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THE GREENBERG FUNCTOR REVISITED

ALESSANDRA BERTAPELLE AND CRISTIAN D. GONZÁLEZ-AVILÉS

Abstract. We extend Greenberg’s original construction to arbitrary schemes over (cer-
tain types of) local artinian rings. We then establish a number of properties of the
extended functor and determine, for example, its behavior under Weil restriction. We
also discuss a formal analog of the functor.

Contents

1. Introduction 1
2. Greenberg modules and algebras 3
2.1. Finitely generated modules over arbitrary fields 3
2.2. Modules over rings of Witt vectors 4
2.3. A common approach 8
3. The Greenberg algebra of a truncated discrete valuation ring 8
4. Greenberg algebras and ramification 12
5. The Greenberg algebra of a discrete valuation ring 13
6. The Greenberg functor 14
7. The Greenberg functor of a truncated discrete valuation ring 17
8. The change of rings morphism 18
9. Basic properties of the Greenberg functor 20
10. Weil restriction and the Greenberg functor 22
11. The change of level morphism for smooth group schemes 23
12. The perfect Greenberg functor 26
13. The Greenberg realization of an adic formal scheme 27
14. The Greenberg realization of an R-scheme 30
15. The Greenberg realization of a finite group scheme 32
16. Commutative group schemes 34
Appendix 38
A.1. Weil restriction 38
A.2. Greenberg’s structure theorem 41
A.3. A flatness result 43
References 43

Date: January 10, 2018.
2010 Mathematics Subject Classification. Primary 11G25, 14G20.
Key words and phrases. Greenberg realization, formal schemes, Weil restriction.
C. G.-A. was partially supported by Fondecyt grant 1160004.

1
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1. Introduction

As already noted by Lang in his thesis [La, p. 381], the problem of finding a zero of
a polynomial f(x1, . . . , xn) with coefficients in a complete discrete valuation ring O with
perfect residue field k is equivalent to finding a common zero of infinitely many polyno-
mials with coefficients in k. Working modulo powers of the maximal ideal of O effectively
simplifies the problem since, in this setting, one only has to deal with finitely many poli-
nomials with coefficients in k. The general case is then treated via a limit construction.
Lang’s idea was developed by his student Greenberg in the papers [Gre1, Gre2], where
Greenberg introduced and studied the objects that are now called the Greenberg realization
and the Greenberg functor. While Greenberg was writing his thesis, Grothendieck clarified
his construction as an analog of Weil restriction [CS, p. 89]. Sometime later Serre applied
the Greenberg functor in an unpublished proof of the so-called Serre-Tate theorem on
formal liftings of abelian varieties in the case of ordinary reduction [CS, p. 161]. Serre also
used the Greenberg functor in [Se] in order to prove that, when k is algebraically closed,
the abelian extensions of the fraction field of O correspond bijectively to isogenies of the
group of units of O, regarded as a projective limit of algebraic k-groups. Since those times
the Greenberg functor has played an important role in arithmetic and algebraic geometry.
See [Bég, BLR, CGP, Lip] and, more recently, [BT, NS, NS2, Sta]. The work of Greenberg
came to our attention in the course of our attempts to generalize the results of Bégueri
[Bég] over a non-algebraically closed residue field k. Our main difficulty in understanding
Greenberg’s ideas originated in his use of a pre-Grothendieck language to describe the key
construction of Greenberg algebras [Gre1, §1]. Further, some of his original results, stated
for varieties, do not easily extend to more general schemes. These problems have affected
other researchers as well, since a number of errors connected with the use of the Greenberg
functor have appeared in print.

In this paper we revisit Greenberg’s construction using a modern scheme-theoretic lan-
guage and generalize it in various ways, removing in particular certain unnecessary re-
ducedness and finiteness conditions assumed in [Gre1, Gre2]. Further, we refine known
properties of the classical Greenberg functor, establish new properties and correct certain
erroneous claims about this functor that appear in the literature. We also clarify the
relation that exists between the Greenberg algebra R associated to a local artinian ring
R (of a certain type) and the Greenberg module I associated to an ideal I of R. We
expect to use the results of this paper to investigate (elsewhere) certain interesting prob-
lems in arithmetical algebraic geometry. We should also note that the present paper is an
abridged, and hopefully more readable, version of our preprint [BGA], where all tedious
calculations omitted from this version have been fully worked out for the benefit of the
punctilious reader.

We now describe in more detail the contents of the paper. Section 2 contains a general
discussion of Greenberg modules/algebras associated to finite Wm(k)-modules/algebras,
where m ≥ 1 and (the field) k is assumed to be perfect and of positive characteristic if
m > 1. Readers who are familiar with Greenberg’s original construction will have noticed
that this author encountered a number of technical difficulties that forced him to work
only up to purely inseparable morphisms, e.g., in the proof of the fundamental theorem
in [Gre2]. See Remark 2.14 and Appendix A.2. In this paper we correctly identify the
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ideal subscheme (2.15) of the relevant Greenberg algebra that must be chosen in order to
circumvent all such technical difficulties.

In Section 3 we specialize the discussion of Section 2 to truncated discrete valuation rings
and refine, for use in future applications, the presentation given in this case by Nicaise
and Sebag [NS]. Incidentally, the above authors seem to have been the first to have
noticed that a certain formula involving Greenberg algebras that appears in [BLR, p. 276,
line -18] is incorrect. In Remark 7.4 we explain why the indicated error is (fortunately)
inconsequential when working with the tower of Greenberg algebras.

Section 4 discusses the behavior of Greenberg algebras under (possibly) ramified ex-
tension of local artinian rings. The very brief Section 5 contains the definition of the
Greenberg algebra associated to a discrete valuation ring and some related remarks. Sec-
tion 6 introduces the Greenberg functor GrR in the general setting of this paper. This
functor associates to an R-scheme X a k-scheme GrR(X) whose set of k-rational points
is in bijection with the set of R-sections of X. The existence of GrR(X) is established
via a careful discussion of the functor hR that is left-adjoint to GrR. The constructions
of Section 6 are then specialized to truncated discrete valuation rings in Section 7. In
Section 8 we show that the change of rings morphism GrR(X) → GrR

′
(X ′) (8.1) is al-

ways affine, and surjective (respectively, an isomorphism) if X is smooth (respectively,
étale) over R. In Section 9 we show that the Greenberg functor preserves a number of
basic properties of morphisms. In particular, we show that it preserves quasi-projective
schemes (see Proposition 9.1). Section 10 describes the behavior of the Greenberg functor
under Weil restriction. See Theorem 10.2. To our knowledge, only a very specific instance
of this result has appeared in print (within the context of formal geometry), namely [NS,
Theorem 4.1].

In Section 11 we describe the kernel of the change of level morphism (8.3) using the
Structure Theorem from Appendix A.2. In particular, we show in Remark 11.13 that [Bég,
Lemma 4.1.1(2)] is false. In spite of the above, the main results of [Bég] are (fortunately)
valid since [Bég] works mostly with the perfect Greenberg functor (discussed here in Section
12), which annihilates all possible infinitesimal error terms. See Remark 12.1 for more
details.

We now observe that Sebag defined in [Seb, §3] the Greenberg realization of a separated
formal scheme of topologically finite type. In Section 13 we extend his construction to
the larger category of adic formal schemes and determine the behavior of the new functor
under Weil restriction. In particular, we generalize [NS, Theorem 4.1]. The constructions
of Section 13 are then applied in Section 14 to discuss the Greenberg realization of an
R-scheme, where R is a complete discrete valuation ring.

Section 15 contains information on the Greenberg realization of a finite group scheme,
which may not itself be finite over k.

Section 16 discusses the Greenberg realization of a flat, commutative and separated
R-group scheme F , where R is as above, using a smooth resolution of F when one exists
(this is the case if F is finite over R). In particular, we obtain results on the kernel and
cokernel of the change of level morphism (see Proposition 16.3) and on certain algebraic
groups related to F -torsors. See (16.7) and (16.11).

The Appendix consists of three Subsections. In subsection A.1 we discuss the Weil re-
striction functor and show that the hypotheses in the basic existence theorem [BLR, §7.6,
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Theorem 4, p. 194] can be weakened. We also record here the fundamental fact that the
Weil restriction of a scheme along a finite and locally free universal homeomorphism always
exists. In Section A.2 we extend Greenberg’s structure theorem [Gre2, p. 263], showing
in particular that the original version of the indicated result is unaffected by Greenberg’s
occasional replacement of certain Greenberg modules by inseparably-isogenous group vari-
eties. Subsection A.3 consists of a single proposition where sufficient conditions are given
for a morphism of smooth and commutative group schemes over a field to be flat.

Acknowledgements

We thank James Borger and Maurizio Candilera for helpful comments on Witt vectors,
Brian Conrad for enlightening comments on Weil restriction and Johannes Nicaise for
helpful comments on Greenberg approximation. We also thank Michel Raynaud for an-
swering some of our questions regarding [Bég]. Finally, we are grateful to both referees
for several helpful suggestions.

2. Greenberg modules and algebras
ga

Let k be a perfect field of positive characteristic and let m ≥ 1 be an integer. In [Lip,
Appendix A], Lipman translated into scheme-theoretic language Greenberg’s construction
of Greenberg modules in [Gre1]. In this Section we extend Lipman’s translation to other
constructions/statements from [Gre1, Gre2].

For any scheme S, we will write OS (or OA if S = SpecA is affine) for the S-ring scheme
V(OS) = Spec OS [T ].

sec-k
2.1. Finitely generated modules over arbitrary fields. In this Subsection k is an
arbitrary field. Let M be a finitely generated k-module of rank r ≥ 1. The Greenberg
module associated to M, denoted by M, is the affine k-scheme that represents the functor
SpecA 7→M⊗kA, where A is a k-algebra, i.e.,

wemwem (2.1) M(A)
def.
= Homk(SpecA,M ) = M⊗kA.

Note that, for any choice of k-basis {m1, . . . ,mr} of M, there exists an isomorphism of

Ok-module schemes Ark 'M given on A-sections by Ar
∼→M (A), (ai) 7→

∑
imi ⊗ ai.

resp0 Remarks 2.2.

(a) If A → B is an injective (respectively, surjective) homomorphism of k-algebras,
then the induced homomorphism of k-modules M (A) → M (B) is injective (re-
spectively, surjective).

(b) If M→M ′ is a surjective homomorphism of finitely generated k-modules and A is
a k-algebra, then the induced map M (A)→M ′(A) is a surjective homomorphism
of A-modules.

Let R be a finite k-algebra. Since R is a finitely generated k-module, its associated
Greenberg module R can be defined as above. Now

gr-weilgr-weil (2.3) R(A) = R⊗kA.

is naturally endowed with an R-algebra structure. The resulting k-ring scheme R is called
the Greenberg algebra associated to R. Note that R(k) = R. By construction, there exists



THE GREENBERG FUNCTOR REVISITED 5

a (non-canonical) isomorphism of k-group schemes

uuluul (2.4) R ' G`
a,k ,

where ` = dimkR ≥ 1. Further, by (2.3), we have R = ResR/k(OR) (Weil restriction. See
Apprendix A.1). If f ∈ A, then R(A)f = R(A)⊗A Af , whence

very0very0 (2.5) R(A)f = R(Af).

Now let R → R ′ be a homomorphism of finite k-algebras with kernel K and let R,R ′

and K be the Greenberg algebras/modules associated to R,R ′ and K, respectively. By
(2.1), the canonical exact sequence of k-modules 0 → K → R → R ′ induces, for every
k-algebra A, an exact sequence of R-A-bimodules 0→ K (A)→ R(A)→ R ′(A), where

karkar (2.6) K (A) = K⊗kA = KR(A).

We conclude that

eqcaseeqcase (2.7) K = Ker
[
R → R ′

]
.

sec-w
2.2. Modules over rings of Witt vectors. In this Subsection k is a perfect field of
characteristic p > 0 and Wm denotes the k-ring scheme of Witt vectors of length m > 1.
Let M be a finitely generated Wm(k)-module and let M denote the fpqc sheaf on the
category of affine k-schemes associated to the presheaf SpecA 7→M⊗W(k)W(A), where A is
a k-algebra. By [Lip, Proposition A.1], there exists an affine Wm-module scheme M , called
the Greenberg module associated to M, which represents M, i.e., M(SpecA) = M(A),
where

M(A)
def.
= Homk(SpecA,M ).

Further, by [Lip, Corollary A.2], the canonical map

lipslips (2.8) M ⊗Wm(k)Wm(A) � M (A)

is surjective for every k-algebra A. By construction, a choice of an isomorphism of Wm(k)-
modules M '

∏r
i=0Wni(k), where ni ≤ m for every i, induces an isomorphism of Wm-

module schemes M '
∏r
i=0 Wni . In particular, there exists an isomorphism of k-schemes

M ' ANk , where N =
∑r

i=1 ni is the length of the Wm(k)-module M. Every homomor-
phism of finitely generated Wm(k)-modules M → M ′ induces a morphism of associated
Wm-module schemes M →M ′ [Lip, Proposition A.1, p. 74].

resp Remarks 2.9.

(a) Since M ' ANk , an injective (respectively, surjective) homomorphism of k-algebras
A → B induces an injective (respectively, surjective) homomorphism of Wm(k)-
modules M (A)→M (B).

(b) If M → M ′ is a surjective homomorphism of finitely generated Wm(k)-modules
and A is a k-algebra, then the surjectivity of (2.8) (for both M and M ′ ) implies
that the induced homomorphism M (A)→M ′(A) is surjective.

(c) If A = Ap, then (2.8) is an isomorphism by [Lip, Corollary A.2]. Further, there
exists a canonical isomorphism of Wm(A)-modules M ⊗Wm(k)Wm(A) 'M (A) via
the identification Wm(k)⊗W (k)W (A) = Wm(A).
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Let R be a finite Wm(k)-algebra. The Greenberg algebra associated to R is the Greenberg
module associated to R together with its Wm-algebra structure induced by (2.8). Every
isomorphism of Wm(k)-modules R '

∏r
i=0Wni(k) induces an isomorphism of Wm-module

schemes R '
∏r
i=0Wni and the k-ring scheme structure on R is induced by the ring

structure on R [Lip, Proposition A.1 and Corollary A.2]. In particular, there exists a
(non-canonical) isomorphism of k-schemes

uul2uul2 (2.10) R ' A`k (where ` = lengthWm(k)R)

and we have R(k) = R. If R = Wm(k), then R = Wm. Further, every finitely generated
R-module B defines an R-module scheme B and every homomorphism B→ C of finitely
generated R-modules induces a k-morphism B → C of associated R-module schemes.

uch Remark 2.11.

