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Abstract Control rate regression is a diffuse approach to account for the heterogeneity among

studies in meta-analysis by including information about the outcome risk of patients in the control

condition. Correcting for the presence of measurement error affecting risk information in the treated

and in the control group has been recognized as a necessary step to derive reliable inferential

conclusions. Within this framework, the paper considers the problem of small sample size as an

additional source of misleading inference about the slope of the control rate regression. Likelihood

procedures relying on first-order approximations are shown to be substantially inaccurate, especially

when dealing with increasing heterogeneity and correlated measurement errors. We suggest to

address the problem by relying on higher-order asymptotics. In particular, we derive Skovgaard’s

statistic as an instrument to improve the accuracy of the approximation of the signed profile log-

likelihood ratio statistic to the standard normal distribution. The proposal is shown to provide

much more accurate results than standard likelihood solutions, with no appreciable computational

effort. The advantages of Skovgaard’s statistic in control rate regression are shown in a series

of simulation experiments and illustrated in a real data example. R code for applying first- and

second-order statistic for inference on the slope on the control rate regression is provided.

Keywords: control rate; higher-order asymptotics; likelihood inference; measurement error; meta-

analysis

1 Introduction

Control rate regression is a diffuse instrument for taking into account the between-study hetero-

geneity in meta-analysis comparing a treated group and a control group ([1], [2], [3], [4]). To this

aim, a measure of the outcome risk of patients in the control condition is considered, so that emerg-

ing differences among studies are due to treatment effects only. The control rate, defined as the

proportion of patients with the event of interest in the control group, represents a surrogate for the

true risk of patients in the control condition and thus is a measure affected by error. Correcting
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for the presence of measurement error is a necessary step for inference to be reliable ([5], [6]). The

most famous effect of ignoring the presence of measurement error is the downwards bias of the esti-

mate of the slope in a linear regression model with additive homoschedastic errors on the covariate.

Likelihood-based inference for measurement error correction in control rate regression has received

substantial attention in the literature given its limit properties, see, for example, Arends et al. [2],

Ghidey et al. [7], and Guolo [8]. We show that, despite the advantages in terms of properties of the

maximum likelihood estimator, likelihood inference relying on first-order approximations can be

inaccurate when the sample size, i.e., the number of studies included in the meta-analysis, is small.

In particular, the asymptotic χ2 distribution for the likelihood ratio statistic is shown to be flawed,

seriously affecting inferential conclusions. In this paper we suggest to overcome the problem and

refine first-order likelihood inference through Skovgaard’s second-order statistic [9]. The present

work takes advantage of previous results about higher-order asymptotics illustrated in Guolo [10]

within the classical meta-analysis framework and constitutes a step forward for developing Skov-

gaard’s second-order statistic in the multivariate meta-analysis accounting for measurement errors.

The accuracy of the results is obtained with no substantial computational effort, as Skovgaard’s

statistic can be derived in closed-form with components having a complexity comparable to that of

evaluating the expected information matrix. Advantages over first-order results are highlighted in

a series of simulation studies. The application of the method is illustrated via a real data example

about the efficacy of a drug treatment against cardiovascular mortality in middle-aged patients

with mild to moderate hypertension. The R [11] code for implementing Skovgaard’s second-order

statistic is made available as supplementary material and illustrated in the Appendix.

2 Likelihood inference

We consider a meta-analysis of n independent studies about the effectiveness of a treatment. Let ηi

denote the risk measure in the treated group, or the treatment effect, and let ξi denote the outcome

underlying risk measure in the control group, i = 1, . . . , n. Control rate regression is typically

defined as (e.g., [1], [2])

ηi = β0 + β1ξi + εi, εi ∼ N(0, τ2), (1)

with parameter τ2 accounting for the heterogeneity with respect to the treatment measure in the

population with the same underlying risk. The inferential interest is usually in β1, with β1 = 0

used to verify the constance of the treatment effect and its independence with respect to ξi. An
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alternative specification of the model considers the relationship between the treatment effect ηi−ξi

and ξi (e.g., [12]), with (β0, β1)
> = (0, 1)> representing a claim of no relationship between the

treatment effect and the risk in the control condition, on average.

