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Splitting and Merging Driven by Surface Fitting

Giampaolo Pagnutti and Pietro Zanuttigh
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Via Gradenigo 6B, 35131 Padova, Italy

Abstract

This paper proposes a segmentation scheme based on the joint usage of color

and depth data together with a 3D surface estimation scheme. Firstly a set of

multi-dimensional vectors is built from color, geometry and surface orientation

information. Normalized cuts spectral clustering is then applied in order to re-

cursively segment the scene in two parts thus obtaining an over-segmentation.

This procedure is followed by a recursive merging stage where close segments

belonging to the same object are joined together. At each step of both proce-

dures a NURBS model is fitted on the computed segments and the accuracy of

the fitting is used as a measure of the plausibility that a segment represents a

single surface or object. By comparing the accuracy to the one at the previous

step it is possible to determine if each splitting or merging operation leads to

a better scene representation and consequently whether to perform it or not.

Experimental results show how the proposed method provides an accurate and

reliable segmentation.
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1. INTRODUCTION

Scene segmentation by way of images is a long-term research topic that,

despite a huge amount of research, remains very challenging. There is a large

number of works addressing image segmentation [1], but even the best perform-

ing ones are not able to provide a reliable solution in all conditions since it5
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is very difficult to properly understand the underlying scene structure from a

single image. The recent introduction of matricial Time-of-Flight range cam-

eras and of structured-light consumer depth cameras (e.g., the two versions of

Microsoft Kinect) has made geometry acquisition available to the mass market.

Depth data is a very valuable aid for segmentation since it conveys information10

about the 3D structure of the scene, making the recognition of the various struc-

tures in it much easier. This allows to re-formulate the segmentation problem

as the search for effective ways of partitioning a set of samples featuring color

and geometry information. It resembles what happens inside the human brain

where the disparity between the images seen by the two eyes is one of the clues15

used to separate the different objects together with prior knowledge and other

features extracted from the color data acquired by the human visual system.

Following this rationale, this paper introduces a novel segmentation scheme

capable to jointly exploit color and depth information. The segmentation is

performed within a region splitting and merging framework. In the first stage,20

following the idea we introduced in a recent conference work [2], the segments

are recursively split in two parts using a joint color and depth segmentation

scheme based on spectral clustering [3]. In particular for the subdivision step we

employ a modified version of the approach proposed in [4], exploiting orientation

information in addition to geometry and color data. After the subdivision a25

Non-Uniform Rational B-Spline (NURBS) surface is fitted on each of the two

resulting segments and the fitting accuracies before and after the splitting are

compared. The motivation behind this approach is that segments representing

single objects or surfaces are accurately fitted, while segments encompassing

multiple surfaces will lead to a poor fitting accuracy. This procedure is followed30

by a bottom up recursive merging strategy that combines segments belonging

to the same object [5]. The algorithm detects the neighboring segments with

consistent depth, orientation and color values along the common edges, and

attempts to merge them. Again, the surface fitting accuracies before and after

the merging are used to evaluate which merge operations are properly joining35

two parts of the same object. Summarizing, this work extends our two recent
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conference works, i.e., the region splitting scheme of [2] and the region merging

scheme of [5], and combines them into a general segmentation framework that

gives better results than each of the two separate methods. In particular by

combining the splitting and merging stages it overcomes some limitations of the40

previous works, e.g., the merging scheme was not able to recover from errors in

the initial over-segmentation.

The paper is organized as follows. After presenting the related works in Sec-

tion 2, Section 3 describes the general workflow of the segmentation algorithm.

The joint color and depth segmentation scheme used for the various splitting45

operations is recalled in Section 4, while Section 5 presents the employed surface

fitting algorithm. Then the two steps of the method, i.e, the recursive splitting

and merging algorithms, are described in Section 6 and in Section 7 respectively.

The results are presented in Section 8 while Section 9 draws the conclusions.

2. RELATED WORKS50

As already pointed out image segmentation is a long-term research field and

a huge number of techniques based on different insights have been proposed.

Approaches based on graph theory and on clustering algorithms have been par-

ticularly successful [6, 3, 7]. Anyway, despite a huge amount of research none

of the existing methods is able to obtain completely satisfactory results, since55

segmentation is an ill-posed problem and it is very difficult to properly estimate

the scene structure from color data alone.

Even if the usage of depth data for segmentation purposes is a recent re-

search field, several approaches addressing scene segmentation by way of color

and geometry information have been proposed in the last few years. A simple60

solution is to perform two independent segmentations from the color and the

depth data, and then join the two results as in [8].

Clustering techniques can easily be adapted to joint depth and color seg-

mentation and different approaches based on this idea have been proposed. In

[9] Mean Shift clustering [6] is applied to 6D vectors containing both the color65
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and spatial component for each sample, while superparamagnetic clustering is

used in [10]. A joint color, spatial and directional clustering method coupled

with a planar region merging scheme is used in [11] and in the refined version

of the same approach proposed in [12]. The method of [13] exploits instead a

multi-layer clustering strategy.70

A method based on graph cuts has been applied for joint color and depth

segmentation in [14]. The approach of [15] exploits Normalized Cuts segmenta-

tion [3] together with saliency maps. In [4] we proposed a segmentation scheme

based on normalized cuts that is capable to automatically balance the relevance

of color and depth.75

Region splitting and region growing methods have also been used. The work

of [16] starts from an initial superpixel segmentation and joins the segments ex-