(a) If K is an ideal of R, then the image of the canonical homomorphism K (A) →
R(A) equals KR(A), as follows from the surjectivity of (2.8) (for both K and
R ).

(b) If A = Ap, then the homomorphism of Wm(A)-algebras R⊗Wm(k)Wm(A)→ R(A)
(2.8) is an isomorphism. Further, there exists a canonical isomorphism of R-W(A)-
bialgebras R ⊗W(k)W(A) ' R(A). See Remark 2.9(c).

Together with (2.5), the following proposition is the key to establishing the repre-
sentability of the Greenberg functor (6.9) in a general scheme-theoretic setting.

very Proposition 2.12. Let R be a finite Wm(k)-algebra with associated Greenberg algebra
R and let A be a k-algebra. For every f ∈ A, there exists a canonical isomorphism of
R(A)-algebras

R(A)[f ]
∼→ R(Af )

where [f ] = (f, 0, . . . , 0) ∈Wm(A).

Proof. By [Ill, (1.1.9), p. 505, and (1.5.3), p. 512], the homomorphism

Wm(A)[f ]
∼→Wm(Af), (a0, . . . , am−1)/[f ]r 7→ (a0, . . . , am−1) · [1/f r ],

is an isomorphism. Thus, by Remark 2.11(b), the proposition holds if A = Ap. The general
case follows by using the existence of faithfully flat extensions A→ B with B = Bp [Lip,
Lemma 0.1, p. 18]. See [BGA2, Proposition 3.16] for the details. �

We discuss next the k-morphism B → C induced by an inclusion of finitely generated
Wm(k)-modules B ⊆ C. We begin with an example.

Example 2.13. Let B = pWm(k) and C = Wm(k). The isomorphism of Wm(k)-modules

Wm−1(k)
∼→ pWm(k), (a0, . . . , am−2) 7→ (0, ap0 , . . . , a

p
m−2),

induces an isomorphism of Wm-module schemes Wm−1 ' B. On the other hand, the
morphism of Wm-module schemes B → C induced by the inclusion B ⊂ C corresponds to
the morphism Wm−1 →Wm given by

Wm−1(A)→Wm(A), (a0, . . . , am−2) 7→ (0, ap0 , . . . , a
p
m−2).

Thus, if A is not reduced, then the preceding map is not injective.
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As the above example shows, we cannot expect B → C to be a closed immersion
in general. This fact has the following undesiderable consequence. Let R → R′ be a
homomorphism of finite Wm(k)-algebras with kernel K. Let R → R ′ be the induced
morphism of associated Wm-module schemes and let K be the R-module scheme which
corresponds to K. Since the composite map K → R → R′ is the zero homomorphism,
the composite of induced morphisms of Greenberg modules K → R → R ′ is the zero
morphism. However, in contrast to (2.7), K may fail to be equal to the kernel of R → R ′.

gr-max Remark 2.14. The following statement appears in [Gre2, p. 257]. Suppose that I is the
kernel of a surjective homomorphism [of finite and local Wm(k)-algebras] ϕ : R→ R′ and
IM = 0 [where M is the maximal ideal of R]. Then, for every pre-scheme Y over k, the
homomorphism ϕ(Y ) : R(Y )→ R ′(Y ) is surjective with kernel I (Y ) and M(Y )I(Y ) =
0. The preceding statement is false if I and M are the Greenberg module schemes
associated to I and M or, in the terminology of [Gre1, Proposition 3, p. 628], if I and
M are the Greenberg varieties equipped with their maximal structures associated to I and
M. We believe that Greenberg was well aware of this fact, which led him to changing the
way in which a module variety is attached to a Wm(k)-module depending on the particular
situation being considered. See [Gre1, lines above Proposition 4, p. 629] and [Gre2, p. 257,
lines 5–8].

In order to obtain a correct scheme-theoretic version of Greenberg’s statement just
quoted, we proceed as follows.

Let R be a finite Wm(k)-algebra and let I be an ideal of R. The ideal subscheme of R
associated to I is the ideal subscheme of R

ibaribar (2.15) I = Ker
[
R → R ′

]
,

where R ′ is the R-algebra associated to R ′ = R/I. The canonical exact sequence of
Wm(k)-modules 0 → I → R → R ′ induces a complex of Wm-module schemes I → R →
R ′. Consequently, there exists a canonical morphism of R-module schemes

nu2nu2 (2.16) ΘI : I → I .

By Remark 2.11(a), we have

nuanua (2.17) Im[ΘI(A) : I(A)→ I (A)] = IR(A)

for every k-algebra A.

rnm-bar Proposition 2.18. Let R be a finite Wm(k)-algebra and let I be an ideal of R. If A is a
k-algebra such that A = Ap, then the homomorphism of R(A)-modules

ΘI(A) : I (A)→ I (A)

is surjective. Further, if A is perfect, then the preceding map is an isomorphism.
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Proof. Recall R ′ = R/I. There exists a canonical commutative diagram of Wm(A)-
modules

d.id.i (2.19) 0 // I⊗W (k) W (A) //

'
��

R⊗W (k) W (A) //

'
��

R ′⊗W(k)W(A) //

'
��

0

0 // I(A) //

ΘI(A)��

R(A) // R ′(A) // 0

0 // I(A) // R(A) // R ′(A) // 0.

The vertical arrows in the top rectangle are isomorphisms by Remark 2.11(b). Further,
the top row of the diagram (excluding the broken arrow) is exact by the right-exactness
of the tensor product functor. Thus the middle row (excluding the broken arrow) is exact
as well. Since the bottom row of the diagram is exact by (2.15) and Remark 2.9(b), the
surjectivity of ΘI(A) follows.

Now assume that A is perfect. Then the broken arrows in the above diagram can be
filled in since W(A) is flat over W(k) [BGA2, Lemma 2.24]. The bijectivity of ΘI(A) is
then immediate. �

barp Lemma 2.20. Let R → R ′ and R → R′′ be surjective homomorphisms of finite Wm(k)-
algebras with kernels I and J which satisfy JI = 0. Then, for every k-scheme Y , the ring
homomorphism R(Y ) → R ′(Y ) induced by R → R′ is surjective with kernel I(Y ) and
J(Y )I(Y ) = 0.

Proof. Up to isomorphisms we may assume that R ′ = R/I and R′′ = R/J. Now, since
R ′ is affine, the morphism R → R ′ has a section by Remark 2.9(b) and the surjectivity
of R(Y ) → R ′(Y ) is clear. The kernel of the latter map is I(Y ) by definition of I .
In order to check that J(Y )I(Y ) = 0, we may assume that Y = SpecA, where A is a
k-algebra. Since A has a faithfully flat extension B with Bp = B [Lip, Lemma 0.1, p. 18],
we may assume that A = Ap. In this case the assertion follows from diagram (2.19), and
the analogous diagram for J in place of I, using the fact that IJ = 0. �

fgt Remark 2.21. If m = 1 and k is arbitrary, then the preceding considerations work equally
well and the resulting Greenberg modules (respectively, algebras) coincide with those
defined in the previous Subsection. In this case I = I , ΘI(A) is the identity map and
Lemma 2.20 is also valid.

gcase

2.3. A common approach. We discuss the two cases of the previous subsections simul-
taneously using the following convention: R will denote a finite Wm(k)-algebra, where
m ≥ 1 and k is assumed to be perfect and of positive characteristic if m > 1.

Let I be an ideal of R, i ≥ 1 an integer and A a k-algebra. We will write I i for the
Wm-module scheme associated to the ideal I i 1.

By Lemma 2.20 and Remark 2.21, the exact sequence of R-modules 0 → I i → R →
R/I i → 0 induces an exact exact sequence of R(A)-modules

rnisrnis (2.22) 0→ I i(A)→ R(A)→ R (I i)(A)→ 0,

1I i should not be mistaken for an “i-th power of I ”. The latter, in fact, cannot be defined since, in
general, I is not an ideal subscheme of R .
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where R (I i) is the Greenberg algebra associated to R/I i. Now let i, j ≥ 1 be integers.
Applying Lemma 2.20 to the ideals I i/Ii+j and Ij/Ii+j of R/Ii+j , we conclude that

I i(A)Ij(A) ⊆ I i+j(A). In particular, for every integer r ≥ 1,

inclincl (2.23) I(A)r ⊆ I r(A).

Thus, since I n = 0 when In = 0, we have

nlpnlp (2.24) I(A)n = 0 (if In = 0).

We will also need the following construction. By Remarks 2.2(b) and 2.9(b), if A is a
k-algebra and I is a proper ideal of A, then there exists an exact sequence of R-modules

rrrirrri (2.25) 0→ R(I )→ R(A)→ R(A/I )→ 0,

where R(I ) = Ker[R(A)→ R(A/I )].

r-nilp Lemma 2.26. Let A be a k-algebra and let I and J be ideals of A. Then

R(I )R(J ) ⊆ R(IJ ).

Proof. This follows from the fact that the functor R(−) is representable. �

3. The Greenberg algebra of a truncated discrete valuation ring
truc

In this Section we discuss the Greenberg algebras associated to truncated discrete valu-
ation rings, which are the motivating examples of the theory. Let R be a discrete valuation
ring with valuation v, maximal ideal m and residue field k = R/m, assumed to be perfect
in the unequal characteristics case. For every n ∈ N, set Rn = R/mn. Since in this section
we discuss constructions that depend only on the truncations Rn, we now assume, without
loss of generality, that R is complete. Now, for every n ∈ N, set Mn = m/mn. If π ∈ m is
a uniformizer, πn will denote the corresponding element in Mn. We will write S = SpecR
and Sn = SpecRn.

Now let n, s be integers such that n ≥ s ≥ 1. Then multiplication by πs on R induces
a surjective homomorphism of Rn-modules Rn → M s

n whose kernel is Mn−s
n . Thus we

obtain an isomorphism of Rn-modules

vidvid (3.1) Rn−s
∼→M s

n, r + mn−s 7→ πsr + mn (r ∈ R).

If R is an equal characteristic ring, then there exists an isomorphism ξ : k[[t]]
∼→ R and

π = ξ(t) is a uniformizer of R. Note that Rn is a finite k-algebra with basis 1, πn, . . . , π
n−1
n .

In particular, the ring Rn is of the type discussed in Subsection 2.1 and the Greenberg
algebra associated to Rn is the k-ring scheme

rneqrneq (3.2) Rn = ResRn/k(ORn).

Note that R1 = Ok and Rn(k) = Rn for every n ≥ 1. Now, by (2.1) and (2.3), for every
k-algebra A we have

eqrneqrn (3.3) Rn(A) = Rn ⊗k A

and Mn(A) = Mn ⊗k A = πnRn(A) ⊆ Rn(A).
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If R has unequal characteristics and perfect residue field k, then R is a totally ramified
extension of W (k) of degree ē = v(p) ≥ 1. If ē > 1, then there exists an isomorphism

eiseis (3.4) ξ : W (k)[T ]/(f )
∼→ R

where f is an Eisenstein polynomial of degree ē. Further, π = ξ(T + (f )) is a uniformizer
of R and the artinian local ring Rn has characteristic pm, where

mm (3.5) m = dn/ēe
is the smallest integer that is larger than or equal to n/ē. As a Wm(k)-module, Rn
can be written as an internal direct sum Wm(k) ⊕Wm(k) · πn ⊕ · · · ⊕Wm(k) · πrn, with
r = min{ ē− 1, n− 1}. Since

Wm(k) ·πin 'Wni(k), with ni = d(n− i)/ēe,
there exists an isomorphism of Wm(k)-modules

dcpdcp (3.6) Rn '
r∏
i=0

Wni(k).

Thus the Greenberg algebra Rn is the Wm-module scheme
∏r

i=0Wni equipped with the
ring structure induced by the rules f(πn) = πnn = 0. See also [NS, pp. 1591-94] and [NS2,
§2.2]. If R = W (k), then Rn = Wn.

nim0 Remarks 3.7.

(a) Write n = qē+ ζ, where 0 ≤ ζ < ē and q ≥ 0. If ζ 6= 0, then ni = m for i < ζ and
ni = m− 1 for i ≥ ζ. If ζ = 0, then ni = m for all i.

(b) If n ≤ ē, then m = 1 and Rn is a finitely generated k-algebra. If n > ē, then
m > 1 and Rn is a type of ring discussed in Subsection 2.2.

Let R again be an arbitrary discrete valuation ring and let n, s be integers such that
n > s ≥ 1. Then Rn and Rs are finite Wm(k)-algebras, where m is given by (3.5)
if R is an unequal characteristics ring and is equal to 1 otherwise. Thus we may now
apply the discussion of Subsection 2.3 with (R, I) = (Rn,Mn). Up to the identification
Rn/M

s
n = Rs, we have an exact sequence of Rn(A)-modules

rnmsrnms (3.8) 0→Ms
n(A)→ Rn(A)→ Rs(A)→ 0.

Now, by Lemma 2.20 and Remark 2.21,

ned2ned2 (3.9) M i
n(A)M 

n(A) = 0 if i+ j ≥ n.
Further, if r ≥ 1 is an integer, then (2.23) yields

minclmincl (3.10) Mn(A)r ⊆ M r
n(A)

Thus, since Mn
n = 0, we have Mn(A)n = 0. Now observe that, by (2.17), πsnRn(A) ⊆

Ms
n(A). Next, (3.9) with i = s yields

rnms1rnms1 (3.11) π snM 
n(A) = 0 if j ≥ n− s.

In other words, M 
n(A) is a πsn-torsion Rn(A)-module for every j ≥ n− s. We will write

ttrttr (3.12) Θn,s : M s
n →Ms

n
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for the canonical map (2.16). Recall that, by Remark 2.21, (3.12) is the identity morphism
in the equal characteristic case.

power Remarks 3.13.

(a) If R = W (k) and V denotes the Verschiebung map, then Ms
n(A) = V sWn−s(A) ⊂

Wn(A) for every k-algebra A.
(b) In general, the inclusion Mn(A)r ⊆ M r

n(A) (3.10) is strict. For example, choose
R = W (k) and set n = 3 and s = 1 in (a). If A 6= Ap, then (V W2(A))2 is properly
contained in the ideal V 2W1(A)) of W3(A).