The simplest approach for analysis suggested by Brand and Kragt [13] is a weighted least squares

regression, with weights given by the inverse of the variance of the treatment effect. This approach

does not consider that the summary information from each study represents a surrogate for the

true unobserved risk measure and consequently is prone to measurement error. A huge literature

warns against misleading inferential conclusions due to ignoring measurement errors, see Carroll et

al. [5] and Buonaccorsi [6]. In case of additive homoschedastic errors, the most evident effect is the

attenuation of the least squares estimate of β1, which is biased towards zero, a situation known as

regression dilution bias. Let η̂i and ξ̂i denote the observed error-prone versions of ηi and ξi available

from study i. A commonly adopted measurement error structure ([1], [2], [14]) relates (η̂i, ξ̂i)
> to

(ηi, ξi)
> through the bivariate Normal distribution η̂i

ξ̂i

 ∼ N2


 ηi

ξi

 ,Γi
 , (2)

where the within-study variance/covariance matrix Γi is specified using single study information.

Likelihood-based inference requires the specification of the distribution for the underlying risk ξi.

Typically, a normal specification is adopted for computational convenience, ξi ∼ N(µ, σ2) (e.g.,

[3]). Given the above distributional assumptions, the likelihood function for the whole parameter

vector θ = (β0, β1, τ
2, µ, σ2)> is easily obtained with a closed-form considering that, marginally,

 η̂i

ξ̂i

 ∼ N2


 β0 + β1µ

µ

 ,Γi +

 τ2 + β21σ
2 β1σ

2

β1σ
2 σ2


 . (3)

The computational convenience of the closed-form for the likelihood function is a practical jus-

tification for the choice of the normal specification for the measurement error model and for the

underlying risk distribution. Alternative specifications for both the models, however, have been

examined in the literature. Specification (2) is often an approximation of the exact measurement

error structure, which can be defined case by case [2], although at the price of computational com-

plications. Alternatives to the normal model for the underlying risk examined in the literature

include flexible solutions based on mixture of normals [2], semiparametric specification [7] and the

skew-normal distribution [8].
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2.1 First-order inference

Let θ̂ denote the maximum likelihood estimate of θ, based on (3) and consider the inferential

interest directed to the slope parameter β1. Denote, for simplicity, λ = (β0, µ, τ
2, σ2)> the vector

of the remaining nuisance parameters and let θ̃ = (β1, λβ1)> be the constrained maximum likelihood

estimate of θ for fixed β1. Inference on β1 can rely on the profile log-likelihood function `P (β1) =

`(β1;λβ1). Hypothesis testing and construction of confidence intervals can be based on the signed

(square root of the) profile log-likelihood ratio statistic

rP (β1) = sign
(
β̂1 − β1

){
`P(β̂1)− `P(β1)

}1/2
, (4)

which, under mild regularity conditions, has an approximate standard normal distribution up to

first-order error, see Section 4.4 in Severini [15]. The use of rP (β1) is preferable to the commonly

adopted Wald-type statistic as the inferential procedures are invariant to reparameterization and

confidence intervals based on rP (β1) are not forced to be symmetric. Nevertheless, first-order

asymptotic results are known to provide misleading conclusions when the sample size is small, see,

for example, Brazzale et al. [16]. The problem in the meta-analysis context has been previously

investigated in Guolo [10], Guolo and Varin [17], Bellio and Guolo [18].

2.2 Skovgaard’s statistic

Several modifications of rP have been proposed in the literature, which are aimed at reducing

the order of the error in approximating the standard normal ([15], [19]). In this paper, we con-

sider the refinement given by Skovgaard’s statistic [9] which has an approximate standard normal

distribution up to second-order error. The choice is motivated by the fact that the statistic is

well-defined for a wide class of regular problems and is computationally feasible. In fact, the

evaluation of Skovgaard’s statistic components requires an effort similar to that of computing the

expected information matrix. The invariance with respect to interest-respecting reparameteriza-

tions is maintained. Guolo [10] investigated the use of Skovgaard’s statistic in meta-analysis and

meta-regression, under the classical random-effects formulation [20]. This paper takes advantage

of the starting results in Guolo [10] to extend the usage of Skovgaard’s statistic to the multivariate

meta-analysis represented by control rate regression. Measurement errors on η̂i and ξ̂i are taken

into account but they do not substantially affect the feasibility of the approach.
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Skovgaard’s statistic is defined as a modification of rP

rP (β1) = rP (β1) +
1

rP (β1)
log

u(β1)

rP (β1)
, (5)

where u(β1) represents the correction term

u(β1) = [S−1q]β1 |ĵ|1/2 |̂i|−1|S||j̃λλ|−1/2.