ploiting a saliency metric. Superpixels and region merging are used also in [17]

that uses a graph-based approach for the merging stage. Superpixels are com-

bined together also in [18] where regions corresponding to planar surfaces are80

computed using an approach based on Rao-Blackwellized Monte Carlo Markov

Chain. The approach has been extended for the segmentation of multiple depth

maps in [19]. A bottom-up approach is used also by [20], that builds an ad-

jacency graph of surface patches. We exploited surface fitting in [2], where we

fitted NURBS surfaces over the segments. The fitting accuracy is then used85

to evaluate the consistency of the segmented regions in order to further split

segments not encompassing a single surface in an iterative approach. The work

in [5] applies the NURBS fitting scheme within a region merging procedure,

starting from an initial over-segmentation and joining adjacent segments on the

basis of the fitting accuracy. These two works constitute the starting point for90

the approach of this paper.

Hierarchical segmentation based on the output of contour extraction has

been used in [21], that also deals with object detection from the segmented data.

Another combined approach for segmentation and object recognition has been

presented in [22], where an initial over-segmentation based on the watershed95

algorithm is followed by a hierarchical scheme. Combined segmentation and
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labeling is also addressed in [23] that exploits a MRF superpixel segmentation

associated with a tree-structured approach. Finally dynamic programming has

been used in [24] to extract the planar surfaces in indoor scenes.

Some approaches deal with the close but less general problem of separating100

the foreground from the background [25, 26, 27, 28, 29]. In [29] two likelihood

functions, based on color and depth data, are combined together for this task.

The work of [25] uses two distinct Gaussian Mixture Models for the foreground

in the depth and color spaces and combine them in a Bayesian Framework.

Mixture of Gaussians are used in [26] as well. Both this approach and [27]105

consider also temporal constraints in depth and color videos. Finally some

works try also to jointly solve the segmentation and stereo disparity estimation

problems, e.g., [30, 31, 32].

3. GENERAL OVERVIEW

The proposed segmentation procedure is divided into 3 main steps as de-110

picted in Fig. 1. The initial pre-processing step produces the input data for

the clustering algorithm, then a recursive splitting scheme (top-down phase) di-

vides the scene into smaller and smaller segments and finally a region merging

algorithm (bottom-up phase) combines together close segments belonging to the

same object.115

In the first phase the color image and the depth map are converted to a

unified representation. Color data, depth data and surface orientation infor-

mation are represented by a set of 9D vectors containing the three sources of

information.

The data is then recursively split into two segments using both color and120

depth information. At each step the segment being processed is divided into

two sub-segments using the approach based on spectral clustering described in

Section 4. Then a NURBS surface is fitted over each of the two sub-segments

(Section 5). The fitting accuracy is compared to the one obtained at the pre-

vious step for the same segment. If the split operation has provided a better125
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Figure 1: Overview of the 3 main stages of the proposed approach (construction of the data

vectors, region splitting phase and region merging phase).

fitting then the process is iterated by recursively dividing the two sub-segments,

otherwise it is stopped. The process is iterated until it is not possible to ob-

tain any improvement by further subdividing any of the produced segments, as

described in detail in Section 6.

At this point the algorithm starts to analyze adjacent clusters corresponding130

to surfaces with a common contour and similar orientation and color properties.

For each couple of candidates the fitting accuracy on the union of the two

segments is calculated and compared against the fitting accuracy on the original

segments. If it is improved, the two segments are joined and replaced by the

new resulting segment. The procedure continues until there are no more possible135

merging operations. This part is detailed in Section 7.

4. JOINT COLOR AND DEPTH SEGMENTATION

Following an approach similar to [5, 4, 33], before entering the proposed

iterative clustering algorithm, a nine-dimensional representation of the scene

samples is built from the geometry and color data. Firstly the depth and color140

cameras are jointly calibrated. Various methods are possible for this task [34],

we employed the method of [35] for the Kinect sensor and the one of [36] for

ToF sensors. After calibration it is possible to compute the coordinates (x, y, z)

of each depth sample in 3D space and to reproject the depth samples on color
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data, thus associating to each sample also a vector containing the (R,G,B)145

color components. The surface orientation information, i.e, the surface normals

(nx, ny, nz) at each location, is also computed from the geometric data using

the approach of [37]. Notice that the normals information, not considered in [4]

and [2], is very useful to separate surfaces with similar colors and close spatial

positions but with different orientations (e.g., the walls of a room).150

In this way a 9D vector is available for each sample pk. Since it contains

heterogeneous data, the joint color, geometry and orientation information needs

to be normalized to a consistent representation. Firstly, in order to give a

perceptual significance to the distance between colors that will be used in the

clustering algorithm, color values are converted to the CIELab perceptually

uniform space, i.e., the color of each sample pk is represented by the vector

pc
k = [L(pk), a(pk), b(pk)]

T
, k = 1, . . . , N (1)

Geometry is simply represented by the 3D coordinates, i.e., as:

pg
k = [x(pk), y(pk), z(pk)]

T
, k = 1, . . . , N (2)

Finally orientation information is given by the 3 components of the normal

vector at each location, i.e., as:

pn
k = [nx(pk), ny(pk), nz(pk)]

T
, k = 1, . . . , N (3)