(c) The containment (3.10) is an equality in the unequal characteristics case if A is
perfect and n > ē = v(p) (so that m > 1 in (3.5)). Indeed, by Proposition 2.18,
the map Θn,s(A) : M s

n(A)→Ms
n(A) is an isomorphism for every n and s ≥ 1. On

the other hand, M s
n(A) ' πsnRn(A) ' Mn(A)s, as follows from Remark 2.11(b)

and the flatness of W (A) over W (k).
(d) If Rn is a k-algebra, then (3.10) is an equality for every A. Indeed, in this case

M s
n(A) = Ms

n(A) by Remark 2.21 and M s
n(A) ' πsnRn(A) 'Mn(A)s by (2.1).

The isomorphism of Rn-modules Rn−s
∼→ M s

n (3.1) induces an isomorphism of Rn-

module schemes Rn−s
∼→M s

n . We will write

pispis (3.14) ϕn,s : Rn−s →Ms
n

for the composition Rn−s
∼→ M s

n → Ms
n, where the second map is the morphism of

Rn-module schemes Θn,s (3.12).

rnm-2 Proposition 3.15. If R is an equal characteristic ring, then ϕn,s : Rn−s →Ms
n (3.14) is

an isomorphism of Rn-module schemes. If R is a ring of unequal characteristics and A
is a k-algebra, then ϕn,s(A) is a surjection if A = Ap and an isomorphism if either A is
perfect or n ≤ ē.
Proof. The fact that ϕn,s is an isomorphism in the equal characteristic case follows from
Remark 2.21. In the unequal characteristics case, see Proposition 2.18 and note that, by
Remark 3.13(d), ϕn,s(A) is an isomorphism for every A if n ≤ ē. �

twist Remarks 3.16. Let k be a perfect field of characteristic p > 0, set R = W (k) and let A be
a k-algebra.

(a) The homomomorphism of Wn(A)-modules ϕn,s(A) is the multiplication by ps

map. In particular, ϕn,n−1(A) is the map A → V n−1W1(A) ⊆ Wn(A), a 7→
(0, . . . , 0, ap

n−1
).

(b) By (a), for every integer r ≥ 1, M r
r+1(A) = V rW1(A) has a canonical structure of

A-module given by a ·V r(b) = (a, 0, . . . , 0)V r(b) = V r(ap
r
b). Now let prA be the

ring A endowed with the A-module structure given by a · b = ap
r
b for a, b ∈ A.

Then the map prA→ V rW1(A), b 7→ V r(b), is bijective and A-linear. If we identify
prA and V rW1(A) as A-modules via the preceding map, then the homomorphism
of A-modules ϕr+1,r(A) : W1(A) → V rW1(A) is identified with the A-linear map
A→ prA, a 7→ ap

r
.

Now let pnOk be the Ok-module scheme given by pnOk(A) = pnA for every k-algebra A,
where pnA is defined above.



12 ALESSANDRA BERTAPELLE AND CRISTIAN D. GONZÁLEZ-AVILÉS

gwist Proposition 3.17. Let R be a finite local W (k)-algebra of characteristic pm, where m ≥
1, and let I be a minimal ideal of R. Then there exists an isomorphism of Ok-module
schemes I ' ptOk, where t ≥ 0 is a uniquely defined integer.

Proof. There exist integers {n1, . . . , nr} with 1 ≤ n1 ≤ · · · ≤ nr ≤ m and an isomorphism

of W (k)-modules λ : R
∼→
∏r

i=1Wni(k). Let M be the maximal ideal of R. The minimality
hypothesis implies that I is principal and MI = 0. Let g be a fixed generator of I and write
λ(g) = (wi) ∈

∏r
i=1Wni(k). Then either wi = 0 or ordp(wi) = ni − 1, i.e., wi = pni−1w̃i

for some w̃i ∈Wni(k)×. Note that (wi) 6= (0, . . . , 0). Set t = min{ordp(wi), 1 ≤ i ≤ r} and
let q be an index where the minimum is attained, i.e.,

tnq0tnq0 (3.18) t = nq − 1.

It is possible to construct a W(k)-automorphism δ of
∏r

i=1Wni(k) such that the compo-

sition δ ◦λ : R
∼→
∏r

i=1Wni(k) induces an isomorphism I
∼→ pnq−1Wnq(k) ⊂

∏r
i=1Wni(k).

See [BGA2, proof of Proposition 4.24] for the details. This isomorphism induces, for every
k-algebra A, an isomorphism of A-modules I(A) ' V nq−1W1(A). The proposition now
follows from Remark 3.16(b). �

twist3 Remark 3.19. Let R be a discrete valuation ring of unequal characteristics and let n > 1 be
an integer. Then the pair (R, I) = (Rn,M

n−1
n ) satisfies the conditions of the proposition.

By definition of the isomorphism (3.6), the image of πn−1
n is non-trivial only on the first

factor, i.e., the integer (3.18) equals t = n0−1 = m−1 by Remark 3.7(a). Thus there exists

an isomorphism of Ok-module schemes M n−1
n ' pm−1Ok that generalizes the isomorphism

V n−1W1 ' pn−1Ok described in Remark 3.16(b).

4. Greenberg algebras and ramification
ram

We keep the notation and hypotheses of the previous Section. In particular, R is a
complete discrete valuation ring.

Let k be a fixed algebraic closure of k and let k ′/k be a subextension of k/k. The
extension of R of ramification index 1 which corresponds to k ′/k is (the complete discrete
valuation ring) given by R ′ = R⊗̂kk ′ ' k ′[[t]] in the equal characteristic case and R ′ =
R⊗W (k) W (k ′ ) in the unequal characteristics case.

For every n ∈ N, we have R ′n = Rn ⊗R R ′ = Rn ⊗k k ′ in the equal characteristic case
and

unequneq (4.1) R ′n = Rn ⊗R R ′ = Rn ⊗Wn(k) Wn(k ′) = Rn ⊗W (k) W (k ′),

in the unequal characteristics case.

unr1 Lemma 4.2. Let k ′/k be a subextension of k/k and let R ′ be the extension of R of ram-
ification index 1 that corresponds to k ′/k. Then, for every n ∈ N, there exists a canonical
isomorphism of k ′-ring schemes

R ′n = Rn ×Spec k Spec k ′.

In particular, R ′n = R ′n(k ′ ) = Rn(k ′ ).
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Proof. In the equal characteristic case the result follows from (A.2) and (3.2) since R ′n =
Rn ⊗k k ′. In the unequal characteristics case, it suffices to check that the fpqc sheaves
of sets on the category of k ′-algebras which are represented by the k ′-schemes R ′n and
Rn×Spec kSpec k ′ are isomorphic. Since the indicated sheaves are the sheaves associated to
the functors on k ′-algebras A 7→ R ′n⊗W(k′)W(A) and A 7→ Rn⊗W(k)W(A) (respectively)
by [Lip, Appendix A], we need only check that the canonical map Rn ⊗W(k) W(A) →
R ′n ⊗W(k′)W(A) is a bijection for every k ′-algebra A. This follows from (4.1). �

In the setting of the lemma, if A is a k ′-algebra, then Rn(A) is canonically endowed
with an R ′n-algebra structure.

unr2 Lemma 4.3. Let k ′/k be a subextension of k/k and let R ′ be the extension of R of rami-
fication index 1 which corresponds to k ′/k. Then, for every n ∈ N and every k-algebra A,
there exists a canonical isomorphism of R ′n-algebras

R ′n
(
A⊗k k ′

)
= Rn(A)⊗RnR ′n.

Proof. In the equal characteristic case, (3.3) yields

R ′n
(
A⊗k k ′

)
=
(
A⊗k k ′

)
⊗k ′R ′n = (A⊗kRn)⊗RnR ′n = Rn(A)⊗RnR ′n.

Now let R be a ring of unequal characteristics and assume first that k ′/k is finite. By
Lemma 4.2, [Lip, Theorem C.5(i), p. 84] and (4.1), there exist natural isomorphisms of
rings

R ′n
(
A⊗k k ′

) ∼→ Rn

(
A⊗k k ′

) ∼→ Rn

(
A)⊗Wn(k) Wn(k ′)

∼→ Rn

(
A)⊗Rn R ′n.

By functoriality, their composition is an isomorphism of R ′n-algebras, which yields the
lemma if k ′/k is finite. The general case follows from the case of finite extensions via a
limit argument using the fact that the functors Rn(−) and Wn(−) commute with filtered
inductive limits. �

The following lemma applies to possibly ramified finite extensions of R.

rne1 Lemma 4.4. Let R ′ be a finite extension of R of ramification index e with associated
residue field extension k ′/k. Then, for every integer n ≥ 1 and every k-algebra A, there
exists a canonical isomorphism of R ′ne-algebras

Rn(A)⊗RnR ′ne = R ′ne
(
A⊗k k ′

)
.

Proof. In the equal characteristic case, the proof is similar to the proof of the corresponding
case of Lemma 4.3. If R is an unequal characteristics ring and R ′/R is totally ramified
(respectively, of ramification index 1), then the lemma follows from [NS, Lemma 2.7,
p. 1593] (respectively, Lemma 4.3). The general case now follows by combining these two
cases in a well-known manner. �

5. The Greenberg algebra of a discrete valuation ring
gad

Let R be a discrete valuation ring. The Greenberg algebra associated to R is the affine
k-scheme

R̃ = lim←−
n∈N

Rn ,
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where the transition morphisms are induced by the canonical maps Rn+1 → Rn. Note

that, if R = W (k), then R̃ = W. Now, if A is a k-algebra, set

rara (5.1) R̃(A) = Homk

(
SpecA, R̃

)
= lim←−(Rn(A)).

If k ′/k is a subextension of k/k and R ′ is the extension of R of ramification index 1 which
corresponds to k ′/k, then, by Lemma 4.2,

rkrk (5.2) R̃(k ′ ) = R ′

Further, since the underlying scheme of Rn is isomorphic to Ank (see Section 3), the un-

derlying scheme of the ring scheme R̃ is isomorphic to A(N)
k = Spec k[xn;n ∈ N]. In

particular, R̃ is not locally of finite type. On the other hand, R̃ has the properties listed

in Remark 2.9(a). We also note that, since the k-algebra that represents R̃ (−) is not of

finite presentation, the functor R̃(−) does not commute with filtered inductive limits.

rm-ns Remarks 5.3.

(a) If R ' k[[t]] and A is a k-algebra then, by (3.3),

R̃(A) = lim←− (Rn ⊗k A) ' lim←−A[t]/(tn) ' A[[t]] ' R ⊗̂kA,

where the last term is the completion of R ⊗k A relative to the (t)-adic topology.
Consequently, definition (5.1) coincides with that in [NS2, p. 256].

(b) Let R ' W(k)[T ]/(f) be as in (3.4) and let A be a k-algebra such that A = Ap.
Then, by Remark 2.11(b), we have

Rn(A) = Rn ⊗W (k)W(A) 'W(A)[T ]/(f, T n)

for every n ≥ 1. Consequently,

rawraw (5.4) R̃(A) ' lim←−W(A)[T ]/(f, T n) 'W (A)[T ]/(f) ' R⊗W (k)W(A).

We also note that, since R is a finitely generated W (k)-module, definition (5.1)
above generalizes the definition given in [NS2, p. 256] when A = Ap.

6. The Greenberg functor
gr-art

The Greenberg realization of a scheme of finite type over an artinian local ring was
introduced in [Gre1]. In this Section we generalize Greenberg’s construction.

We work in the setting of Subsection 2.3. Let R be a local finite Wm(k)-algebra with
maximal ideal M and residue field k. Let Y be a k-scheme. We will write R(OY ) for the
Zariski sheaf on Y defined by

Γ (U,R(OY )) = Homk(U,R) (U ⊂ Y open)

If U = SpecA is an affine subscheme of Y , then

useuse (6.1) Γ (U,R(OY )) = R(A).

If I is an ideal in R, we define I (OY ) similarly. By (2.22), there exists a canonical exact
sequence of Zariski sheaves on Y

rnm2rnm2 (6.2) 0→ I (OY )→ R(OY )→ R (I )(OY )→ 0.
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For example, if I = M, then the sequence of Zariski sheaves

rrrr (6.3) 0→M (OY )→ R(OY )→ OY → 0.

is exact. Note that, since M is a nilpotent ideal, M(OY ) is a nilpotent ideal sheaf by
(2.24). We now consider the locally ringed space over R

hR(Y ) = (|Y |,R(OY )).

Proposition 6.4. Let Y be a k-scheme. Then hR(Y ) is an R-scheme which is affine if
Y is affine. If Y ′ is a closed (respectively, open) subscheme of Y , then hR(Y ′) is a closed
(respectively, open) subscheme of hR(Y ).

Proof. Assume first that Y = SpecA is affine. Then Γ (|hR(Y )|,OhR(Y )) = R(A) by (6.1).
Let

σR : hR(Y )→ Spec R(A)

be the morphism of locally ringed spaces which corresponds to the identity map of R(A)
under the bijection

egabjegabj (6.5) Hom loc

(
hR(Y ), Spec R(A)

)
∼→ Hom(R(A),R(A))

of [EGA Inew , Proposition 1.6.3, p. 210]. If R = k, then R = Ok and σk : hk(Y )→ SpecA
is the identity morphism of Y . Now, if R is arbitrary, then the identity map of |Y | and the
projection in (6.3) define a morphism of locally ringed spaces δ : Y → hR(Y ). On the other
hand, by (2.22), the sequence (6.3) induces a surjective homomorphism of Wm(k)-algebras
R(A) → A with nilpotent kernel M (A). Thus the morphism ς : SpecA → Spec R(A)
induced by R(A)→ A is a nilpotent immersion. By the functoriality of (6.5), the following
diagram commutes:

dhsdhs (6.6) hk(Y )

δ
��

σk

∼
// SpecA

ς
��

hR(Y )
σR

// Spec R(A).

Since δ and ς are homeomorphisms, the above diagram shows that σR is a homeomorphism
as well. If m > 1, then (6.6) with Y = D(f ) = SpecAf , where f ∈ A, and Proposition

2.12 together show that σR maps the open locally ringed subspace hR(D(f)) of hR(Y )
onto the open subscheme Spec R(A)[f ] of Spec R(A). Further,

Γ (|D(f)|,OhR(Y )) = R(Af ) ' R(A)[f ] = Γ
(
σR(|D(f)|),OSpec R(A)

)
.