In the above expression, symbol | · | denotes the determinant, î and ĵ are the expected information

matrix and the observed information matrix, respectively, both evaluated at the maximum like-

lihood estimate θ̂ and j̃λλ represent the sub-block of j corresponding to the parameter vector λ

evaluated at the constrained maximum likelihood estimate θ̃. Similarly, [S−1q]β1 is the component

of the vector S−1q corresponding to β1, with S and q covariances of likelihood terms, namely,

S = covθ1

{
∂`(θ1)

∂θ
,
∂`(θ2)

∂θ

}∣∣∣∣
θ1=θ̂,θ2=θ̃

and

q = covθ1

{
∂`(θ1)

∂θ
, `(θ1)− `(θ2)

}∣∣∣∣
θ1=θ̂,θ2=θ̃

.

Within the control rate regression, the derivation of the Skovgaard’s statistic components gives rise

to the following expression. Let fi denote the mean vector of (η̂i, ξ̂i)
> and Vi denote the associated

variance/covariance matrix in (3). A subfix indicates the derivation with respect to each component

of θ. A ”hat” and a ”tilde” indicates the evaluation of a vector or a matrix with respect to θ̂ and

θ̃, respectively. Accordingly, S is a 5× 5 matrix with components

Sβj ,βk =
n∑
i=1

{
1

2
trace

(
V̂ −1βj

V̂iṼ
−1
βk
V̂i
)

+ f̂>i,βj Ṽ
−1
βk

(
f̃i − f̂i

)
+ f̂βk Ṽ

−1
i f̃βk

}
, j, k = 0, 1,

Sβj ,µ =
n∑
i=1

f̂>i,βj Ṽ
−1
i f̃i,µ, j = 0, 1,

Sµµ =
n∑
i=1

f̂>i,µṼ
−1
i f̃i,µ,

Sβj ,ψk
=

n∑
i=1

{
1

2
trace

(
V̂ −1i,βj

V̂iṼ
−1
i,ψk

V̂i
)

+ f̂>i,βj Ṽ
−1
i,ψk

(
f̃i − f̂i

)}
, j = 0, 1, ψk ∈ {τ2, σ2},

Sµ,ψk
=

n∑
i=1

{
1

2
trace

(
V̂ −1i,µ V̂iṼ

−1
i,ψk

V̂i
)

+ f̂>i,µṼ
−1
i,ψk

(
f̃i − f̂i

)}
, ψk ∈ {τ2, σ2}, ψk ∈ {τ2, σ2},

Sψj ,ψk
=

1

2

n∑
i=1

trace
(
V̂ −1i,ψj

V̂iṼ
−1
i,ψk

V̂i
)
, ψj , ψk ∈ {τ2, σ2},
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Sµ,βj =
n∑
i=1

(
f̂>i,µṼ

−1
i f̃i,βj + f̂>i,µṼ

−1
i,βj

f̃i − f̂>i Ṽ −1i,βj
f̂i,µ

)
, j = 0, 1

Sψj ,βk =
1

2

n∑
i=1

trace
(
V̂ −1i,ψj

V̂iṼ
−1
i,βk

V̂i
)
, ψj ∈ {τ2, σ2}, k = 0, 1

Sψj ,µ = 0, ψj ∈ {τ2, σ2}.

Similarly, q is vector of 5 components

qβj =
n∑
i=1

[
1

2
trace

{
V̂ −1i,βj

V̂i
(
V̂ −1i − Ṽ −1i

)
V̂i
}

+ f̂>i,βj Ṽ
−1
i

(
f̂i − f̃i

)]
, j = 0, 1,

qµ =
n∑
i=1

[
1

2
trace

{
V̂ −1i,µ V̂i

(
V̂ −1i − Ṽ −1i

)
V̂i
}

+ f̂>i,µṼ
−1
i (f̂i − f̃i)

]
and

qψj
=

1

2

n∑
i=1

{
trace

(
V̂ −1ψj

V̂i
)
− trace

(
V̂ −1ψj

V̂iṼ
−1
i V̂i

)}
, ψj ∈ {τ2, σ2}.

The covariances of the likelihood terms S and q that give rise to the improvement of rP (β1) include

the measurement error correction, as the error components are taken into account both in the mean

fi and in the variance/covariance matrix Vi, see expression (3). Unfortunately, such a structure

does not allow to write Skovgaard’s components by separating higher-order terms and measurement

error correction terms. Details about how to compute the components of rP (β1) are provided in

the Appendix.