The scene segmentation algorithm should be insensitive to the relative scal-

ing of the point-cloud geometry and bring color, geometry and normals into

consistent representations. Therefore, the color data are normalized by the

average standard deviation σc of the L, a and b components, obtaining the

vectors [L̄(pk), ā(pk), b̄(pk)]. Following the same rationale, geometry compo-155

nents are normalized by the average standard deviation σg of the point coordi-

nates obtaining the vectors [x̄(pk), ȳ(pk), z̄(pk)]. Similarly, the normal vectors

[n̄x(pk), n̄y(pk), n̄z(pk)] are obtained by normalizing the 3 components of the

orientation by their average standard deviation σn. From the above normalized
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information vectors, each point is finally represented as:160

pfk = [L̄(pk), ā(pk), b̄(pk), x̄(pk), ȳ(pk), z̄(pk),

n̄x(pk), n̄y(pk), n̄z(pk)]T , k = 1, . . . , N
(4)

Notice that in previous approaches [2, 4] there was a parameter balancing the

contribution of color and geometry, but the advanced merging algorithm used

in the last step of this work allows us to avoid the usage of such a parameter,

whose proper setting was critical.

The computed 9D vectors are the input of the clustering algorithm that165

will be used in the splitting step. Among the various clustering techniques,

normalized cuts spectral clustering [3] is an effective approach for this task.

Since it is computationally very expensive, several methods have been proposed

for its efficient approximation. For this paper we used the method based on the

integral eigenvalue problem proposed in [38]. In this approach the set of points170

is first randomly subsampled, then the subset is partitioned and finally the

solution is propagated to the whole set by a technique called Nyström method.

After each clustering step, in order to avoid very small regions due to noise, a

final refinement stage removing regions smaller than a pre-defined threshold Tp

and assigning them to the closest segment is applied (in the experimental results175

we used Tp = 800). More details about the clustering procedure can be found

in [4], however notice that in [4] the algorithm was used to directly segment the

scene, while here it is recursively applied to divide each region in two parts as

detailed in Section 6.

5. SURFACE FITTING ON THE SEGMENTED DATA180

NURBS (Non-Uniform Rational B-Splines) are piecewise rational polynomial

functions expressed in terms of proper bases, see [39] for a thorough introduc-

tion. They allow representation of freeform parametric curves and surfaces in

a concise way, by means of control points. Notice that by including this model

in the proposed method we are able to handle complex geometries, unlike many185
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approaches in the literature, e.g., [24] and [19], that are limited to planar sur-

faces.

A parametric NURBS surface is defined as

S(u, v) =

∑n
i=1

∑m
j=1Ni,p(u)Nj,q(v)wi,jPi,j∑n

i=1

∑m
j=1Ni,p(u)Nj,q(v)wi,j

(5)

where Pi,j are the control points, wi,j are the corresponding weights, Ni,p are the

univariate B-spline basis functions, and p, q are the degrees in the u, v parametric

directions respectively.190

In our method, we initially set the degrees in the u and v directions equal

to 3. We set the weights all equal to one, thus our fitted surfaces are non-

rational (i.e., splines). Since the points to fit are a subset of the rectangular

grid given by the sensor pixel arrangement, we set the corresponding (uk, vl)

surface parameter values as lying on the image plane of the camera. The number

of surface control points gives the degrees of freedom in our model. In order to

set it adaptively depending on the number of input samples, we consider the

horizontal and vertical extents of the segment to fit. Let us denote with W the

horizontal image size and with H the vertical one (e.g., W = 640 and H = 480

for the Kinect data used in the results). We set Nu = 15 and Nv = H
WNu as

the maximum number of control points in the u and v parametric directions, to

be used in case of a segment covering the whole image, while for smaller ones

we determine the number proportionally to the segment extents as follows. Let

u0, u1 and v0, v1 be the minimum and maximum pixel values on the sensor grid

corresponding to the segment in the horizontal and vertical directions. We set

the number of control points in the u, v parametric directions respectively as

n = max

{
3,

[
Nu

u1 − u0
W

]}
, m = max

{
3,

[
Nv

v1 − v0
H

]}
(6)

Notice that since the minimum number of control points for a cubic spline is 4,

for smaller segments we lower the surface degree to quadratic in order to allow 3

control points as actual minimum. These parameters turn out to be a reasonable

choice, since they provide enough degrees of freedom to represent the shape of

any common object, while the adaptive scheme at the same time prevents the195
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fitting to always be more accurate for smaller segments, independently on how

the segmentation algorithm was successful in detecting the objects in the scene.

Once determined the (uk, vl) parameter values corresponding to the points

to fit, the surface degrees and the number of control points in the u, v parametric

directions, we consequently obtain the NURBS knots (needed for the definition200

of the Ni,p basis functions) as in [39]. Finally, by considering Eq. (5) evalu-

ated at (uk, vl) and equated to the points to fit, we obtain an over-determined

system of linear equations. We solve it in the least-squares sense by means of

robust Cholesky decomposition of the normal equations matrix thus obtaining

the surface control points. This approach is much faster than the SVD decom-205

position used in [2]. Notice also that a solution of the least-squares problem

always exists. An example of fitted surface with the corresponding fitting error

is shown in Fig. 2.

