in the whole operating range of
the drive.

In order to evaluate the proposed magnetic mapping tech-
nique, the results have been compared with those obtained by
an offline benchmark method [11]. Let the normalised error
be defined as

εd,qN =
λ̂d,q − λd,q
λd,q max

· 100 (16)
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where λ̂d,q are the RBF network estimates, λd,q are the “true”
values obtained with the method proposed in [11] and λd,q max
are the two maximum values of flux linkages along each axis.

The magnetic maps of the SynR motor, generated by the first
trained RBF network, are reported in Fig. 4. The normalised
errors with respect to the cited benchmark are reported in
Fig. 5. Similarly, the magnetic maps of the IPM motor and the
normalised errors are shown in Fig. 6 and Fig. 7, respectively.

The error magnitude remains almost within ±3% in both
cases. In particular, the normalised d-axis error is always
within ±1%. At very low currents, the q-axis error of the SynR
motor increases up to 5%. But the attribution of the whole
error to the RBF estimate is probably unfair, since in that
region the variance of the measurements errors could play a
major role. As a countermeasure, a more accurate result could
be obtained by increasing the number of neurons (Gaussian
functions) in the region of interest. This can always be done,
as soon as the regular distribution proposed in Fig. 3 proves
inadequate. Of course, any increase of K or M brings along
a not negligible memory consumption or computation time.

For the sake of comparison, the curves obtained with the two
extreme cross-coupling conditions, in which the other current
is either null, or close to its nominal value, are reported in
Fig. 8. The match between the two models is very accurate
in any operating condition. Being linear combinations of
Gaussian functions, flux linkages are continuous function of
the currents (black lines), while the magnetic maps obtained
by the reference method [11] are discrete points (red circles).

The continuity and the derivability of the flux linkages
with respect to currents is a major feature of the proposed
technique. The computation of the differential inductances is
a significant example in this sense. They can be obtained by
differentiating (9) with respect to both id and iq . Conversely,

0 1 2 3 4

0

0.5

1
λd(id, 0)

λd(id, 4A)

λq(0, iq)

λq(4A, iq)

Idq (A)

Fl
ux

(V
s)

Method [11]
Proposed

−4 −2 0 2 4

0

0.2

0.4

λd(id, 0)

λd(id, 4A)

λq(0, iq)

λq(4A, iq)

Idq (A)

Fl
ux

(V
s)

Method [11]
Proposed
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the flux linkages are computed either with maximum or without cross-
coupling effect.
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the nominal current value only.

the discrete nature of the LUT-based model forces the compu-
tation of the difference quotient, which returns the piecewise
constant inductance. The results for both motors are reported
in Fig. 10.

For safety reasons, in the present work the RBF network was
trained up to the nominal motor currents only. To investigate
the behaviour of the RBF network outside the training region,
a simulation with currents up to twice the nominal value was
performed. The results are reported in Fig. 9. As expected,
the estimated flux linkages drop quite rapidly as the current
exceeds the boundary of the training region (Fig. 3). This
tendency is amplified by the local property of the network
(Sec. III-A), which ultimately prevents each Gaussian function
to contribute to the output only when the input is outside
the working region. Of course, the working region (and the
training) can be extended beyond the nominal current values,
if requested by the application. In LUT-based models, this is
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IPM motor only the MTPA curve is reported.

equivalent to enlarge the table size.
The advantages of the RBF-based magnetic model be sum-

marised as follows:
• it gives a continuous approximation of the inherent non-

linear magnetic relation, including cross-coupling effect;
• it fits for online model-predictive control algorithms that

require also the flux linkage derivatives;
• in perspective, the special RBF network structure smooths

the ways for online training and tracking.
The last point has positive consequences also in diagnostics,
since updated flux linkages could help in detecting faulty
operations. An autonomous self-calibrating model would also
match the call for “more on-board intelligence” in the ac drives
of the next generation.