3 Simulation studies

Several simulation studies have been conducted to investigate the performance of Skovgaard’s

statistic rP with respect to the signed profile log-likelihood ratio statistic rP in terms of accuracy

of inferential results about β1. Both the approaches are compared to the usual weighted least

squares regression. Data have been simulated by first generating the number of events within

each study included in the meta-analysis and then using them to produce the outcome measure

of interest in the treated and in the control group. Consider each study providing the number of

events yi and the total number of person-years ni, i = 1, . . . , n, in the treatment group and the

corresponding quantities xi and mi in the control group. For fixed n, the number of events yi and

xi are simulated from the distributions Yi ∼ Poisson(nie
ηi) and Xi ∼ Poisson(mie

ξi) [2]. Quantities

ni and mi are generated from a Uniform variable on [100, 5000]. Two main scenarios are considered,

by distinguishing two specifications of the outcome of interest ηi. A first scenario considers ηi and
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ξi being the log event rate in the treatment and in the control group, respectively, with the observed

versions evaluated as η̂i = log(yi/ni) and ξ̂i = log(xi/mi). The variance/covariance matrix is

Γi =

 y−1i 0

0 x−1i

 . (6)

In a second scenario, we consider ηi and ξi being the log rate ratio and the log event rate, respec-

tively, with the observed versions evaluated as η̂i = log(yi/ni) − log(xi/mi) and ξ̂i = log(xi/mi).

The variance/covariance matrix is

Γi =

 y−1i + x−1i −x−1i
−x−1i x−1i

 .
For each simulation scheme, we set (β0, β1)

> = (0, 1)> and τ assuming value in {0.1, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5, 2}.

Increasing values for the number of studies included in the meta-analysis are considered, n ∈

{5, 10, 20}. The simulation experiment has been repeated 1,000 times for each scenario and for

each combination of between-study heterogeneity τ2 and sample size n. The methods are com-

pared in terms of empirical coverage probabilities of confidence intervals for β1 at nominal level

0.95. When using the weighted least squares regression, the Wald-type confidence interval is consid-

ered. Likelihood maximisation, based on the Nelder and Mead algorithm [21], employs the weighted

least squares estimates as starting values.

Simulation results are reported in Figure 1 for scenario one and in Figure 22 for scenario two.

Skovgaard’s statistic provides empirical coverages of confidence intervals very close to the nom-

inal level, for every examined scenario, independently of the sample size n and the amount of

between-study heterogeneity τ2. The improvement provided by the method over alternative ap-

proaches is pronounced and more evident in case of small sample size, as well as large values of

τ2. See, for example, the results for n = 5 and for τ = 2.0 under both the scenarios. Relying on

first-order likelihood inference turns out in confidence intervals with empirical coverage probabilities

substantially lower than the nominal level when the sample size is small. Differences with respect to

Skovgaard’s statistic are more evident in presence of correlation between the measurement errors,

see Figure 2. Globally, differences reduce as the sample size increases. Unsurprisingly, the weighted

least squares regression shows a pronounced unsatisfactory behaviour, as a consequence of not

accounting for measurement errors. The empirical coverages probabilities notably underestimate

the nominal 95% level, more seriously as the amount of between-study heterogeneity increases and

when ηi is the log event rate ratio (scenario two).
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Figure 1: Empirical coverage probabilities of the nominally 95% confidence interval for β1 when

η is the log event rate, under increasing sample size n and square root of between-study variance

τ . The plotted curves correspond to Skovgaard’s statistic (solid), the signed profile log-likelihood

ratio statistic (dashed), the weighted least squares approach (dotted). The dashed, grey horizontal

line is the nominal level.
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Figure 2: Empirical coverage probabilities of the nominally 95% confidence interval for β1 when η is

the log event rate ratio, under increasing sample size n and square root of between-study variance

τ . The plotted curves correspond to Skovgaard’s statistic (solid), the signed profile log-likelihood

ratio statistic (dashed), the weighted least squares approach (dotted). The dashed, grey horizontal

line is the nominal level.
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4 Example

Hoes et al. [22] consider a meta-analysis of 12 studies about the efficacy of a drug treatment

compared to placebo or no treatment to prevent death for cardiovascular reasons in middle-aged

patients with mild to moderate hypertension. The available information is in terms of the number

of events and the total number of person-years per group, as reported in Table 1. See also Arends

et al. [2] who analyze the data through a Bayesian approach.

Study Treatment group Control group

Deaths Person-years Deaths Person-years

1 10 595.2 21 640.2

2 2 762.0 0 756.5

3 54 5635.0 70 5600.0

4 47 5135.0 63 4960.0

5 53 3760.0 62 4210.0

6 10 2233.0 9 2084.5

7 25 7056.1 35 6824.0

8 47 8099.0 31 8267.0

9 43 5810.0 39 5922.0

10 25 5397.0 45 5173.0

11 157 22162.7 182 22172.5

12 92 20885.0 72 20645.0

Table 1: Number of deaths and total number of person-years in the treatment and control group

of mild to moderate hypertension middle-aged patients in the meta-analysis of Hoes et al. [22].