Figure 2: A 3D NURBS surface fitted over two clusters originated by segmentation of the

scene in Fig. 7, third row. The red areas correspond to larger fit error. Notice how the large

fit error between the teddy head and the monitor portion reveals that the two segments do

not actually belong to the same object. (Best viewed in color)

6. ITERATIVE REGION SPLITTING PROCEDURE

After presenting the two main building blocks, we can now introduce the210

recursive region splitting procedure. A 9D point cloud corresponding to the

scene is built according to Eq. (4) and used as initial input. Then, a binary
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segmentation using the method of Section 4 is applied, and a NURBS surface

is fitted on each of the two resulting segments, from which the corresponding

fitting error values are calculated. We use the Mean Squared Error (MSE) be-215

tween the depth samples in the segment and the corresponding points on the

approximating NURBS surface as the error metric. Notice that other fitting

accuracy measures besides MSE can be considered. In [40] a review of different

metrics either based on the evaluation of the fitting error or on geometric prop-

erties (curvature descriptors in particular) of the fitted surfaces is presented.220

According to the evaluation performed there, the MSE is the one providing the

best performances for the proposed application.

At each next step of the procedure, the segment with the greatest fitting

error is examined, and it is further split provided it is not too small and the

recursion has not yet produced enough segments. More in detail, consider an225

intermediate step during which segment Si is the one being processed since its

fitting error ei is the largest one. The following conditions are checked in order

to consider Si for a further split operation:

1. The size of Si must be greater than 2Tp, otherwise the split would produce

at least one segment smaller than Tp. This is consistent with the choice230

of not allowing segments smaller than Tp made in Section 4.

2. The fitting error ei must be greater than a threshold Tmse = 0.0005. The

idea is that if this is not the case, the segment is already representing very

accurately an object in the scene and there is no point in further dividing

it.235

3. The number of recursive splits starting from the initial scene and leading

to Si must be smaller than Td (we used Td = 10 for the results). In other

words the depth of the recursion tree must be smaller than Td on the

branch containing Si (an example of the tree structure is shown in Fig.

3).240

4. A maximum number of total splits (i.e., segments) Ts must not have been

reached yet. This corresponds to setting a maximum number of possi-
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ble segments (e.g., Ts = 50 segments). Notice that this is only an upper

bound, differently from many segmentation algorithms on which the ac-

tual number of segments is pre-determined. Notice also that the stopping245

conditions can be modified in order to obtain exactly a pre-determined

number of segments if required for some applications.

If all the above conditions hold, Si is split into sub-segments Si0 and Si1, the

corresponding fitting errors ei0 and ei1 are computed and the procedure is it-

erated by processing the next segment with the greatest fitting error (the list250

includes also Si0 and Si1 at this point). If condition 4 is violated the proce-

dure is stopped, while if any of conditions 1, 2, 3 does not hold, Si is kept as

part of the final segmentation and the algorithm continues on another branch

of the tree. This happens also if the subdivision of Si fails to actually create

two sub-segments, since one between Si0 and Si1 is smaller than Tp and the255

post-processing step described on Section 4 merges it again with the other one

(this is a rare case actually).

Notice that this splitting procedure could be used directly for the final seg-

mentation, without the merging step, as we proposed in [2] and [40]. Following

the approach used in these works, the fact that the error is improved or not

with respect of the original segment can be used as criterion to accept or reject

the split operation by checking an additional condition. The weighted average

of the fitting errors on the sub-segments is compared to the one of the original

segment, that is
ei0|Si0|+ ei1|Si1|

ei|Si|
< 1 (7)

where the weights are the number of points belonging to the segments. If the

condition is not satisfied, the split is discarded and the algorithm moves to the

next segment to process. This check is used to avoid an over-segmentation of260

the scene during the split stage. However in the method proposed in this work

this is not critical, since the segments will be recursively recombined based on

the improving fitting accuracy in the merging phase later. For this reason the

check of Eq. (7) can be dropped.
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In summary, at each step of the splitting phase the previously introduced

conditions are checked for the segment with the greatest MSE, i.e.:

(|Si| ≥ 2Tp) ∧ (|ei| ≥ Tmse) ∧ (depth(Si) < Td) ∧ (count(i) < Ts) (8)

where depth(Si) is the depth of Si in the recursive tree structure, and count(i)265

is the number of splits made until the current iteration. If the conditions are

satisfied the segment is split, otherwise the next available one with the greatest

MSE is processed. The procedure is applied recursively to all the segments

and the generated sub-segments, until either the maximum number of splits is

reached, or there are no more available segments satisfying all the conditions.270

This is summarized in Algorithm 1 and a visual scheme is shown in the central

block of Fig. 1. The result is a tree structure like the one of Fig. 3, where the

leaves are the elements of the final over-segmentation that will be used as input

for the following merging procedure. An example of the progressive subdivision

in smaller and smaller segments produced by this approach is shown in Fig. 4.275
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Figure 3: Tree structure originated by the splitting procedure on a sample scene. The colored

nodes correspond to the final segments. Orange segments: the segmentation did not create

two sub-segments, since one of them would be smaller than Tp. Light green: not split since

smaller than 2Tp. Bright green: not split since fitting error smaller than Tmse. Green:

stopped since the maximum tree depth Td was reached. (Best viewed in color)
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while there are still segments available to split do

Select segment Si with the largest MSE

if Si satisfies all conditions of Eq. (8) then

Split Si in two parts Si0 and Si1 (Sec. 4)

if (|Si0| < Tp) ∨ (|Si1| < Tp) then

Remove Si from list of segments available to split

continue

end if

Fit a NURBS surface on Si0 and Si1 (Sec. 5)

Compute fitting errors ei0 and ei1

(optional) Check if fitting errors satisfy Eq. (7)

Add Si0 and Si1 to list of segments available to split

else

Remove Si from list of segments available to split

continue

end if

if maximum number of splits reached then

return

end if

end while
Algorithm 1: Split algorithm
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Iteration 1 Iteration 2 Iteration 10

Iteration 20 Iteration 30 Final Result

Figure 4: Execution of the splitting procedure on the scene of Fig. 7, sixth row. The im-

ages show the segmentation after 1, 2, 10, 20 and 30 iterations and the final resulting over-

segmentation (after 50 iterations).