If m = 1, the analogous result holds by (2.5). We conclude that σR is an isomorphism of
locally ringed spaces and, consequently, hR(Y ) is a scheme.

If Y is arbitrary, let {Yi} be a covering of Y by open affine subschemes. By definition,
the restriction of R(OY ) to |Yi| is R(OYi). Thus hR(Y ) is obtained by gluing the affine
R-schemes hR(Yi), whence hR(Y ) is an R-scheme, as claimed. Consequently, if Y ′ is an
open subscheme of Y , then hR(Y ′) is an open subscheme of hR(Y ). Finally, the assertion
on closed subschemes follows from (2.25). �
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It follows from the above proof that if A is a k-algebra, then

hrn-affhrn-aff (6.7) hR(SpecA) = Spec R(A).

In particular, hR(Spec k) = SpecR. Thus there exists a covariant functor

hra-fhra-f (6.8) hR : (Sch/k)→ (Sch/R), Y 7→ hR(Y ),

which respects open, closed and arbitrary immersions as well as Zariski coverings.
Now, for every R-scheme Z, consider the contravariant functor

funfun (6.9) (Sch/k)→ (Sets), Y 7→ HomR

(
hR(Y ), Z

)
.

pr-def1 Proposition-Definition 6.10. For every R-scheme Z, the functor (6.9) is represented
by a k-scheme which is denoted by GrR(Z) and called the Greenberg realization of Z. The
assignment

grfgrf (6.11) GrR : (Sch/R)→ (Sch/k), Z 7→ GrR(Z),

is a covariant functor called the Greenberg functor associated to R, and the bijection

adjadj (6.12) Homk

(
Y,GrR(Z)

)
' HomR

(
hR(Y ), Z

)
is functorial in the variables Y ∈ (Sch/k) and Z ∈ (Sch/R). If Z is of finite type
(respectively, locally of finite type), then GrR(Z) is of finite type (respectively, locally of
finite type).

Proof. The proof of [Gre1, Theorem, p. 643] 2 shows that, if Z is (locally) of finite type
over R, then GrR(Z) exists, is (locally) of finite type over k and the bijection (6.12) is
bifunctorial. In [Gre1], GrR(Z) is constructed in a number of steps from the particular
case

gr-agr-a (6.13) GrR
(
AdR
)

= R d,

where d ≥ 0 (see [Gre1, Proposition 3, p. 638] for this particular case). The same construc-
tion can be used to define GrR(Z) for any Z via possibly infinite-dimensional affine spaces,
as follows. Let {xi}i∈I be a (possibly infinite) family of independent indeterminates and

set A(I )
R = SpecR[{xi}i∈I ]. Standard facts on projective limits show that

GrR
(
A(I )

R

)
= lim←−

J⊆I
GrR

(
A(J )

R

)
' lim←−

J⊆I
R |J |,

where the limits range over the family of finite subsets J of I and |J | denotes the cardinality
of J . �

The above proof shows that the k-scheme GrR(Z) agrees with the realization con-
structed in [Gre1, Proposition 7, p. 641] when Z is of finite type over R. Further

grnsngrnsn (6.14) GrR(SpecR) = Spec k.

In addition, for every R-scheme Z and k-algebra A, (6.7) and (6.12) yield a bijection

grzzgrzz (6.15) GrR(Z)(A) = Z(R(A)),

2 Note that in [Gre1, Gre2] hR and GrR are denoted by G and F , respectively.
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where Z(R(A)) = HomR(Spec R(A), Z ). More generally, let T be an R-scheme, Z a
T -scheme and Y a GrR(T )-scheme. Then the adjunction formula (6.12) yields a canonical
bijection

g-adjg-adj (6.16) HomGrR(T )

(
Y,GrR(Z)

)
= HomT

(
hR(Y ), Z

)
.

rems1 Remarks 6.17.

(a) Both hk and Grk are the identity functors on (Sch/k).
(b) The functor (6.11) transforms affine R-schemes into affine k-schemes and respects

open, closed and arbitrary immersions. Further, if {Zi} is an open covering of an
R-scheme Z, then the open subschemes GrR(Zi) cover GrR(Z). The proofs of the
preceding statements are similar to the proofs of the analogous results in [Gre1],
using possibly infinite-dimensional affine spaces.

(c) Assume that R is a finite k-algebra and let Z be an R-scheme. Since |Y | =
|Y ×Spec k SpecR| for every k-scheme Y , (2.3) yields

hrnyhrny (6.18) hR(Y ) = Y ×Spec kSpecR.

Thus, in this case, (6.9) is the left adjoint of the Weil restriction functor ResR/k
(see Section A.1). Consequently, GrR = ResR/k.

(d) The functor (6.11) respects fiber products (the proof of this fact is similar to that
in [Gre1, Theorem, p. 643]). Consequently, GrR defines a covariant functor from
the category of R-group schemes to the category of k-group schemes. Further,
there exists a canonical isomorphism of k-ring schemes GrR

(
OR

)
= R.

(e) Let Y be a k-scheme and let hR(Y )s denote the special fiber of hR(Y ). Note that
the ideal sheaf which corresponds to hR(Y )s is MR(OY ). Then the composition

R(OY )/MR(OY ) � R(OY )/M(OY )
∼→ OY

(see (2.17) and (6.3)) induces a nilpotent immersion of k-schemes ιY : Y → hR(Y )s.
If R is a k-algebra, then ιY is an isomorphism for every Y . See(2.6) and Remark
2.21.

7. The Greenberg functor of a truncated discrete valuation ring
gberg

The definitions and constructions of the preceding Section apply, in particular, to the
truncated discrete valuation rings R = Rn of Section 3, where n ∈ N. Let

hrn-fhrn-f (7.1) hRn = hRn : (Sch/k)→ (Sch/Rn), Y 7→ (|Y |,Rn(OY )),

be the functor (6.8) associated to R = Rn = R/mn and let GrRn = GrRn be its right
adjoint. Then GrRn is called the Greenberg functor of level n associated to R . For every
k-scheme Y and every Rn-scheme Z, (6.12) induces a canonical bijection

adj-bisadj-bis (7.2) Homk

(
Y,GrRn (Z)

)
' HomRn

(
hRn(Y ), Z

)
.

rat-pts Lemma 7.3. Let n ∈ N and let Z be an Rn-scheme.

(i) If A is a k-algebra, then GrRn (Z)(A) = Z(Rn(A)).
(ii) If k ′/k is a subextension of k/k and R ′ is the extension of R of ramification index

1 which corresponds to k ′/k, then GrRn (Z)(k ′ ) = Z(R ′n).
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Proof. Assertion (i) follows from (6.15) and (ii) follows from (i) using Lemma 4.2. �

rems1-bis Remark 7.4. If R = W (k), then Rn = Wn and hRn(Y ) = Wn(Y ) for every k-scheme Y ,
where Wn(Y ) is the scheme defined in [Ill, §1.5]. More generally, assume that R/W (k) is
totally ramified of degree ē and let Y be any k-scheme such that the absolute Frobenius
morphism of Y is a closed immersion. By Remark 2.11(b) and the fact that (7.1) is local
for the Zariski topology, we have

forfor (7.5) hRn
(
Y
)

= Wm

(
Y
)
×Wm(k) Sn,

where m = dn/ē e (3.5). We call attention to the fact that (7.5) does not hold for arbitrary
k-schemes Y . In particular, the formula in [BLR, p. 276, line -18] is incorrect, as previously
noted in [NS, p. 1592]. Note, however, that (7.5) is indeed valid for every Y provided
n = mē, as follows from Lemma 4.4.

ex.alpha Example 7.6. Let k be a field of positive characteristic p and let R ' k[[t]]. By Remark
(6.17)(c) and [BLR, §7.6, proof of Theorem 4, pp. 194-195], GrRn (A1

Rn
) = ResRn/k(A1

Rn
) =

Ank. On the other hand, by (6.18), we have hRn(Ank) = AnRn . Now (7.2) or, equivalently,
Appendix (A.1), yields a canonical morphism

hRn(GrRn (A1
Rn))→ A1

Rn

which is induced by the ring homomorphism q(n) : Rn[x] → Rn[x0, . . . , xn−1] given by

the formula q(n)(x) =
∑n−1

i=0 xi t
i. Since tj = 0 in Rn for j ≥ n, we have q(n)(xp) =∑b(n−1)/pc

i=0 xpi t
ip. We conclude that

alpalp (7.7) GrRn (Spec(Rn[x]/(xp))) ' Spec (k[x0, . . . , xn−1]/(xpi , i ≤ (n− 1)/p)).

Compare with [BLR, §7.6, proof of Proposition 2(ii), pp. 193-194]. In particular, (7.7) is
not a finite k-scheme for any n ≥ 2.

8. The change of rings morphism
s-cr

We return to the setting of Section 6. Thus R is a local finite Wm(k)-algebra with
residue field k.

Let I be a nilpotent ideal of R, write R′ for the artinian local ring R/I and let R ′ be
the corresponding Greenberg algebra. Let X be an R-scheme and write X′ for XR ′ . If A
is a k-algebra, the canonical homomorphism R(A) → R ′(A) induces a map X(R(A)) →
X ′(R ′(A)) and thus a map GrR(X)(A)→ GrR

′
(X′)(A) (6.15). In particular, there exists

a morphism of k-schemes

tr0tr0 (8.1) %R,R
′

X : GrR(X)→ GrR
′
(X′)

which is called the change of rings morphism associated to X. By (6.14), we have

%R,R
′

SpecR = 1Spec k.

Further, if J is an ideal of R which contains I and R′′ = R/J, then

vrkbvrkb (8.2) %R,R
′′

X = %R
′,R′′

X′ ◦ %R,R
′

X .

In particular, if R is a complete discrete valuation ring and Rn+i and Rn are the

truncations associated to a pair of integers n ≥ 1, i ≥ 0, then %
Rn+i,Rn
Z is defined for every
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Rn+i-scheme Z. The preceding map will be called the change of level morphism associated
to Z and denoted by

clm0clm0 (8.3) % in,Z : GrRn+i(Z)→ GrRn (Z),

where we have written GrRn (Z) for GrRn (Z×Rn+iSpecRn).

For every k-scheme Y and R-scheme Z, let

vphivphi (8.4) ϕR
Y,Z : Homk

(
Y,GrR(Z)

) ∼→ HomR

(
hR(Y ), Z

)
be the bijection (6.12). Now recall the schemes hR(Y ) and hR

′
(Y ) introduced in Section

6 and the surjective morphism (of Zariski sheaves on Y ) R(OY )→ R ′(OY ) with nilpotent
kernel I (OY ) (see (6.2) and (2.24)). The preceding map induces a nilpotent immersion

dltdlt (8.5) δR,R
′

Y : hR
′
(Y )→ hR(Y )

which is functorial in Y . By standard applications of the adjunction isomorphisms (8.4)
for R and R ′ (see [BGA2, Section 9] for more details), the following holds.

rdad Proposition 8.6. Let Y be a k-scheme, X an R-scheme and u : Y → GrR(X) a mor-

phism of k-schemes. Then %R,R
′

X ◦u is the unique morphism of k-schemes a : Y → GrR
′
(X′)

such that the diagram

hR
′
(Y )

δR,R
′

Y ��

ϕR′
Y,X′(a)

// X ′

prX

��
hR(Y )

ϕR
Y,X(u)

// X

commutes. �

We now discuss the functoriality of the assignment X 7→ %R,R
′

X .

Let f : Z → X be a morphism of R-schemes and write f ′ : Z ′ → X ′ for fR ′ . By
definition of the change of rings morphism (8.1), the following diagram commutes

functfunct (8.7) GrR(Z)

GrR(f )
��

%R,R
′

Z // GrR
′
(Z ′)

GrR
′
(f ′)

��

GrR(X )
%R,R

′
X // GrR

′
(X ′).

In particular, if X is an R-group scheme, then the change of rings morphism (8.1) is a
morphism of k-group schemes.

f-et Proposition 8.8. Let f : Z → X be a formally étale morphism of R-schemes. Then
the diagram (8.7) is cartesian. Consequently, there exists a canonical isomorphism of
k-schemes

GrR(Z) = GrR(X )×
GrR

′
(X′)

GrR
′
(Z ′ ).
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Proof. It suffices to check that (8.7) satisfies the required universal property on A-sections
for every k-algebra A. This follows from (6.15) since

HomX(Spec R(A), Z)→ HomX(Spec R ′(A), Z), v 7→ v ◦ δR,R
′

SpecA,

is a bijection by (2.22), (2.24) and the assumption on f . �

ffet Corollary 8.9. Let f : Z → X be a formally étale morphism of R-schemes. Then there
exists a canonical isomorphism of k-schemes

GrR(Z) = Zs×Xs GrR(X ).

Consequently, GrR(f ) : GrR(Z)→ GrR(X) can be identified with fs×Xs GrR(X ).

fetR Corollary 8.10. Let Z be a formally étale R-scheme. Then the change of rings morphism

%R,R
′

Z : GrR(Z)→ GrR
′
(Z ′) is an isomorphism.

Next we derive some properties of the change of rings morphism.

aff Proposition 8.11. Let Z be an R-scheme. Then %R,R
′

Z : GrR(Z)→ GrR
′
(Z ′ ) is affine.

Proof. Recall that Z ′ → Z is a nilpotent immersion. Let U be an open subscheme of Z
and let U ′ be the corresponding subscheme of Z ′. By Proposition 8.8(

%R,R
′

Z

)−1
(GrR

′
(U ′ )) = GrR(Z )×

GrR
′
(Z′)

GrR
′
(U ′ ) = GrR(U).

Since the functor GrR maps open affine coverings to open affine coverings (see Remark
6.17(b)), the proposition follows. �

sm-surj Proposition 8.12. Let Z be a formally smooth R-scheme. Then the change of rings

morphism %R,R
′

Z : GrR(Z)→ GrR
′
(Z ′ ) is surjective.