Let ηi and ξi denote the log event rate for the i-th treatment group and control group, respec-

tively. The observed error-prone η̂i and ξ̂i are evaluated as the logarithm of the number of deaths

over the total number of person-years in the treatment and in the control group, respectively.

The associated variance/covariance matrix Γi follows expression (6) in the first simulation study.

Arends et al. [2] focus the inferential interest on β1 in model (1) and test for β1 = 1 as the slope

of the no-effect line. When considering the same hypothesis test, then the use of the signed profile

log-likelihood ratio statistic results in an effect of the drug treatment, as rP (β1) = −2.34, with an

associated p-value equal to 0.02. Skovgaard’s statistic accounting for the small number of studies
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included in the meta-analysis concludes for no effect of the treatment, as rP (β1) = −1.27, with an

associated p-value equal to 0.20.

5 Concluding remarks

This paper considered likelihood inference in control rate regression accounting for the presence of

measurement error affecting the outcome risk measure of both the treatment and the control group.

Attention has been paid to situations with a small number of studies, where first-order results based

on the log-likelihood ratio statistic can be substantially inaccurate. In order to avoid misleading

inferential conclusions, we suggested to base inference on Skovgaard’s statistic, which improves to

the second-order the accuracy of approximating the standard normal distribution. The simulation

experiments show that the empirical coverage probabilities of confidence intervals for β1 based

on Skovgaard’s statistic are closer to the nominal level than those derived from the log-likelihood

ratio statistic. The improvements are more evident when the number of studies included in the

meta-analysis is small, e.g., n = 5, and with increasing between-study heterogeneity. Correlated

measurement error structure also represents a framework where advantages of Skovgaard’s statistic

in place of the likelihood ratio statistic emerge. The gain in accuracy is reached with no apprecia-

ble computational effort, as the evaluation of Skovgaard’s statistic components has a complexity

comparable to that of computing the expected information matrix.

The simulation study and the data analysis have been implemented using the R programming

language [11]. The R code for computing Skovgaard’s statistic is provided as supplementary mate-

rial. The Appendix includes an illustration about how to use the software in order to implement

Skovgaard’s statistic in control rate regression.

Likelihood inference performed in this paper, using either first-order or higher-order solutions,

considers the approximate normal distribution for the measurement error, which implies the like-

lihood function being in closed-form. In case the exact measurement error structure is considered

and the likelihood function is not in closed-form, then Skovgaard’s statistic is still evaluable. In this

case, however, closed-form the order of the approximation to the standard normal is not known, as

a consequence of the numerical integration. Nevertheless, experimental studies in Guolo et al. [23]

shows that a good performance of Skovgaard’s statistic with respect to the first-order solution is

maintained in random-effects models.
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Supporting information

The R code for applying Skovgaard’s statistic in control rate regression is provided as supplementary

material.
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A Derivation of Skovgaard’s statistic

Given the framework described in Section 2, the log-likelihood function `(θ) for the whole parameter

vector θ is

`(θ) ∝ −1

2

n∑
i=1

log |Vi| −
1

2

n∑
i=1

(yi − fi)>V −1i (yi − fi),

where yi = (η̂i, ξ̂i)
> is the observed value of the random vector Yi in (3), with mean vector fi and

variance/covariance matrix Vi, following the notation in Section 2.2. The score vector

`θ(θ) =



`β0(θ)

`β1(θ)

`µ(θ)

`τ2(θ)

`σ2(θ)


has components

`βj (θ) = −1

2

n∑
i=1

trace
(
V −1i Vi,βj

)
−1

2

n∑
i=1

(
y>i V

−1
i,βj

yi − 2f>i,βjV
−1
i yi − 2f>i V

−1
i,βj

yi + 2fi,βjV
−1
i fi + f>i V

−1
i,βj

fi
)
, j = 0, 1,

`µ(θ) =
n∑
i=1

f>i,µV
−1
i (yi − fi)

and

`ψj
(θ) = −1

2

n∑
i=1

trace
(
V −1i Vi,ψj

)
− 1

2

n∑
i=1

(
y>i V

−1
i,ψj

yi − 2f>i V
−1
i,ψj

yi + f>i V
−1
i,ψj

fi
)
, ψj ∈ {τ2, σ2}.