7. ITERATIVE REGION MERGING PROCEDURE

With the recursive splitting algorithm alone it is difficult to control the

trade-off between an over-segmentation of the scene and the recognition of all

the objects and structures in it. In particular in some splitting steps the binary

segmentation can mistakenly divide a single object due to misleading clues.280

For these reasons a final merging stage is used to recombine multiple segments

corresponding to the same scene object. The workflow of this merging procedure

is depicted in the third part of Fig. 1 and summarized in Algorithm 2. The goal is

to analyze the neighboring segments in order to join the adjacent ones belonging

to the same region.285

Notice that during the splitting phase a NURBS surface has been fitted on

each final segment Si and the corresponding fitting error ei has been computed.

Then, the algorithm starts by sorting all the segments in decreasing order based

on the fitting error, thus producing an ordered list LS where the segments with

larger fitting errors come first. It also analyzes all the segments and builds an290

adjacency matrix, storing for each couple of segments whether they are adjacent
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or not. Two segments are considered as adjacent if they satisfy the following

conditions:

1. They must be connected on the depth map lattice (using 4-connectivity)

and the length lcc of the shared boundary CC (depicted in red in the295

example of Fig. 5) must be bigger than a threshold Tl. For the 640 by

480 pixels images used in the results a reasonable value is Tl = 15.

2. The depth values on the shared boundary must be similar. In order to

check this we compute the difference ∆Zk between the depth values on the

two sides of the edge at each contour location Ck (see Fig. 5). This step

is exemplified in Fig. 5, where the orange arrows show which differences

are considered. The number of points ldcc of the shared boundary with

a depth difference smaller than a threshold Tz = 0.15 is computed, and

this condition must be satisfied by the majority of the boundary pixels,

i.e., length ldcc must be more than half of the total length. This can be

expressed as:

|pk : (pk ∈ CC) ∧ (∆Zk ≤ Tz)|
|pk : pk ∈ CC |

=
ldcc
lcc

> 0.5 (9)

3. The color values must also be similar along the shared contour. The

approach is the same as before except that the color difference in the

CIELab is used in place of the depth value. More in detail, the color

difference ∆Ck between samples on the two sides of the shared boundary

is calculated and the number of points lccc with a color difference smaller

than a threshold Tc = 5 is computed. Similarly to the previous case, lccc

must account for the majority of the boundary pixels , i.e.,

|pk : (pk ∈ CC) ∧ (∆Ci ≤ Tc)|
|pk : pk ∈ CC |

=
lccc
lcc

> 0.5 (10)

4. Finally the same approach is used also for orientation information. In this

case the angle between the two normal vectors ∆θk is calculated for each

couple of samples on the two sides of the shared boundary and the number

of points lncc for which ∆θk ≤ Tθ = 2◦ is computed. As before, lncc must
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be more than half of the total length , i.e.,

|pK : (pk ∈ CC) ∧ (∆θi ≤ Tθ)|
|pk : pk ∈ CC |

=
lncc
lcc

> 0.5 (11)

If all the above conditions hold the two segments are marked as adjacent. Notice

that the checks are performed in the presented order, and in case any of them is

not satisfied the following ones are skipped. This allows us to avoid unnecessary300

computations, since we exclude most couple of segments before computing all

the depth, color and normal differences along the contour.

S
1

S
2

S
3

S
4

Figure 5: Example of boundary region with the common contour between two sample segments

S1 and S2 and the differences used for Equations (9), (10) and (11).

The procedure then selects the segment with the largest fitting error and

tries to join it with all the ones that are adjacent (according to the previously

introduced criteria). In detail, let Si be the segment with the greatest fitting305

error ei. The algorithm considers each adjacent segment Sj (with fitting error

ej), and tries to join Si and Sj obtaining the segment Si∪j . Then, a NURBS

surface is fitted the merged segment Si∪j , the corresponding fitting error ei∪j is

computed and it is compared against the weighted average of the fitting errors

on Si and Sj :310

ei|Si|+ ej |Sj |
ei∪j(|Si|+ |Sj |)

> 1 (12)
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Compute LS (list of segments) and sort it according to ei

For each segment Si compute set Ai of adjacent segments

i = 1 (select as Si the first segment in LS)

while i < length(LS) do

for all segments Sj adjacent to Si do

compute fitting error on merged segment Si∪j

check if condition of Eq. (12) is satisfied

end for

if at least one merge operation satisfies Eq. (12) then

Select merge operation leading to best fitting accuracy improvement

(the corresponding segment is Sj∗)

Remove Si and Sj∗ from LS

Add Si∪j∗ to LS

Compute Ai∪j∗

i = 1 ( Si is the first segment in LS)

else

i = i+ 1 (Si is the next segment in LS)

end if

end while
Algorithm 2: Merge algorithm
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If the fitting accuracy improves, i.e., the condition of Eq. (12) is satisfied, the

merging operation between Si and Sj is candidate to be accepted, otherwise it

is discarded. The procedure is repeated for all the segments adjacent to Si and,

among the ones for which the merging operation would improve the fitting error

(if any), the segment Sj∗ that provides the maximum improvement according315

to Eq. (12) is selected. The two segments Si and Sj∗ are then merged, and

the list LS is updated by removing them and inserting their union Si∪j∗ in

the position corresponding to its fitting error ei∪j∗ . The adjacency information

is also updated by considering Si∪j∗ adjacent to all the segments that were

adjacent to either Si or Sj∗ . In case instead there are no merging operations320

with Si that would improve the fitting error, the algorithm selects the next

segment in LS as new segment Si and the procedure is iterated.