Proof. By definition of %R,R
′

Z , it suffices to check that the natural map Z(R(A)) →
Z ′(R ′(A)) is surjective for every k-algebra A. This follows from the universal property
of formal smoothness, since R(A) → R ′(A) is a surjective map with nilpotent kernel by
(2.22) and (2.24). �

9. Basic properties of the Greenberg functor
bas

We keep the notation of the previous Section. In this Section we discuss properties of
schemes/morphisms which are preserved by the functor GrR (properties that are not pre-
served by GrR include flatness, properness and finiteness, for which the reader is referred
to [BGA2, Examples 11.10]).

q-proj Proposition 9.1. Let Z be a quasi-projective R-scheme. Then GrR(Z) is a quasi-projective
k-scheme.

Proof. The commutativity of diagram (8.7) for X = SpecR shows that the structure mor-

phism GrR(Z) → Spec k factors through the change of rings morphism %R,kZ : GrR(Z) →
Zs, which is affine and of finite type by Proposition 8.11. Thus, since Zs → Spec k is
quasi-projective, GrR(Z)→ Spec k is quasi-projective as well. �
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The preceding result is new in the unequal characteristics case. In the equal charac-
teristic case, the Greenberg functor of level n coincides with the Weil restriction functor
ResRn/k and the corresponding result is a particular case of [CGP, Proposition A.5.8].

gr-prop Proposition 9.2. Consider, for a morphism of schemes, the property of being:

(i) quasi-compact;
(ii) quasi-separated;
(iii) separated;
(iv) locally of finite type;
(v) of finite type;
(vi) affine.

If P denotes one of the above properties and the R-morphism f : X → Y has property P ,
then the k-morphism GrR(f ) : GrR(X)→ GrR(Y ) has property P as well.

Proof. Recall diagram (8.7) with R′ = R/M = k :

GrR(X)
%R,kX //

GrR(f ) ��

Xs

fs
��

GrR(Y )
%R,kY // Ys.

By Proposition 8.11, the horizontal morphisms in the above diagram are affine and there-
fore separated and quasi-compact. Thus (i) follows from the diagram using [EGA Inew ,
Propositions 6.1.4 and 6.1.5(v), p. 291]. To establish the proposition for properties (ii) and
(iii), assume that the diagonal morphism ∆f : X → X×YX is quasi-compact (respectively,
a closed immersion). Then, by Remarks 6.17, (b) and (d), and the first part of the proof,

GrR(∆f ) = ∆GrR(f ) : GrR(X)→ GrR(X)×GrR(Y )GrR(X)

is quasi-compact (respectively, a closed immersion). Since GrR respects open and closed
immersions, to prove the proposition for property (iv) we may assume that Y = SpecB
and X = AdB, where B is an R-algebra. In this case f is the map AdR×RSpecB → SpecB,

whence (by Remark 6.17(d)) GrR(f ) is the base change along GrR(SpecB) → Spec k of
the canonical morphism R d → Spec k, which is clearly a morphism of finite type. The
proposition holds for property (v) since it holds for properties (i) and (iv). Finally, by
Remark 6.17(b), GrR(Y ) is covered by affine open subschemes of the form GrR(U), where
U is an affine open subscheme of Y . Since GrR(X)×GrR(Y ) GrR(U) = GrR(X×Y U) is

affine, the proof is complete. �

Proposition 9.3. Let f : Z → Z ′ be a formally smooth (respectively, formally unram-
ified, formally étale) morphism of R-schemes. Then the induced k-morphism GrR(f ) :
GrR(Z)→ GrR(Z ′) is formally smooth (respectively, formally unramified, formally étale).

Proof. We need to show that, if Y = SpecA is an affine scheme and J ⊂ A is a nilpotent
ideal, then the canonical map

HomGrR(Z′)(SpecA,GrR(Z))→ HomGrR(Z′)(Spec (A/J ),GrR(Z))
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is surjective (respectively, injective, bijective). By (6.7) and (6.16), the above map may
be identified with the map HomZ′(Spec R(A), Z) → HomZ′(Spec R(A/J), Z), which is
surjective (respectively, injective, bijective) since the kernel of R(A) → R(A/J) is a
nilpotent ideal by Lemma 2.26. �

gr-sm Corollary 9.4. Let f : Z → Z ′ be a smooth (respectively, unramified, étale) R-morphism.
Then GrR(f) : GrR(Z)→ GrR(Z ′) is a smooth (respectively, unramified, étale) k-morphism.

Proof. This follows by combining the proposition and Proposition 9.2(iv). �

It follows from Proposition 9.2(vi) that, if (Zλ) is a projective system of R-schemes
with affine transition morphisms, then so also is (GrR(Zλ)) and lim←−GrR(Zλ) exists in the

category of k-schemes. Thus, by (6.12) and the universal property of projective limits, we
obtain the following statement.

gr-projlim Proposition 9.5. The functor GrR commutes with the formation of projective limits of
schemes with affine transition morphisms.

10. Weil restriction and the Greenberg functor
wrbe

For n ∈ N let Rn be the n-th truncation of a complete discrete valuation ring R and
recall Sn = SpecRn. Recall also the functors hRn and GrRn introduced in Section 7. If
R ′ is an extension of R, let k′/k denote the corresponding residue field extension and set
S ′ = SpecR ′.

hne1 Lemma 10.1. Let R ′ be a finite extension of R of ramification index e. Then, for every
k-scheme Y ,

hRn(Y )×SnS ′ne = hR
′

ne

(
Y×k Spec k ′

)
Proof. Since hRn is local for the Zariski topology, we may assume that Y = SpecA. In this
case hRn(Y ) = Spec Rn(A) (6.7) and the lemma follows from Lemma 4.4. �

The following is the main result of this section. For the meaning of the term “admissi-
ble”, see Definition A.6.

wr-gr Theorem 10.2. Let R ′ be a finite extension of R of ramification index e. If Z is an S ′ne-

scheme which is admissible relative to S ′ne → Sn, then Resk′/k
(
GrR

′
ne(Z)

)
and ResS ′ne/Sn(Z)

exist and

rgrrgr (10.3) Resk′/k
(
GrR

′
ne(Z)

)
= GrRn

(
ResS ′ne/Sn(Z)

)
.

Proof. By Lemma A.13, Z×S ′neS
′
1 is admissible relative to k ′/k. Thus, since

GrR
′

ne(Z)→ GrR
′

1 (Z×S ′neS
′
1 ) = Z×S ′neS

′
1

is an affine morphism of k ′-schemes by Proposition 8.11, GrR
′

ne(Z) is admissible relative to
k ′/k. The existence assertions now follow from Theorem A.8. On the other hand, (10.3)
follows from Lemma 10.1 using the adjunction formula (6.12), the definition of the Weil
restriction functor (A.1) and Yoneda’s lemma. �
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Remark 10.4. In the equal characteristic case (10.3) is a particular case of the well-known
transitivity of the Weil restriction functor (A.3). On the other hand, Remark A.7(a) shows
that the admissibility condition on Z is satisfied if Z is quasi-projective over R ′ne.

tot-gr Proposition 10.5. Let R ′ be a finite and totally ramified extension of R of degree e and
let Z be an arbitrary S ′ne-scheme. Then ResS ′ne/Sn(Z) exists and

GrRn
(
ResS ′ne/Sn(Z)

)
= GrR

′
ne(Z).

Proof. The existence assertion is Remark A.12. The formula now follows as in the proof
of Theorem 10.2. �

The behavior of the functor GrRn under finite extensions of R was discussed in [NS,
Theorem 3.1] for Rn-schemes of finite type. We now extend the indicated theorem to
arbitrary Rn-schemes.

unr3 Proposition 10.6. Let k ′/k be a subextension of k/k and let R ′ be the extension of R of
ramification index 1 which corresponds to k ′/k. Then, for every Sn-scheme Z, there exists
a canonical isomorphism of k ′-schemes

GrRn (Z)×k Spec k ′ = GrR
′

n

(
Z×SnS ′n

)
.

Proof. By Lemma 4.2, we have Rn(A) = R ′n(A) for every k′-algebra A. Thus, for every

k ′-scheme T , there exists a canonical isomorphism of Sn-schemes hR
′

n (T ) = hRn(T ). The
proposition now follows from (6.12). �

b-c Proposition 10.7. Let R ′ be a finite extension of R of ramification index e. Then, for
every Sn-scheme Z, there exists a canonical closed immersion of k ′-schemes

GrRn(Z)×k Spec k ′ ↪→ GrR
′

ne

(
Z×SnS ′ne

)
which is an isomorphism if e = 1.

Proof. The indicated map is an isomorphism if e = 1 by Proposition 10.6. If Z is of finite
type over Sn, the proposition was established in [NS, Theorem 3.1]. The method used in
[loc.cit.] easily extends to arbitrary Sn-schemes Z provided the finite-dimensional affine
space ANRn considered in [NS, proof of Lemma 3.5, p. 1598] is replaced by the affine space

A(I )
Rn

introduced in the proof of Proposition-Definition 6.10. �

11. The change of level morphism for smooth group schemes
gp-sch

Let R be a complete discrete valuation ring and let G be a smooth R-group scheme.
Let r ≥ 1 and i ≥ 0 be integers. By Remark 6.17(d) and Corollary 9.4, the change of level
morphism (8.3)

nm-homnm-hom (11.1) % ir,G : GrRr+i(G)→ GrRr (G)

is a morphism of smooth k-group schemes, where GrRn (G) = GrRn (G ×R Sn). Further, by
(8.2),

compcomp (11.2) % i+1
r,G = %1

r,G ◦ % ir+1,G.
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In this Section we will describe the kernel of (11.1). To this end, let ω1
G/R = ε∗Ω1

G/R,

where ε : SpecR → G is the unit section of G. When i = 1, the kernel of (11.1) is
described by Corollary A.18, namely if Fk denotes the Frobenius endomorphism of Spec k

when char k = p > 0 and V
(
ω1
Gs/k

)(pm−1)
= V

(
(F m−1
k )∗ω1

Gs/k

)
, then

ucuc (11.3) Ker%1
r,G =

{
V
(
ω1
Gs/k

)
if charR = chark,

V
(
ω1
Gs/k

)(pm−1)
if charR 6= p = chark, where m = d(r + 1)/ēe.

sm-vker Proposition 11.4. Let G be a smooth R-group scheme and let r, i be positive integers.
Then % ir,G (11.1) is a smooth and surjective morphism of k-group schemes and Ker% ir,G is
smooth, connected and unipotent.

Proof. By Propositions 8.11 and 8.12 and Corollary 9.4, % ir,G is an affine surjective mor-

phism of smooth k-group schemes. Now (11.3) shows that %1
r,G is smooth and the smooth-

ness of % ir,G for arbitrary i follows by induction from (11.2). In particular, % ir,G is faithfully
flat and the sequence

rho-smrho-sm (11.5) 1 −→ Ker% ir,G −→ GrRr+i(G)
% ir,G−→ GrRr (G) −→ 1

is exact for the fppf topolgy on (Sch/k). It remains to check that U i
r = Ker% ir,G is

connected and unipotent. By (11.3), this is the case if i = 1. The proposition now follows
by induction since there exist exact sequences for the fppf topology on (Sch/k)

1 // U i
r+1

// U i+1
r

u // U 1
r

// 1,

where u = % ir+1,G ×GrRr (G) Spec k. �

Note that (2.4), (2.10) and (6.13) yield a (non-canonical) isomorphism of k-schemes

obv0obv0 (11.6) GrRi (V(ω1
G/R))

∼→ Aidk ,

where d = dimGs. Further, if either i ≤ ē = v(p) or charR = chark, then (11.6) is induced
by an isomorphism of k-group schemes

obvobv (11.7) GrRi (V(ω1
G/R))

∼→ Gid
a,k.

We will now define, for an arbitrary R-group scheme G, a canonical morphism of k-group
schemes

wj-1wj-1 (11.8) Φi
r,G : GrRi (V(ω1

G/R))→ Ker%ir,G (1 ≤ i ≤ r)

and show that it is an isomorphism under certain conditions.
For every k-algebra A, set B = Rr+i(A) and J = M r

r+i(A). By (3.8) and (3.9), we

have J 2 = 0 and Rr(A) is isomorphic to B/J . Also recall that, by definition, % ir,G(A) can

be identified with the canonical map G(B) → G(B/J) and therefore also with the map
GB(B)→ GB(B/J ). Thus there exists a canonical isomorphism of groups

wj-0wj-0 (11.9) Ker%ir,G(A)
∼→ HomB-mod(w1

GB/B
, J ),
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where w1
GB/B

= Γ
(
SpecB,ω1

GB/B

)
[DG, Theorem 3.5, p. 208]. On the other hand, we

may make the identifications

GrRi (V(ω1
G/R))(A) = V(ω1

GC/C
)(C) = HomC-mod(w1

GC/C
, C ) = HomB-mod(w1

GB/B
, C ),

where C = Ri(A). Now recall the homomorphism of B-modules ϕr+i,r(A) : C → J (3.14).
Under the above identifications, HomB-mod(w1

GB/B
, ϕr+i,r(A)) can be identified with a map

wjwj (11.10) GrRi (V(ω1
G/R))(A)→ HomB-mod(w1

GB/B
, J ).

Composing the preceding map with the inverse of (11.9) and letting A vary, we obtain the
canonical morphism of k-group schemes Φi

r,G (11.8).

vker1 Proposition 11.11. Assume that R is an equal characteristic ring and let G be a smooth
R-group scheme. Then the map Φi

r,G (11.8) is an isomorphism of k-group schemes. Con-

sequently, Ker%ir,G is (non-canonically) isomorphic to Gid
a,k, where d = dimGs.

Proof. By Proposition 3.15, ϕr+i,r(A) is an isomorphism for every k-algebra A. Con-
sequently, the map (11.10) is an isomorphism for arbitray A and therefore Φi

r,G is an

isomorphism. The proposition now follows from (11.7). �

vker Proposition 11.12. Let R be a ring of unequal characteristics (0, p) and let G be a smooth
R-group scheme. Then the map Φi

r,G (11.8) is an isogeny of smooth, connected and unipo-
tent k-group schemes. Its kernel is an infinitesimal k-group scheme which is trivial if
r+ i ≤ ē = v(p). Further, if i ≤ ē, then Ker%ir,G is (non-canonically) isomorphic to Gid

a,k,
where d = dimGs.