The expected information matrix

i(θ) =



iβ0β0(θ) iβ0β1(θ) iβ0µ(θ) iβ0τ2(θ) iβ0σ2(θ)

iβ0β1(θ) iβ1β1(θ) iβ1µ(θ) iβ1τ2(θ) iβ1σ2(θ)

iβ0µ(θ) iβ1µ(θ) iµµ(θ) iµτ2(θ) iµσ2(θ)

iβ0τ2(θ) iβ1τ2(θ) iµτ2(θ) iτ2τ2(θ) iτ2σ2(θ)

iβ0σ2(θ) iβ1σ2(θ) iµσ2(θ) iτ2σ2(θ) iσ2σ2(θ)


has generic component

iθj ,θk =
1

2

n∑
i=1

trace
(
V −1i,θk

Vi,θj + V −1i Vi,θjθk − V
−1
i,θj
Vi,θjθkV

−1
i,θj
Vi
)

+
n∑
i=1

fi,θjV
−1
i fi,θk , θj , θk ∈ θ,
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where Vi,θjθk denotes the second derivative of Vi with respect to θj , θk ∈ θ. In order to derive the

components of S and q, consider that

cov
(
Y >i V̂

−1
i,θj
Yi, Y

>
i Ṽi,θkYi

)
= trace

(
V̂ −1i,θj

V̂iṼ
−1
i,θk

V̂i
)

+ 4f̂>i V̂
−1
i,θj
V̂iṼ

−1
i,θk

f̂i,

cov
(
Y >i V̂

−1
i,θj
Yi, Y

>
i Ṽi,θkYi

)
= 2f>i V̂

−1
i,θj
V̂iṼ

−1
i f̃i,θj

and

cov
(
f̂i,θj V̂

−1
i Yi, f̃

>
i Ṽ

−1
i,θk

Yi
)

= f̂>i,θj V̂
−1
i V̂iṼ

−1
i,θk

f̃i,

for θj , θk ∈ θ.

Then,

Sβj ,βk(θ) = cov
{
`βj (θ1), `βk(θ2)

}∣∣∣
θ1=θ̂,θ2=θ̃

=
1

4
cov

n∑
i=1

(
YiV̂

−1
i,βj

Yi − 2f̂>i,βj V̂
−1
i Yi − 2f̂iV̂

−1
i,βj

Yi, Y
>
i Ṽ

−1
i,βk

Yi − 2f̃>i,βk Ṽ
−1
i Yi − 2f̃>i Ṽ

−1
i,βk

Yi
)

=
n∑
i=1

{
1

2
trace

(
V̂ −1i,βj

V̂iṼ
−1
i,βk

V̂i
)

+ f̂>i,βj Ṽ
−1
i,βk

(
f̃i − f̂i

)
+ f̂i,βk Ṽ

−1
i f̃i,βk

}
, j, k = 0, 1

Sβj ,µ(θ) = cov
{
`βj (θ1), `µ(θ2)

}∣∣∣
θ1=θ̂,θ2=θ̃

=
1

2
cov

n∑
i=1

(
Y >i V̂

−1
i,βj

Yi − f̂>i,βj V̂
−1
i Yi − 2f̂iV̂

−1
i,βj

Yi, f̃
>
i,µṼ

−1
i Yi

)
=

n∑
i=1

f̂>i,βj Ṽ
−1
i f̃i,µ, j = 0, 1

Sµ,µ(θ) = cov {`µ(θ1), `µ(θ2)}|θ1=θ̂,θ2=θ̃

= cov
n∑
i=1

(
f̂>i,µV̂

−1
i Yi, f̃

>
i,µṼ

−1
i Yi

)
=

n∑
i=1

f̂>i,µṼ
−1
i f̃i,µ

Sβj ,ψk
(θ) = cov

{
`βj (θ1), `ψk

(θ2)
}∣∣∣
θ1=θ̂,θ2=θ̃

=
1

2
cov

n∑
i=1

(
Y >i V̂

−1
i,βj

Yi − 2f̂>i,βj V̂
−1
i Yi − 2f̂>i V̂

−1
i,βj

Yi, Y
>
i Ṽ

−1
i,ψk

Yi − 2f̃>i Ṽ
−1
i,ψk

Yi
)

=
n∑
i=1

{
1

2
trace

(
V̂ −1i,βj

V̂iṼ
−1
i,ψk

V̂i
)

+ f̂>i,βj Ṽ
−1
i,ψk

(
f̃i − f̂i

)}
, j = 0, 1, ψk ∈ {τ2, σ2}
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Sµ,ψk
(θ) = cov {`µ(θ1), `ψk