The algorithm then continues by processing the next segment with the great-

est fitting error and iterates until no more segments can be considered for a

merge operation. The procedure is summarized in Algorithm 2 and its progress325

on a sample scene is visualized in Fig. 6, where a graph representing the vari-

ous merge operations and the resulting segmentations at several iterations are

shown. Some videos showing the sequence of merging steps on a few sample

scenes are available in the additional material.
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Figure 6: Example of the merging procedure on the scene of Fig. 7, sixth row. The images

show the initial over-segmentation, the merging output after 4,8,12 and 16 iterations and

the final result (iteration 21). The graph shows the merge operations between the various

segments. The colors in the images correspond to those of the graph nodes. (Best viewed in

color)
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8. EXPERIMENTAL RESULTS330

The proposed method has been experimentally evaluated by firstly analyzing

the performances of the approach and of the various sub-components (roughly

corresponding to our previous works) on a small sample dataset and then by

comparing it with state-of-the-art approaches on the large and challenging NYU

Depth Dataset V2 (NYUv2).335

The first and simpler dataset has been acquired at the LTTM laboratory [2]

and is available at http://lttm.dei.unipd.it/downloads/segmentation. It

contains 6 different images with the corresponding depth maps acquired with

PrimeSense devices (i.e., Kinect v1 and Xtion sensors). Ground truth informa-

tion obtained by manual segmentation is also available. Even though it is a340

small dataset, it contains a large variety of different structures and objects with

different shapes, colors and properties thus representing a good starting point

to evaluate the various components of the proposed approach. It also represents

a completely different environment from the NYUv2 dataset, thus ensuring that

the approach has not been over-fitted on that dataset. The scenes have been345

segmented with the approaches of [4], [40], [5] and with the proposed method.

This is an interesting test to understand the relevance of the various components

since the first method directly segments the scene into the desired number of

regions with an approach based on spectral clustering and can be considered

a simplified version of the initial segmentation scheme of Sec. 4. The second350

one exploits a region splitting scheme similar to the split phase of the proposed

method, while the third one corresponds to the merging phase.

The visual results are shown in Fig. 7, and Table 1 lists the numerical val-

ues from the comparison between the results and the ground truth. Starting

from visual results, from Fig. 7 it is clear how the proposed method obtains355

better performances than the compared approaches. The approach of [4] tends

to over-segment the considered scenes and has some difficulties in properly cap-

turing all the objects. In particular the background is completely wrong in

some scenes (e.g., 5 and 6), since the geometry dependent term combined with

20
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the bias towards segments of similar size of the normalized cuts algorithm [3]360

forces the large regions to be divided into multiple pieces. Notice how in the

proposed approach the merging scheme solves this problem by recombining to-

gether segments belonging to the same surface. The approach of [40] produces

less segments but is not able to recognize all the objects (e.g., in scenes 4 and

5). Notice in particular that the splitting approach alone can hardly recognize365

all the scene objects and at the same time avoid over-segmentation, while the

proposed method can perform a larger number of splitting steps without affect-

ing the final result since over-segmentation issues will be fixed in the merging

phase. Since the approach in [40] does not exploit orientation information, to

fully evaluate the performances of the splitting algorithm we implemented also370

a modified version that takes normals into account. This better corresponds to

the splitting stage in our method. It is possible to notice that orientation infor-

mation allows to better capture some surfaces, e.g., the background in scene 2

and the table in scene 5. The region merging scheme [5] is the one that obtains

results closer to the proposed approach. Both [5] and the proposed method375

avoid the creation of small segments caused by noise or by complex surfaces,

and at the same time they properly extract most of the structures in the scene.

Moreover, the use of orientation information makes the various walls and the

surfaces with different orientation properly recognized (e.g., the table in row 3).

However, notice how the background (especially in scenes 1 and 2) is properly380

captured only by the proposed approach, while [5] fails to correctly recognize the

various background surfaces. In general in the proposed approach the objects

are well recognized, and there are a very few segments extending over separate

objects at different depths.

The visual evaluation is confirmed by the numerical results, as shown by385

Table 1. In order to compare the results with ground truth data we used two

different metrics, the Variation of Information (VoI) and the Rand Index (RI).

A description of these error metrics can be found in [41], in particular notice

that lower values correspond to better results for the VoI metric while higher

values are better for the RI metric. The table lists the average values of the two390
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metrics on the six considered scenes. It shows that according to both metrics the

proposed approach outperforms all the compared ones. The VoI metric value is

better by a large gap with respect to [4] and [40]. The merging approach has

closer performances, as can be noticed from the visual results, but the proposed

scheme is able to outperform it with an average VoI score of 1.66 against 1.74.395

The behavior is similar for the RI metric, where the proposed approach is the

best one with a score of 0.91. Notice that approaches exploiting orientation

information give in general better performances.