Proof. By (11.6) and Proposition 11.4, GrRi (V(ω1
G/R)) and Ker%ir,G are smooth, connected

and unipotent k-group schemes. On the other hand, by Proposition 3.15, ϕr+i,r(A) is an
isomorphism of abelian groups if r + i ≤ ē and A is any k-algebra or if r + i > ē and
A is perfect. Thus Φi

r,G is an isomorphism if r + i ≤ ē. When r + i > ē, the maps

(11.10) and Φi
r,G(A) (11.8) are isomorphisms of abelian groups for every perfect k-algebra

A. Consequently (Ker Φi
r,G)

(
k
)

= Ker
(
Φi
r,G(k )

)
= {1} and Φi

r,G(k ) is surjective. Thus

Ker Φi
r,G is an infinitesimal k-group scheme and Φi

r,G is faithfully flat. The last assertion

of the proposition follows from (11.7). �

cex-beg Remark 11.13. The infinitesimal k-group scheme Ker Φi
r,G of Proposition 11.12 can be

nontrivial. In effect, let R = W(k) and G = Ga,R. Then Ker Φ1
1,G is isomorphic to the

infinitesimal k-group scheme αp since, for every k-algebra A, the map Φ1
1,G(A) may be

identified with the map ϕ2,1(A) : A → VW2(A), a 7→ (0, ap) (see Remark 3.16(a)). In
particular, [Bég, Lemma 4.1.1(2), p. 37] is false. See also Remark 12.1 below.

The preceding considerations yield the following exactness result.

ex-green Proposition 11.14. Let 1 → F → G
q→ H → 1 be a sequence of smooth Rn-group

schemes. Assume that F = Ker(q) and q is quasi-compact and surjective. Then the
induced sequence of smooth k-group schemes 1 → GrRn (F ) → GrRn (G) → GrRn (H) → 1 is
exact.
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Proof. The indicated sequence is left-exact since GrRn has a left-adjoint functor. Since
GrRn (q) is smooth, it remains only to check that GrRn (q) is surjective. The case n = 1
is clear. The surjectivity of qs and (11.3) show that the induced morphism Ker%1

r,G →
Ker%1

r,H is surjective for every r ≥ 1. The surjectivity of GrRn+1(q) now follows by induction

from the surjectivity of GrRn (q) and the surjectivity of the change of level morphisms %1
n,G

and %1
n,H established in Proposition 11.4. �

id-comp Corollary 11.15. Let G be a smooth R-group scheme. Then

(i) dim GrRn (G) = n dimGs.
(ii) GrRn (G) is connected if, and only if, Gs is connected.
(iii) GrRn (G0) = GrRn (G)0.
(iv) GrRn (π0(G)) = π0(GrRn (G)).

Proof. Assertion (i) follows by induction from (11.5) and (11.3) and (ii) follows from
Proposition 11.4. Now, since G0 is an open subgroup scheme of G, (iii) follows from (ii)
and Remark 6.17(b). Finally, (iv) follows from (iii) and Proposition 11.14. �

The results of this Section can also be proven for smooth Rn-group schemes, provided
the integers r, i appearing in the first three propositions satisfy the condition r + i ≤ n.

12. The perfect Greenberg functor
pfgf

Let R be a discrete valuation ring with perfect residue field k of positive characteristic p
and write (Perf/k) for the category of perfect k-schemes. The inclusion functor (Perf/k)→
(Sch/k) has a right-adjoint functor (Sch/k)→ (Perf/k), Y 7→ Y pf , where Y pf is the inverse
perfection of Y , defined as the projective limit over N of copies of Y with all transition
morphisms equal to the Frobenius endmorphism of Y . See [BGA, §5] for more details.

If n ∈ N, the perfect Greenberg functor of level n (associated to R) is

GrRn : (Sch/Rn)→ (Perf/k), Z 7→ GrRn (Z)pf .

Analogs of Propositions 9.5, 10.5, 10.6 and 10.7 with GrRn in place of GrRn are easily
established. Further, since the perfection functor preserves exact sequence of smooth k-
group schemes by [BGA, Theorem 6.1], Proposition 11.14 holds also when GrRn is replaced
with GrRn .

begueri Remark 12.1. Since the perfection of an infinitesimal k-group scheme is the trivial k-group
scheme [BGA, Lemma 5.20], Propositions 11.11 and 11.12 show that the perfection of the
canonical morphism of k-group schemes Φi

r,G (11.8) is an isomorphism for every smooth
R-group scheme G. It follows from the above that, despite the fact that the possibly non-
trivial infinitesimal kernel of Φi

r,G is ignored in [Bég] (see Remark 11.13), the indicated

oversight had no consequences for the validity of the main results of [Bég].

We will write Rnr for the extension of R of ramification index 1 which corresponds to
k/k.

Proposition 12.2. Let 0 → F
f→ G → H → 0 be a complex of commutative Rn-group

schemes, where G and H are smooth. Assume that
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(i) f is quasi-compact,
(ii) π0(G)(Rnr

n ) is a finitely generated abelian group, and
(iii) the induced sequence of abelian groups 0 → F(Rnr

n ) → G(Rnr
n ) → H(Rnr

n ) → 0 is
exact.

Then the induced complex of perfect and commutative k-group schemes

0→ GrRn (F )→ GrRn (G)→ GrRn (H)→ 0

is exact for the the fpqc topology on (Perf/k).

Proof. By (iii), Lemma 7.3(ii) and Corollary 9.4, the sequence

0→ GrRn (F )→ GrRn (G)→ GrRn (H)→ 0

is a complex of commutative k-group schemes such that the sequence

0→ GrRn (F )
(
k
)
→ GrRn (G)

(
k
)
→ GrRn (H)

(
k
)
→ 0

is exact. Thus the proposition will follow from [BGA, Proposition 6.3] once we check
that the following additional conditions hold: (a) GrRn (f) : GrRn (F ) → GrRn (G) is quasi-
compact, and (b) GrRn (G) → GrRn (H) is flat. Condition (a) follows at once from (i) and
Proposition 9.2. On the other hand, by Corollary 11.15(iv), Lemma 7.3(ii) and Lemma
4.2, we have

π0(GrRn (G))
(
k
)

= GrRn (π0(G))
(
k
)

= π0(G)(Rnr
n ),

which is finitely generated by (ii). Thus, since GrRn (G)(k)→ GrRn (H)(k) is surjective, we
conclude from Lemma A.19 that GrRn (G)→ GrRn (H) is flat, i.e., (b) holds. �

13. The Greenberg realization of an adic formal scheme
forgr

We continue to assume that R is a complete discrete valuation ring with perfect residue

field in the unequal characteristics case. Let S = Ŝ be the formal completion of S along
S1 = Spec k. We will write (Ad-For/S) for the category of adic formal S-schemes, whose
objects are (also) adic in the (non-standard) terminology of [Ab, Definition 2.1.16, p. 121].
By the equivalence of [Ab, Proposition 2.2.14, p. 130], we have X = lim−→Xn for every adic

S-scheme X, where Xn = (|X |,OX/m
nOX) for n ∈ N. Further, for every S-adic scheme

Y , we have
HomS(X,Y) ' lim←−HomSn(Xn,Yn).

Now set

grnxgrnx (13.1) GrRn (X) = GrRn (Xn)

and define

for-def2for-def2 (13.2) GrR(X) = lim←−GrRn (X),

where the transition morphisms are the change of level morphisms, which are affine by
Proposition 8.11. Then GrR(X) is a k-scheme and GrR(S) = Spec k by (6.14). We now
generalize the adjunction formula (7.2).

Let Y be a k-scheme. Recall the Rn-schemes hRn(Y ) = (|Y |,Rn(OY )) and the nilpotent

immersions δ i,j−iY = δ
Ri,Rj
Y : hRi (Y )→ hRj (Y ) (8.5), where 1 ≤ i ≤ j. Then

hR(Y ) = lim−→hRn(Y )
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is a formal S-scheme equal to (|Y |, R̃(OY )), where R̃(OY ) is the Zariski sheaf on Y defined
by

R̃(OY ) = lim←−Rn(OY ).

In particular, if U = SpecA is an affine subscheme of Y , then (5.1) and (6.1) yield

zsf2zsf2 (13.3) Γ (U, R̃(OY )) = R̃(A)

and hR(U) = Spf R̃(A). Further, if R = W (k) then, using (13.3), hR(Y ) = W(Y ) is
the formal scheme considered in [Ill, §1.5, p. 511]. Note that, as illustrated in Remark
3.13(b), the inclusion (VWn(OY ))m ⊆ V m(Wn(OY )) can be strict, whence W (Y ) is not, in
general, an adic formal scheme. However, combining Remarks 2.21 and 3.13(c)-(d), (7.2)
and [EGA Inew , Corollary 10.6.4 p. 414], the following holds.

fhr-a Proposition 13.4. Let Y be a k-scheme and let X be an adic formal S-scheme. Assume
that

(i) R is an equal characteristic ring, or
(ii) R is a ring of unequal characteristics and Y is a perfect k-scheme.

Then hR(Y ) is an adic formal S-scheme and there exists a canonical bijection

Homk

(
Y,GrR(X)

)
= Hom(Ad-For/S)(h

R(Y ),X). �

Consequently, if R is an equal characteristic ring, then the functor GrR : (Ad-For/S)→
(Sch/k) is right adjoint to hR : (Sch/k) → (Ad-For/S). The corresponding statement in
the unequal characteristics case is false. However, the following generalization of [NS2,
line 10, p. 256] is valid.

for-rat-pts Lemma 13.5. Let X be an adic formal S-scheme and let A be a k-algebra which is as-

sumed to be perfect if R is a ring of unequal characteristics. Then GrR(X)(A) = X(R̃(A)).

Proof. The lemma is immediate from (13.3) and Proposition 13.4. �

pro-gr Proposition 13.6. Consider, for a morphism of formal schemes, the property of being:

(i) quasi-compact;
(ii) quasi-separated;
(iii) separated;
(iv) a closed immersion;
(v) affine;
(vi) an open immersion;
(vii) formally étale.

If P denotes one of the above properties and f : X → Y is a morphism of adic formal
S-schemes with property P , then the morphism of k-schemes GrR(f ) : GrR(X)→ GrR(Y)
has property P as well.

Proof. If P denotes one of properties (i)-(v) and f has property P , then each fn : Xn → Yn

has property P by [FK, Propositions 1.6.9, 4.6.9 and 4.4.2]. Consequently, GrR(f) has
property P by [BGA, Proposition 3.2], Remark 6.17(b) and Proposition 9.2. In the case
of properties (vi) and (vii), a different argument is needed since a projective limit of open
immersions may not be an open immersion. If f has one of the indicated properties,
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then each fn is formally étale. Thus Corollary 8.9 shows that GrRn (fn) and GrR(f ) can
be identified with f1 ×Y1 GrRn (Y) and f1 ×Y1 GrR(Y), respectively. Thus, since f1 is an

open immersion (respectively, formally étale), GrR(f ) is an open immersion (respectively,
formally étale). �

Proposition 13.7. Let X and Y be adic formal S-schemes. Then there exists a canonical
isomorphism of k-schemes

GrR(X×S Y) = GrR(X)×k GrR(Y).

Proof. By [FK, Corollary 1.3.5, p. 267], X×SY = lim−→ (Xn×Sn Yn). Thus the proposition

follows from Remark 6.17(d) and the fact that {(n, n) : n ∈ N} is cofinal in N× N. �

In particular, if X is an adic formal S-group scheme, then GrR(X) is a k-group scheme.

We will now discuss the behaviour of GrR under Weil restriction.

Let R→ R ′ be an extension of complete discrete valuation rings and let S ′→ S be the
corresponding morphism of adic formal schemes. Let X ′ be an adic formal S′-scheme. We
will say that the Weil restriction of X ′ along S ′→ S exists if the contravariant functor
(Ad-For/S) → (Sets),T → HomS′(T ×S S ′,X ′ ), is represented by an adic formal S-
scheme ResS ′/S

(
X ′
)

(which will then be called the Weil restriction of X ′ along S ′→ S).

wr-gr2 Proposition 13.8. Let R ′ be a finite extension of R of ramification index e with residue
field k ′ and let X ′ = lim−→X ′n be an adic formal S′-scheme such that X ′ne is admissible

relative to S ′ne → Sn for every n ≥ 1 (see Definition A.6). Then ResS ′/S
(
X ′
)

and

Resk ′/k
(
GrR

′(
X ′
))

exist and

GrR
(
ResS ′/S

(
X ′
))

= Resk ′/k
(
GrR

′(
X ′
))
.

Proof. By Theorem A.8, ResS′ne/Sn(X ′ne) exists for every n ∈ N. Further, by (A.2) and
(A.11), ResS ′re/Sr(X

′
re) = ResS′ne/Sn(X ′ne)×Sn Sr for 1 ≤ r ≤ n. Thus

for-wrfor-wr (13.9) ResS ′/S
(
X ′
) def.

= lim−→ResS′ne/Sn(X ′ne)

is the Weil restriction of X ′ along S ′→ S. Now, by (13.1), Theorem 10.2 and Proposition
A.10, we have

GrR
(
ResS ′/S

(
X ′
))

= lim←−
n∈N

Resk ′/k(GrR
′

ne (X ′ne)) = Resk ′/k
(
GrR

′(
X ′
))
,

as claimed. �

Remark 13.10. Recall that, if R ′/R is a finite and totally ramified extension of degree e
and X ′ = lim−→X ′n is an adic formal S ′-scheme, then Proposition 10.5 yields a formula

GrR
′

ne

(
X ′
)

= GrRn
(
ResS ′ne/Sn

(
X ′
))

for every integer n ≥ 1, where ResS ′ne/Sn
(
X ′
) def.

= ResS ′ne/Sn(X ′ne). In particular, if n =

1, then GrR
′

e

(
X ′
)

= ResR′e/k
(
X ′
)
, which generalizes [NS, Theorem 4.1]. Note that the

hypothesis “nice” (i.e., admissible) in the statement of [NS, Theorem 4.1] is unnecessary.
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for-unr3 Proposition 13.11. Let k ′/k be a subextension of k/k and let R ′ be the extension of R
of ramification index 1 which corresponds to k ′/k. Then, for every adic formal S-scheme
X, there exists a canonical isomorphism of k ′-schemes

GrR(X)×Spec k Spec k′ = GrR
′(
X×S S′

)
.