(θ2)}|θ1=θ̂,θ2=θ̃

= −1

2
cov

n∑
i=1

(
f̂i,µV̂

−1
i Yi, Y

>
i Ṽ

−1
i Yi − 2f̃>i Ṽ

−1
i,ψk

Yi
)

=
n∑
i=1

{
1

2
trace

(
V̂ −1i,µ V̂iṼ

−1
i,ψk

V̂i
)

+ f̂>i,µṼ
−1
i,ψk

(
f̃i − f̂i

)}
, ψk ∈ {τ2, σ2}

Sψj ,ψk
(θ) = cov

{
`ψj

(θ1), `ψk
(θ2)

}∣∣∣
θ1=θ̂,θ2=θ̃

=
1

4
cov

n∑
i=1

(
Y >i V̂

−1
i,ψj

Yi − 2f̂>i V̂
−1
i,ψj

Yi, Y
>
i Ṽ

−1
i,ψk

Yi − 2f̃>i Ṽ
−1
i,ψk

Yi
)

=
1

2

n∑
i=1

trace
(
V̂ −1i,ψj

V̂iṼ
−1
i,ψk

V̂i
)
, ψj , ψk ∈ {τ2, σ2}

Sµ,βj (θ) = cov {`µ(θ1), `βk(θ2)}|θ1=θ̂,θ2=θ̃

= −1

2
cov

n∑
i=1

(
f̂>i,µV̂

−1
i Yi, Y

>
i Ṽ

−1
i,βj

Yi − 2f̃>i,βj Ṽ
−1
i Yi − 2f̃iṼ

−1
i,βj

Yi
)

=
n∑
i=1

(
f̂>i,µṼ

−1
i f̃i,βj + f̂>i,µṼ

−1
i,βj

f̃i − f̂>i Ṽ −1i,βj
f̂i,µ

)
, j = 0, 1

Sψj ,βk(θ) = cov
{
`ψj

(θ1), `βk(θ2)
}∣∣∣
θ1=θ̂,θ2=θ̃

=
1

4
cov

n∑
i=1

(
Y >i V̂

−1
i,ψj

Yi − 2f̂>i V̂
−1
i,ψj

Yi, Y
>
i Ṽ

−1
i,βk

Yi − 2f̃>i,βk Ṽ
−1
i Yi − 2f̃>i Ṽ

−1
i,βk

Yi
)

=
1

2

n∑
i=1

trace
(
V̂ −1i,ψj

V̂iṼ
−1
i,βk

V̂i
)
, ψj ∈ {τ2, σ2}, k = 0, 1

Sψj ,µ(θ) = cov
{
`ψj

(θ1), `µ(θ2)
}∣∣∣
θ1=θ̂,θ2=θ̃

= −1

2
cov

n∑
i=1

(
Y >i V̂

−1
i,ψk

Yi − 2f̂>i V̂
−1
i,ψk

Yi, f̃
>
i,µṼ

−1
i Yi

)
= 0, ψj ∈ {τ2, σ2}

qβj (θ) = cov
{
`βj(θ1), `(θ1)− `(θ2)

}∣∣∣
θ1=θ̂,θ2=θ̃

=
1

4
cov

n∑
i=1

(
Y >i V̂

−1
i,βj

Yi − 2f̂>i,βj V̂
−1
i Yi − 2f̂>i V̂

−1
i,βj

Yi, Y
>
i V̂

−1
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−1
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−1
i Yi
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=
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[
1

2
trace

{
V̂ −1i,βj

V̂i
(
V̂ −1i − Ṽ −1i

)
V̂i
}

+ f̂>i,βj Ṽ
−1
i

(
f̂i − f̃i

)]
, j = 0, 1
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qµ(θ) = cov {`µ(θ1), `(θ1)− `(θ2)}|θ1=θ̂,θ2=θ̃

=
1

4
cov

n∑
i=1

(
Y >i V̂

−1
i,µ Yi − 2f̂>i,µV̂

−1
i Yi − 2f̂>i V̂

−1
i,µ Yi, Y

>
i V̂

−1
i Yi − 2f>i V̂

−1
i Yi − Y >i Ṽ −1i Yi + 2f̃iṼ

−1
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=

n∑
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1

2
trace
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V̂ −1i,µ V̂i

(
V̂ −1i − Ṽ −1i

)
V̂i
}

+ f̂>i,µṼ
−1
i

(
f̂i − f̃i

)]