A. Assessment of model accuracy through MTPA curves

An assessment of the precision of the RBF-based model
can be obtained indirectly by forcing both IPM and SynR
motor drives to follow the MTPA and MPTV curves, and then
comparing the resulting trajectories with the ones obtained
by using the reference LUT. The two-step accuracy test was
performed for both motors of TABLE I and the results are
reported in Fig. 11a and Fig. 11b, respectively.

First, the real MTPA curve was obtained by measurements.
In particular, the synchronous motor was speed–controlled at
constant speed against a variable load torque. For different
torque levels ranging from 0 to τN the phase of the reference

current space vector was swept to seek the one relative to
the minimum-amplitude vector. The result was a collection of
MTPA points that can be connected to form the “measured”
MTPA curve in Fig. 11. In the experiment, the shaft torque was
measured by a torquemeter. Second, the ideal MTPA curve
was computed by exploiting the electromagnetic torque (2)
and the magnetic model (9) obtained by the RBF-based model
(Fig. 4 and Fig. 6). The mathematical details are reported in
Appendix A. The same assessment methodology were used
for the comparison of the MTPV curves, Fig. 11b. One should
note that since Λmg/Ld > IN , it was not possible to calculate
the MTPV curve for the IPM motor.

Actually, the superposition is almost perfect, testifying the
high accuracy of the proposed technique. The slight mismatch
between the IPM motor curves at higher currents can be
ascribed to the flatness of the torque vs. current surface for
that motor. It reduces the sensitivity of MTPA algorithm and
may induce some imprecision in the measured curve. Precisely
because of the flatness of the surface, the possible error has
little influence on performance. Last, but not least, it is worth
noting that (20) can also be considered as the rough starting
point for the future online MTPA exact computation, provided
that it is properly worked out and simplified.

VI. CONCLUSIONS

The study and application of RBF networks to magnetic
mapping of any synchronous motor is the original contribute of
this work and it yields some interesting advantages. A smooth
and precise d, q flux linkages estimation enables the use of
the model in any model-based control system. In particular,
algorithms that require integral/derivative operations on flux
linkages can take great benefits.

The network training procedure is kept as easy as possible,
but it still requires the inversion of a matrix, which cannot
be embedded in a real-time implementation yet. But the
structure of the selected RBF neural network is open to further
simplifications. In short times, this should lead to the online
implementation not only of the commissioning process, but
also of the RBF network training and flux-linkages tracking
algorithm.

The RBF network has a so-called local property. This means
that the synapses weights will be updated only in the portion
of plane around the present steady state working point. This
is important to prevent the updating of a part of the map from
interfering in the remaining working space. Future research
developments will include the development of the continuous
online tracking of the magnetic model via RBF network update
and the transposition of the whole algorithm in a fast parallel
FPGA circuit.

APPENDIX A

At steady state, the current space vector can be expressed
in the polar coordinates (I, ϑ) as idq = Iejϑ. For any 0 ≤
I ≤ IN the MTPA trajectory fulfils the equation

∂τ(I, ϑ)

∂ϑ
=

3

2
pI
∂
(
λ̂d sinϑ− λ̂q cosϑ

)
∂ϑ

= 0 (17)



Thanks to the continuity of the magnetic map expressions,
it is possible to further expand the derivative (17). By using
(8) and (9), and if one sets:

wd =

K∑
k=0

wd
k

∂ak
∂ϑ

wq =

K∑
k=0

wq
k

∂ak
∂ϑ

(18)

where
∂ak
∂ϑ

= 2akb
2
kI(xqk cos(ϑ)− xdk sin(ϑ)) (19)

the MTPA condition (17) becomes:

∂τ(I, ϑ)

∂ϑ
=

3

2
pI [wd sin(ϑ)− wq cos(ϑ)] +

K∑
k=0

wd
kak cos(ϑ) +

K∑
k=0

wq
kak sin(ϑ) = 0

(20)

The trascendent equation (20) was solved numerically of-
fline for an appropriate number of points, to get the bold
“estimated” MTPA curve reported in Fig. 11.
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