Proof. Set S ′ = SpecR ′. Since X ×S S′ = lim−→ (Xn ×Sn S ′n) by [FK, Corollary 1.3.5,

p. 267], (13.1) yields GrR
′

n

(
X×SS′

)
= GrR

′
n

(
Xn×Sn S ′n

)
. Thus, since GrRn (X) = GrRn (Xn),

Proposition 10.6 yields, for every n ∈ N, a canonical isomorphism of k ′-schemes

GrRn (X)×Spec k Spec k ′ = GrR
′

n

(
X×S S′

)
.

The proposition now follows from (13.2) noting that projective limits of schemes commute
with base extension. �

The following proposition generalizes [NS, Theorem 3.8].

for-bc Proposition 13.12. Let X be an adic formal S-scheme and let R ′ be a finite extension
of R with associated residue field extension k ′/k. Then there exists a canonical closed
immersion of k ′-schemes

GrR(X)×Spec k Spec k ′ ↪→ GrR
′(
X×S S′

)
.

If R ′/R has ramification index 1, then the preceding map is an isomorphism.

Proof. The second assertion is a particular case of Proposition 13.11. Let e be the ramifi-
cation index of R ′ over R. Since (X×S S′ )ne = Xne ×Sne S ′ne = Xn ×Sn S ′ne, Proposition
10.7 yields, a canonical closed immersion of k ′-schemes

GrRn (X)×Spec k Spec k ′ ↪→ GrR
′

ne

(
X×S S′

)
.

The proposition now follows by taking projective limits [BGA, Proposition 3.2(v)]. �

14. The Greenberg realization of an R-scheme
grsh

Let X be an R-scheme and let X̂ = lim−→ (X×SSn) be the formal completion of X along

X×S Spec k, which is an object of (Ad-For/S). The Greenberg realization of X is the
k-scheme

grx2grx2 (14.1) GrR(X)
def.
= GrR

(
X̂
)

= lim←−GrRn (X),

where GrRn (X) = GrRn (X×SSn) and the transition morphisms of the limit are the change
of level morphisms % in,X : GrRn+i(X) → GrRn (X). The resulting functor GrR : (Sch/R) →
(Sch/k), X 7→ GrR(X), satisfies GrR(S) = Spec k. Note that, by (14.1), GrR(A1

R) =

lim←−GrRn (A1
Rn

) = lim←−Rn = R ' A(N)
k , which is not locally of finite type.

Remark 14.2. A proof analogous to that of Proposition 13.6 shows that GrR preserves all
the properties of morphisms of schemes listed there.

The following lemma is an analog of Lemma 7.3(i).

gr-pts2 Proposition 14.3. Let X be an R-scheme and let A be a k-algebra which is assumed to

be perfect if R is a ring of unequal characteristics. Then GrR(X)(A) = X(R̃(A)).
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Proof. By (2.5) and Proposition 2.12, we may assume that X = SpecB is affine. As-
sume first that R is a ring of unequal characteristics, so that A is perfect. Set Y =
ResR/W (k)(X), which is an affine W(k)-scheme. Then GrR(X) = GrW (k)(Y ) by Propo-

sition 13.8. Further, by (5.4), R̃(A) is canonically isomorphic to R ⊗W (k) W (A), which

yields X(R̃(A)) = Y (W(A)) by (A.1). Thus GrR(X)(A) = X(R̃(A)) if, and only if,

GrW (k)(Y ) = Y (W(A)). In other words, we may assume that R = W (k). By (14.1) and

Lemma 13.5, we have GrW (k)(X)(A) = X̂(Spf W (A)), whence it remains to check that

X̂(Spf W (A)) = X(W (A)). This follows from the universal property of the p-adic com-
pletion. Finally, assume that R ' k[[t]]. Then, by (14.1), Lemma 13.5 and Remark 5.3(a),

we have GrR(X)(A) = X̂(Spf A[[t]]). As above, the equality X̂(SpfA[[t]]) = X(A[[t]])
follows from the universal property of the t-adic completion. �

Corollary 14.4. Let X be an R-scheme which is separated and locally of finite type. Then

GrR(X)(k) = X(R̂nr).

Proof. This follows from (5.2) and the proposition. �

Lemma 14.5. If X is a smooth R-scheme, then GrR(X) is a reduced k-scheme.

Proof. Since X×SSn is smooth over Sn for every n, GrRn (X) is smooth over k for every n by
Corollary 9.4. Consequently, each GrRn (X) is reduced and therefore GrR(X) = lim←−GrRn (X)

is reduced as well by [EGA, IV3, Proposition 8.7.1]. �

If k is perfect of positive characteristic and X is an R-scheme, the perfect Greenberg
realization of X is the perfect k-scheme

pgr-pfpgr-pf (14.6) GrR(X) = GrR(X)pf .

Remark 14.7. Assume that R is a ring of unequal characteristics and let X be an R-scheme
such that ResR/W (k)(X) exists. In [Bég, §4.1, p. 36] the author defined the Greenberg
realization of level n of X to be

Gr
::n(X) = GrW (k)

n (ResR/W (k)(X)×W (k) SpecWn(k)).

By (A.2) and (A.11), we have

ResR/W (k)(X)×W (k) SpecWn(k) = ResRnē/Wn(k)(X ×S Snē),
where ē denotes the ramification of R/W (k), whence

newnew (14.8) Gr
:: n(X) = GrW (k)

n (ResRnē/Wn(k)(X ×S Snē)).

Note that, since R/W (k) is totally ramified, ResRnē/Wn(k)(Xnē) exists for every R-scheme
X by Remark A.12. Thus (14.8) may be taken to be the definition of Gr

::n(X) when

ResR/W (k)(X) fails to exist. Now observe that, if A is any k-algebra, then

Gr
:: n(X)(A) = X(R⊗W (k)Wn(A)).

Indeed, since Rnē = R⊗W (k) Wn(k), (14.8) and Lemma 7.3(i) show that

Gr
:: n(X)(A) = ResRnē/Wn(k)(X ×S Snē)(Wn(A)) = X(Rnē ⊗Wn(k) Wn(A))

= X(R⊗W (k) Wn(A)),
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as claimed. Next, by Proposition 10.5, (14.8) may be written as Gr
:: n(X) = GrRnē(X). It

follows that, if Gr
::

(X) = lim←−Gr
:: n(X) is the object introduced in [Bég, §4.1, p. 36], then

Gr
::

(X) = GrR(X), where GrR(X) is the k-scheme (14.1). Further, if G(X)
def.
= Gr

::
(X)pf

is the perfect k-scheme considered in [loc.cit.] and GrR(X) is the object (14.6), then
G(X) = GrR(X). Regarding the latter functor, [loc.cit., p. 36, line −11] contains the

(unproven) claim that, for every perfect k-algebra A,

GrR(X)(A) = X(R⊗W (k)W (A)).

The latter is indeed valid and follows from (14.6), Proposition 14.3 and (5.4).

The next result applies to commutative R-group schemes.

Proposition 14.9. Let 0→ F → G
q→ H → 0 be a sequence of smooth and commutative

R-group schemes. Assume that F = Kerq and q is quasi-compact and surjective. Then
the induced sequence of smooth and commutative k-group schemes

0→ GrR(F ) −→ GrR(G)→ GrR(H)→ 0

is exact for the fpqc topology.

Proof. By Proposition 11.14, the induced sequence of smooth and commutative k-group
schemes

0 −→ GrRn (F ) −→ GrRn (G)
GrRn (q)−→ GrRn (H) −→ 0

is exact. Now observe that, since GrRn (q) is smooth, quasi-compact and surjective by
Propositions 9.2 and 9.4, GrRn (q) is faithfully flat and quasi-compact. On the other hand,
since F = G×H S is smooth over S, the transition morphisms of the system (GrRn (F )) are
surjective by Proposition 8.12. We may now apply [BGA, Proposition 3.8] to complete
the proof. �

If S ′ = SpecR ′, where R ′ is a finite extension of R of ramification index e, let S′ = Ŝ ′.
More generally, if X ′ is an S ′-scheme, its formal completion along its special fiber is

X̂ ′ = lim−→ (X ′ ×S ′ S ′ne).

wr-fcomp Lemma 14.10. Let R ′ be a finite extension of R and let X ′ be an R ′-scheme which is

admissible relative to R ′/R (see Definition A.6). Then ResS ′/S
(
X̂ ′
)

and ResR ′/R
(
X ′
)

exist and

ResS ′/S
(
X̂ ′
)

= ̂ResR ′/R
(
X ′
)
.

Proof. The R-scheme ResR ′/R
(
X ′
)

exists by Theorem A.8. Using (A.11) and Remark

A.7(c), X ′×S ′ S ′ne is admissible relative to S ′ne → Sn for every n ∈ N. Thus ResS ′/S
(
X̂ ′
)

exists by Proposition 13.8. Further, (13.9), (A.2) and (A.11) yield

ResS ′/S
(
X̂ ′
)

= lim−→ ResS ′ne/Sn(X ′ ×S ′ S ′ne) = lim−→ Res(S ′×S Sn)/Sn(X ′ ×S Sn)

= lim−→ (ResS ′/S
(
X ′
)
×S Sn) = ̂ResR ′/R

(
X ′
)
,

as claimed. �
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Proposition 14.11. Let R ′ be a finite extension of R with associated residue field ex-
tension k ′/k and let X ′ be an R ′-scheme which is admissible relative to R ′/R. Then

ResR ′/R
(
X ′
)

and Resk ′/k
(
GrR

′(
X ′
))

exist and

GrR
(
ResR ′/R

(
X ′
))

= Resk ′/k
(
GrR

′(
X ′
))
.

Proof. The R-scheme ResR ′/R
(
X ′
)

exists by Theorem A.8. Now, as noted in the proof of

Lemma 14.10, eachX ′×S ′S ′ne is admissible relative to S ′ne → Sn. Thus Resk ′/k
(
GrR

′(
X ′
))

=

Resk ′/k
(
GrR

′(
X̂ ′
))

exists and

Resk ′/k
(
GrR

′(
X ′
))

= GrR
(
ResS ′/S

(
X̂ ′
))

by Proposition 13.8. The result now follows from (14.1) and Lemma 14.10. �

15. The Greenberg realization of a finite group scheme
fgr

In this Section R is a complete discrete valuation ring with fraction field K. Recall
S = SpecR.

Let F be a finite and flat R-group scheme. By Proposition 6.10 and Remark 6.17,
GrRn (F ) = GrRn (F ×S Sn) is an affine and algebraic k-group scheme. Recall that, by
Example 7.6, GrRn (F ) and GrR(F ) = lim←−n GrRn (F ) may fail to be finite over k.

Let H i
r be the schematic image of the change of level morphism % ir = % ir,F (8.3), which

then factors as

GrRr+i(F ) � H i
r ↪→ GrRr (F ).

Using Greenberg approximation, we will derive conditions on r and i so that H i
r is a finite

k-group scheme. Note that the finiteness of H i
r implies that of H l

r for every integer l ≥ i.

gr-appr Lemma 15.1. There exist integers c ≥ 1, d ≥ 0 and M ≥ 0 such that, if r ≥M , then

Im[F (Rcr+d)→ F (Rr)] = Im[F (R)→ F (Rr)].

Proof. This follows at once from [Gre3, Corollary 1, p. 59], taking there d = sc and
M = max{d(N − d )/ce, 0}, where s, c and N are the integers in [loc.cit.]. �

fdim Proposition 15.2. Let c ≥ 1, d ≥ 0 and M ≥ 0 be as in Lemma 15.1. If r ≥ M and
i ≥ (c− 1)r + d, then H i

r is finite over k.

Proof. By Proposition 10.6 and faithfully flat and quasi-compact descent, we may assume
that k is algebraically closed. By Lemma 7.3(ii), we have H i

r(k) = Im[F (Rr+i)→ F (Rr)].

Thus, by Lemma 15.1, H
(c−1)r+d
r (k) = Im[F (R) → F (Rr)]. Since F (R) is finite, we

conclude that H
(c−1)r+d
r (k) is finite as well, which yields the proposition. �

The previous result can be strengthened when F is generically étale, i.e., F ×S SpecK
is étale. In this case ω1

F/R = ε∗Ω1
F/R is a torsion R-module and the defect of smoothness

of F is defined by

dfdf (15.3) δ(F ) = lengthR(ω1
F/R).
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We note that (15.3) behaves well with respect to extensions of R of ramification index 1
and coincides with the defect of smoothness of F (at any Rnr-rational point of F ) defined
in [BLR, p. 65].

gr-3c Lemma 15.4. Assume that F is generically étale. Then Hr
r is finite over k for every

integer r ≥ δ(F ) + 2, where δ(F ) is the defect of smoothness of F (15.3).

Proof. If F is étale over R (which is the case if char k = 0), then % ir in an isomorphism
for all r, i (cf. Corollary 8.10) and therefore Hr

r = Fs is indeed finite over k. Assume
now that char k = p > 0. Using the étale-connected sequence of F and the left exactness
of the Greenberg functor, we may assume that F = F ◦ has a connected special fiber.
Choose an isomorphism F ' Spec(R[X1, . . . Xn]/(Φ1, . . . ,Φn)) as in [MR, Lemma 6.1,
p. 220]. By adapting the proof of [Gre3, Lemma 2, p. 567], it is possible to show that
c = 1, d = δ(F ) and M = δ(F ) + 2 are valid choices in Lemma 15.1. See [BGA2, proof
of Lemma 16.11] for the details. Since M = δ(F ) + 2 ≥ d = δ(F ), it is then possible to
choose i = r ≥M = δ(F ) + 2 in Proposition 15.2, which yields the lemma. �

We will now discuss the affine k-scheme GrR(F ) = lim←−GrRn (F ).

grfin Lemma 15.5. The affine k-group scheme GrR(F ) has finitely many points and each of
its residue fields is an algebraic extension of k. In particular, dim GrR(F ) = 0.

Proof. Let c ≥ 1, d ≥ 0 and M ≥ 0 be as in Lemma 15.1 and let r ≥ max{M,d} and t ≥ 0

be integers. Since r ≥ max{M/ct, d/ct}, Proposition 15.2 shows that Hrc t+1

rct is a finite

k-subgroup scheme of GrRrct(F ). Set H = lim←−tH
rct+1

rct . By construction, H is isomorphic

to GrR(F ). The lemma now follows by applying [BGA, Proposition 3.6] to H. �

grfin2 Proposition 15.6. Assume that k is perfect. Then GrR(F )red is a finite and étale k-group
scheme.