Approach VoI RI

(Clustering) [4] 2.71 0.81

(Split) [40] 2.01 0.83

(Split+normals) [40] 1.92 0.88

(Merge) [5] 1.74 0.88

Proposed Method 1.66 0.91

Table 1: Comparison of the performances of the proposed method with [4, 40, 5]. The table

shows the average value of the VoI and RI metrics on the six scenes of the LTTM dataset.

The main evaluation has been carried on the NYU Depth Dataset V2 [22]

dataset that is much larger and thus more interesting. It has been widely400

used for the evaluation of joint color and depth segmentation algorithms and

allows to compare the proposed method with the state-of-the-art methods for

this task. The dataset has been acquired with a Kinect and contains 1449

depth and color frames from a variety of indoor scenes. Ground truth data

is also available but, since on the original ground truth data has sometimes405

missing values in proximity of edges, for the numerical evaluation we used the

updated versions of the ground truth labels provided by the authors of [42].

Table 2 shows the comparison between our method, our previous approaches

roughly corresponding to the splitting and merging sub-components, and some

state-of-the-art schemes from the literature (for some competing approaches410

we collected the results from [11] and [13]). The compared state-of-the art
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Color Depth Ground [4] [40] [40]+n [5] Prop.

Image Map Truth (Clust.) (Split) (Split) (Merge) Method

Figure 7: Segmentation of some sample scenes with the proposed method and with the ap-

proaches of [4], [40] (with and without normals) and [5]. The black regions for the proposed

approach correspond to samples without a valid depth value from the Kinect that have not

been considered for the segmentation.
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approaches are the clustering and region merging method of [11], including

the recent improved version [12], the MRF scene labeling scheme of [23], a

modified version of [7] that accounts also for geometry information, the dynamic

programming scheme of [24], the bottom-up approach of [20] (for this approach415

we used the implementation in the PCL open source library) and the multi-layer

clustering strategy of [13]. Notice that we used the same parameter values for

all the scenes.

The average values obtained by our method are 2.17 as to the VoI metric

and 0.89 as to RI. The VoI metric results show that our approach outperforms420

all the compared ones and the improvement over most of them is relevant. The

two approaches that get performances closer to the proposed one are [12] and

our previous work based on the merging scheme [5], with VoI values of 2.20 and

2.23 respectively compared to 2.17 (recall that for VoI smaller is better). If the

RI metric is considered, the proposed method outperforms most compared ap-425

proaches and obtains results very similar to those of the state-of-the-art methods

of [23] and [12], with a small difference of just 0.01 and 0.02 respectively. Notice

also that our approach does not make any assumption about the presence of

planar surfaces differently from [11], [12] and [24], so it better generalizes to

scenes with non-planar surfaces (in the NYUv2 dataset all the scenes are in-430

door settings with many planar surfaces like walls and furniture, while outdoor

settings have a larger variability). In addition the method of [23] exploits a

learning stage, while our approach does not assume any previous knowledge on

the data.

A visual comparison on 7 different scenes from this dataset is shown in Fig. 8.435

Notice that the scenes have been selected by the authors of [11]. Even if this

dataset is more challenging, the proposed approach provides a reliable segmen-

tation on all the considered scenes as shown in the last column of Fig. 8. The

obtained segmentations are clearly better than the approaches of [7], [24], [4],

[13] and [20] (columns 6-7-8-9-10). The comparison with the two best perform-440

ing approaches, i.e., [11] and [23] (columns 4 and 5), is more challenging and

there is not a clear winner. The various objects are properly extracted by our
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Approach VoI RI

Felzenszwalb et al. [7] 2.32 0.81

Ren et al. [23] 2.35 0.90

Taylor et al. [24] 3.15 0.85

Stein et al. [20] 2.68 0.87

Khan et al. [13] 2.42 0.87

Hasnat et al. (JCSA) [11] 2.72 0.87

Hasnat et al. (JCSA-RM) [11] 2.29 0.90

Hasnat et al. (JCSD-RM) [12] 2.20 0.91

(Clustering) [4] 3.09 0.84

(Split) [40] 2.62 0.75

(Split+normals) [40] 2.52 0.76

(Merge) [5] 2.23 0.88

Proposed Method 2.17 0.89

Table 2: Performances of the proposed method, of some state-of-the-art approaches (first

block) and of approaches corresponding to the sub-components of the method (second block).

The table shows the average values of the VoI and RI metrics on the NYUv2 dataset.
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approach and the background region is correctly handled on most scenes. It also

does not produce noisy small segments in proximity of edges, an issue happening

with other approaches on some scenes. Some small errors are present, e.g., in445

the corridor and bed scenes (rows 2 and 3). In particular the blanket of the bed

scene (row 3) is quite critical since color data is very noisy and the normals on

the rough surface are very unstable.

Figure 8: Segmentation of some sample scenes from the NYUv2 dataset: (column 1) color

data; (column 2) depth data; (column 3) ground truth; (column 4) [11]; (column 5) [23];

(column 6) [7]; (column 7) [24]; (column 8) [4]; (column 9) [13]; (column 10) [20]; (column 11)

proposed method. The results for some of the competing methods have been collected from

[11] and [13].