qψj
(θ) = cov

{
`ψj

(θ1), `(θ1)− `(θ2)
}∣∣∣
θ1=θ̂,θ2=θ̃

=
1

4
cov

n∑
i=1

(
Y >i V̂

−1
i,ψj

Yi − 2f̂>i,ψj
V̂ −1i Yi − 2f̂>i V̂

−1
i,µ Yi, Y

>
i V̂

−1
i Yi − 2f>i V̂

−1
i Yi − Y >i Ṽ −1i Yi + 2f̃iṼ

−1
i Yi

)
=

1

2

n∑
i=1

{
trace

(
V̂ −1ψj

V̂i
)
− trace

(
V̂ −1ψj

V̂iṼ
−1
i V̂i

)}
, ψj ∈ {τ2, σ2}

B Data analysis

This appendix shows how to evaluate Skovgaard’s statistic for inference on the slope of the control

rate regression in the R programming language. The illustration is based on the data of Hoes et

al. [22] reported in Table 1. Functions needed to implement Skovgaard’s statistic are obtained as

supplementary material and they can be loaded as follows

R> source("control_rate_regression_LRTs.R")

Consider the hypothesis test β1 = 1 against the two-sided alternative. Wald statistic, the signed

profile log-likelihood ratio statistic and Skovgaard’s statistic are obtained by applying function

crr.test (control rate regression test)

crr.test(data, beta1.null, alternative = c("two.sided", "less",

"greater"), maxit = 1000)

with arguments

• data: the dataset

• beta1.null: the value of β1 under the null hypothesis

• alternative: a character string specifying the alternative hypothesis, chosen between

”two.sided” (default), ”greater” or ”less”; just the initial letter can be specified
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• maxit: the maximum number of iterations for the Nelder and Mead [21] optimization algo-

rithm; default value 1,000

The dataset is composed by n rows corresponding to the studies recruited in the meta-analysis

and 6 columns including the values of η̂i, ξ̂i, and the elements of the variance/covariance matrix Γi

inserted by row, namely, var(η̂i), cov(η̂i, ξ̂i), cov(η̂i, ξ̂i), var(ξ̂i). For the analysis of Hoes et al. [22]

data, the object to be passed to function crr.test can be constructed as follows

R> deaths.treated <- c(10, 2, 54, 47, 53, 10, 25, 47, 43, 25, 157, 92)

R> ## number of person-years for the cases

R> py.treated <- c(595.2, 762, 5635, 5135, 3760, 2233, 7056.1, 8099, 5810, 5397,

R+ 22162.7, 20885)

R> deaths.controls <- c(21, 0, 70, 63, 62, 9, 35, 31, 39, 45, 182, 72)

R> deaths.controls[2] <- 0.5

R> ## number of person-years for the controls

R> py.controls <- c(640.2, 756, 5600, 4960, 4210, 2084.5, 6824, 8267, 5922, 5173,

R+ 22172.5, 20645)

R> py.controls[2] <- py.controls[2]+0.5

R> hoes.data.original <- data.frame(deaths.treated, py.treated,

R+ deaths.controls, py.controls)

## estimated log event rate for the controls

R> xi.obs <- log(hoes.data.original$deaths.treated/hoes.data.original$py.treated)

## estimated log event rate for the treated

R> eta.obs <- log(hoes.data.original$deaths.controls/hoes.data.original$py.controls)

R> n <- length(hoes.data.original$deaths.treated)

## variance/covariance matrix

R> gamma.matrix <- matrix(0.0, ncol=4, nrow=n)

R> for(i in 1:n)

R+ gamma.matrix[i,] <- c(1/hoes.data.original$deaths.treated[i], 0,

R+ 0, 1/hoes.data.original$deaths.controls[i])

R> hoes.data <- data.frame(eta.obs, xi.obs, gamma.matrix)

R> colnames(hoes.data) <- c(’eta.obs’, ’xi.obs’, ’var.eta’, ’cov.etaxi’,

R+ ’cov.etaxi’, ’var.xi’)

19



Function crr.test

R> crr.test(data=hoes.data, beta1.null=1, alternative=’two.sided’)

Estimate of beta1:

Estimate Std.Err.

WLS 0.60973 0.10892

MLE 0.68917 0.08124

Hypothesis test for beta1:

Value P-value

Wald statistic -3.5830787 0.0003396

Signed profile log-likelihood ratio statistic -2.3447177 0.0190415

Skovgaard statistic -1.2709290 0.2037539

alternative hypothesis: parameter is different from 1

provides the following information:

• the weighted least squares estimate and the maximum likelihood estimate of β1;

• the associated standard error;

• the value of Wald statistic, the value of the signed profile log-likelihood ratio statistic rP and

the value of Skovgaard’s statistic rP under the null hypothesis;

• the p-value of the test based on the three statistics for the specified alternative hypothesis.
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