Some critical cases for our approach are shown in Fig. 9. Notice how very

complex geometries (columns 1 and 2) are challenging to segment. Furthermore450

thin structures, far objects or transparent surfaces are not properly captured by

the Kinect and this affects the final segmentation (columns 1, 2 and 5). Finally

the color can saturate on very bright (column 4) or very dark (column 3) scenes,

thus making the separation of some objects difficult (notice that even geometry

does not help in these cases).455

The total computation time is comparable to the one of a direct segmentation

with normalized cuts since in most iterations both the spectral clustering and
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Figure 9: Examples of critical scenes. The figure shows the color data and the segmentation

computed with the proposed approach for scenes 7, 86, 283, 617 and 1439 of the NYUv2

dataset.

the surface fitting algorithms are applied to small subsets of the scene (the

surface fitting actually adds just a small overhead to the segmentation time).

9. CONCLUSIONS460

In this paper we proposed a region splitting and merging scheme for the

joint segmentation of color and depth information. Spectral clustering is used

inside a tree-structured algorithm to recursively divide the scene into a set of

segments, that are then recombined by a recursive merging procedure into larger

regions corresponding to the actual scene objects. The proposed approach ex-465

ploits a NURBS surface fitting scheme to determine if each splitting or merging

operation has led to a more accurate representation of the 3D surfaces, and

consequently whether it should be accepted or discarded. Experimental re-

sults demonstrate its ability to avoid over-segmentation and at the same time

properly segment the various structures in the scene, outperforming several470

state-of-the-art approaches. Future research will be devoted to exploit the pro-

posed approach for semantic segmentation schemes using also the surface fitting

information among the classification features. Finally GPU and parallel imple-

mentations will be considered to reduce the computation time.
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[25] J. Gallego, M. Pardàs, Region based foreground segmentation combining

color and depth sensors via logarithmic opinion pool decision, Journal of

Visual Communication and Image Representation 25 (1) (2014) 184–194.

[26] M. Harville, G. Gordon, J. Woodfill, Foreground segmentation using adap-550

tive mixture models in color and depth, in: Proceedings of IEEE Workshop

on Detection and Recognition of Events in Video, 2001.

[27] J. Leens, S. Pirard, O. Barnich, M. Van Droogenbroeck, J. Wagner, Com-

bining color, depth, and motion for video segmentation, in: Computer

Vision Systems, 2009.555

30



[28] L.-H. Juang, M.-N. Wu, F.-M. Tsou, A dynamic portrait segmentation by

merging colors and depth information, International Journal of Control,

Automation and Systems 13 (5) (2015) 1286–1293.

[29] L. Wang, C. Zhang, R. Yang, C. Zhang, TofCut: Towards robust real-time

foreground extraction using a time-of-flight camera, in: International Sym-560

posium on 3D Data Processing, Visualization, and Transmission (3DPVT),

2010.

[30] L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar, W. Clocksin,

P. Torr, Joint optimisation for object class segmentation and dense stereo

reconstruction, in: Proceedings of British Machine Vision Conference565

(BMVC), 2010.

[31] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, C. Rother, Bi-layer seg-

mentation of binocular stereo video, in: Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Vol. 2, 2005, p.

1186 vol. 2.570

[32] M. Bleyer, C. Rother, P. Kohli, D. Scharstein, S. Sinha, Object stereo-

joint stereo matching and object segmentation, in: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

[33] C. Dal Mutto, P. Zanuttigh, G. Cortelazzo, Scene segmentation assisted by

stereo vision, in: Proceedings of Joint 3DIM/3DPVT Conference (3DIM-575

PVT), Hangzhou, China, 2011.

[34] C. Dal Mutto, P. Zanuttigh, G. M. Cortelazzo, Time-of-Flight Cameras and

Microsoft Kinect, SpringerBriefs in Electrical and Computer Engineering,

Springer, 2012.

[35] D. Herrera C, J. Kannala, J. Heikkila, Joint depth and color camera cali-580

bration with distortion correction, IEEE Transactions on Pattern Analysis

and Machine Intelligence 34 (10) (2012) 2058–2064.

31



[36] C. Dal Mutto, P. Zanuttigh, G. Cortelazzo, A probabilistic approach to tof

and stereo data fusion, in: International Symposium on 3D Data Process-

ing, Visualization, and Transmission (3DPVT), Paris, France, 2010.585

[37] S. Holzer, R. Rusu, M. Dixon, S. Gedikli, N. Navab, Adaptive neighborhood

selection for real-time surface normal estimation from organized point cloud

data using integral images, in: Proc. of IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2012, pp. 2684–2689.

[38] C. Fowlkes, S. Belongie, F. Chung, J. Malik, Spectral grouping using the590

nyström method, IEEE Transactions on Pattern Analysis and Machine

Intelligence 26 (2) (2004) 214–225.

[39] L. Piegl, W. Tiller, The NURBS Book (2Nd Ed.), Springer-Verlag New

York, Inc., New York, NY, USA, 1997.

[40] G. Pagnutti, P. Zanuttigh, Scene segmentation based on nurbs surface fit-595

ting metrics, in: Proceedings of Smart Tools and Apps in computer Graph-

ics (STAG), 2015.

[41] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hier-

archical image segmentation, IEEE Transactions on Pattern Analysis and

Machine Intelligence 33 (5) (2011) 898–916.600

[42] S. Gupta, P. Arbelaez, J. Malik, Perceptual organization and recognition

of indoor scenes from RGB-D images, in: Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2013.

32