Proof. By (14.1) and Proposition 13.11, we may assume that k = k. By the proof of
Lemma 15.5, GrR(F )red = Hred is profinite since it is an inverse limit of finite and constant
k-group schemes. Since |GrR(F )red| = |GrR(F )|, Lemma 15.5 now shows that GrR(F )red

is indeed finite and étale. �

Remarks 15.7. The functor GrR does not respect the étale-connected sequence for F , i.e.,
the k-scheme GrR(F ◦) may be disconnected. For example, let R = W (F2) and consider
the connected finite R-group scheme F = F ◦ = µ2,R of square roots of unity. We have

F ◦(R) = F ◦(K) = {±1} and GrR(F )red is finite and étale by Proposition 15.6. Further,
by Proposition 14.3, F ◦(R) = GrR(F ◦)(k) = GrR(F ◦)red(k), whence GrR(F ◦)red, and
therefore also GrR(F ◦), is disconnected.

16. Commutative group schemes
comgr

Let R be a complete discrete valuation ring. Recall that, if G is an R-group scheme
and n ∈ N, GrRn (G) denotes GrRn (G×SSn), where Sn = SpecRn is the spectrum of the
n-th truncation of R.
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Let F be a flat, commutative and separated R-group scheme of finite type and assume
that F has a smooth resolution, i.e., there exists a sequence of commutative and separated
R-group schemes of finite type

sm-ressm-res (16.1) 0→ F
j→ G

q→ H → 0,

where G and H are smooth, q is faithfully flat and j is a closed immersion which identifies
F with the scheme-theoretic kernel of q. If F is finite over S, then F has a smooth
resolution by [MR, Proposition 5.1(i) and its proof, pp. 217-218]. See also [Bég, §2.2,
pp. 25-27].

Now recall the change of level morphism % in,F : GrRn+i(F ) → GrRn (F ) (8.3) and the

canonical morphism of k-group schemes (11.8)

wj-2wj-2 (16.2) Φi
n,F : GrRi (V(ω1

F/R))→Ker% in,F ,

where 1 ≤ i ≤ n.

vker2 Proposition 16.3. Let n ≥ 1 and i ≥ 1 be integers. Then

(i) Ker% in,F is a unipotent k-group scheme of finite type.

(ii) Φi
n,F is a morphism of unipotent k-group schemes of finite type whose kernel and

cokernel are unipotent and infinitesimal.
(iii) Φi

n,F is an isomorphism if R is an equal characteristic ring or if R is a ring of

unequal characteristics and n+ i ≤ ē = v(p).

Proof. Since GrRn is a left-exact functor, (16.1) induces an exact and commutative diagram
of k-group schemes of finite type

grfghgrfgh (16.4) 0 // GrRn+i(F )

%in,F
��

GrRn+i(j) // GrRn+i(G)

%in,G
��

GrRn+i(q) // GrRn+i(H)

%in,H
��

0 // GrRn (F )
GrRn (j) // GrRn (G)

GrRn (q) // GrRn (H).

The above diagram induces an exact sequence of k-group schemes of finite type

vsvs (16.5) 0→ Ker% in,F → Ker% in,G → Ker% in,H .

Since Ker% in,G and Ker% in,H are unipotent and of finite type by Proposition 11.4, assertion

(i) is clear. Now, by [LLR, Proposition 1.1(a), p. 459] and the left exactness of the functor
GrRi , the sequence (16.1) induces an exact sequence of k-group schemes of finite type

vs2vs2 (16.6) 0→ GrRi (V(ω1
F/R))→ GrRi (V(ω1

G/R))→ GrRi (V(ω1
H/R)).

We now assume that 1 ≤ i ≤ n. Since G and H are smooth, Propositions 11.11 and 11.12
show that GrRi (V(ω1

F/R)) is a unipotent k-group scheme. Now the exact and commuta-

tive diagram whose top row is (16.6), bottom row is (16.5) and vertical arrows are the
morphisms Φi

n,F ,Φ
i
n,G and Φi

n,H induces an exact sequence

0→ Ker Φi
n,F → Ker Φi

n,G →W → Coker Φi
n,F → 0

for some k-subgroup scheme W of Ker Φi
n,H . Using the above sequence, (ii) and (iii) follow

from Propositions 11.11 and 11.12. �
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Since the category of commutative k-group schemes of finite type is abelian, we may
now define

h1nh1n (16.7) H1(Rn, F ) = Coker GrRn (q).

Since GrRn (H) is smooth, H1(Rn, F ) is smooth as well. Further, (16.7) is independent, up
to isomorphism, of the choice of the smooth resolution (16.1) (cf. [Bég, proof of Lemma
4.2.1(b)] and [BGA, pp. 106-108]). Note also that, since q = GrR1 (q) is surjective, we have

h1=0h1=0 (16.8) H1(R1, F ) = H1(k, F ) = 0.

Further, since the canonical morphism GrRn (H)(k)→ H1(Rn, F )(k) is surjective, Lemma
7.3(ii) yields an exact sequence of abelian groups

0→ F (Rnr
n )→ G(Rnr

n )→ H(Rnr
n )→ H1(Rn, F )(k)→ 0.

Consequently, H1(Rn, F )(k) = H1
fppf(R

nr
n , F ), which explains our choice of notation in

(16.7).

Now, by diagram (16.4), the following diagram is exact and commutative

ggfggf (16.9) 0 // GrRm+j(G)/GrRm+j(F )

% jm,G����

// GrRm+j(H) //

%jm,H����

H1(Rm+j , F )

����

// 0

0 // GrRm(G)/GrRm(F ) // GrRm(H) // H1(Rm, F ) // 0

for all integers m ≥ 1 and j ≥ 0, where % jm,G is induced by % jm,G.

Lemma 16.10. For every n ∈ N, H1(Rn, F ) is a smooth, commutative, connected and
unipotent k-group scheme.

Proof. Commutativity is clear and smoothness was observed above. Now set m = 1 and
j = n − 1 in diagram (16.9) and use (16.8) to obtain the following exact sequence of
k-group schemes of finite type:

0→ Ker %n−1
1,G → Ker%n−1

1,H → H
1(Rn, F )→ 0.

The lemma now follows from Proposition 11.4. �

The lemma and diagram (16.9) yield a projective system of smooth, commutative,
connected and unipotent k-group schemes (H1(Rn, F )). The projective limit of this system
is the commutative, affine, reduced and connected k-group scheme

ucok-iucok-i (16.11) H1(R,F ) = lim←−H
1(Rn, F ).

We now note that, if k ′ is an algebraic extension of k and R ′/R is the corresponding
extension of ramification index 1, then Proposition 10.6 yields a canonical isomorphism of
k-group schemes of finite type

ucalgucalg (16.12) H1(Rn, F )×Spec k Spec k ′ = H1(R ′n, F ×S S ′ ).
Since projective limits commute with base extension, the projective limit of (16.12) is an
isomorphism

H1(R,F )×Spec k Spec k ′ = H1(R ′, F ×S S ′ ).
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Theorem 16.13. Assume that F is generically smooth. Then there exists an integer i0 ∈
N such that, for every integer n ≥ i0, the transition morphism H1(Rn+1, F )→ H1(Rn, F )
is an isomorphism of k-group schemes.

Proof. By (16.12) and faithfully flat and quasi-compact descent, we may assume that
k = k. It is shown in [LLR, p. 465] (with G ′ = F , G ′′ = H, u = q and g ′′ = h in the
notation of that paper) that there exists a commutative diagram of flat and commutative
R-group schemes of finite type

0 // F̃

��

// G̃

g

��

q̃ // H̃

h
��

// 0

0 // F
j // G

q // H // 0,

where q̃ is smooth, faithfully flat and of finite presentation, and the bottom row is the
sequence (16.1). For every integer n ≥ 1, the preceding diagram induces an exact and
commutative diagram of k-group schemes of finite type

gggfgggf (16.14) 0 // GrRn (F̃ )

��

// GrRn (G̃)

GrRn (g)
��

// GrRn (H̃)

GrRn (h)
��

// 0

0 // GrRn (F ) // GrRn (G)
GrRn (q)// GrRn (H) // H1(Rn, F ) // 0,

where the top row is exact by Proposition (11.14). By the functoriality of the change of
level morphism (8.7), we conclude that there exists an exact and commutative diagram of
k-group schemes of finite type

Coker GrRn+1(g)

αn
��

// Coker GrRn+1(h)

βn
��

// H1(Rn+1, F )

��

// 0

Coker GrRn (g) // Coker GrRn (h) // H1(Rn, F ) // 0.

Now it is shown in [LLR, p. 471] (set gi = αn+1 and g ′′i = βn+1 in [loc.cit.]) that there
exists an integer i0 ∈ N such that the maps αn and βn appearing above are isomorphisms
of smooth k-group schemes for every integer n ≥ i0. The theorem is now clear. �

cor1 Corollary 16.15. Assume that F is generically smooth and let i0 ∈ N be as in the theo-
rem. Then, for every integer n ≥ i0, the following holds:

(i) The canonical projection H1(R,F )→ H1(Rn, F ) is an isomorphism.
(ii) There exists an isomorphism of k-group schemes of finite type Coker%1

n,F ' Gr
a,k,

where %1
n,F is the change of level morphism and r = dimkLie(Fs)− dimFs.

(iii) dim GrRn (F ) = (n− i0) dimFs + dim GrRi0(F ).

(iv) dimH1(Rn, F ) = dim GrRi0(F )− i0 dimFs.

Proof. Assertion (i) is immediate from the theorem. Now, by (16.4), (16.9) and the theo-
rem, the smooth resolution (16.1) induces an exact sequence

0→ Ker% in,F → Ker% in,G → Ker % in,H → Coker% in,F → 0,
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where n ≥ i0 and i ≥ 1. Consequently

dim Ker%1
n,F = dimkV

(
ω1
Fs/k

)
= dimkLie(Fs)

by Proposition 16.3(ii). Further, by Propositions 11.11 and 11.12, Ker%1
n,G is isomorphic to

Gd
a,k, where d = dimGs, and similarly with H in place of G. In particular, since dimGs =

dimFs + dimHs, we conclude that Coker%1
n,F ' Gr

a,k with r = dimkLie(Fs) − dimFs.

This completes the proof of (ii). Now, by (ii), there exists an exact sequence

0 −→ Ker%1
n,F −→ GrRn+1(F )

%1
n,F−→ GrRn (F ) −→ Gr

a,k −→ 0.

Thus, by the definition of r, dim GrRn+1(F ) = dim GrRn (F ) + dimFs. Assertion (iii) now
follows by induction. Assertion (iv) follows from the bottom sequence in (16.14) by com-
bining (iii) and Corollary 11.15(i). �

In connection with the above corollary, Example 7.6 shows that dim GrRn (F ) can be
unbounded as n grows if F is not generically smooth.

Lemma 16.16. Let n and r be integers such that 1 ≤ r < n. Then

dim GrRn (V(Rr)) = r.

Proof. By (3.1) and the description of Greenberg modules in Section 2, dim M n−r
n = r.

Thus, since the perfection functor on k-schemes preserves dimensions [BGA, Remark
5.18(b)], to prove the lemma it suffices to construct a morphism of k-group schemes
γ : M n−r

n → GrRn (V(Rr)) such that γ pf is an isomorphism.
Let A be any k-algebra. By Lemma 7.3(i),

GrRn (V(Rr))(A) = V(Rr)(Rn(A)) = HomRn-mod(Rr,Rn(A)) = Rn(A)πrn-tors.

Further, by (3.11), the inclusion M n−r
n (A) ⊆ Rn(A) factors through Rn(A)πrn-tors. Let

γ(A) be the composition of the canonical map M n−r
n (A) → M n−r

n (A) (3.12) and the

inclusion M n−r
n (A) ⊆ Rn(A)πrn-tors. The preceding construction is functorial in A and

defines the required morphism γ : M n−r
n → GrRn (V(Rr)). If R is an equal characteristic

ring, then γ is, in fact, an isomorphism, which completes the proof in this case. In effect

vtorvtor (16.17) Rn(A)πr-tors = M n−r
n (A) = M n−r

n (A)

by Remark 3.13(d), (2.1) and the flatness of A over k.
Now let R be a ring of unequal characteristics. Then, by Remark 3.13(c), the equality

(16.17) holds if A is perfect. Consequently γ pf is an isomorphism by [BGA, Remark
5.18(a)]. �

Proposition 16.18. Assume that F is finite and generically étale. Then

dimH1(R,F ) = δ(F ),

where δ(F ) is the defect of smoothness of F (15.3).
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Proof. By Corollary 16.15, (i), (iii) and (iv), we have dimH1(R,F ) = dim GrRr (F ) for
every integer r ≥ i0. On the other hand, by Lemma 15.4, %nn,F factors through a fi-

nite k-subgroup scheme of GrRn (F ) if n ≥ δ(F ) + 2. Thus, by Proposition 16.3(ii),
we have dim GrR2n(F ) = dim GrRn (V(ω1

F/R)) if n ≥ r = max{i0, δ(F ) + 2}. Therefore

dimH1(R,F ) = dim GrRn (V(ω1
F/R)) if n ≥ r. Now, by the structure theorem for torsion

R-modules, there exists an isomorphism of R-modules ω1
F/R ' ⊕

t
i=1R/(π

ni), where
∑
ni =

lengthR(ω1
F/R) = δ(F ). Thus we are reduced to checking that dim GrRn (V(R/(πni))) = ni.

This follows from the previous lemma. �

Appendix
wres

A.1. Weil restriction. Let f : S ′ → S be a morphism of schemes and let X ′ be an S ′-
scheme. We will say that the Weil restriction of X ′ along f exists if the contravariant
functor (Sch/S) → (Sets), T 7→ HomS ′(T ×S S ′, X ′), is representable, i.e., if there exists
a pair (ResS ′/S(X ′ ), q), where ResS ′/S(X ′ ) is an S-scheme and q : ResS ′/S(X ′ )S ′ → X ′ is
an S ′-morphism of schemes, such that the map

wrwr (A.1) HomS (T,ResS ′/S(X ′ ))
∼→ HomS ′(T×SS ′, X ′ ), g 7→ q ◦ gS ′

is a bijection. The scheme ResS ′/S(X ′ )) is called the Weil restriction of X ′ along f . If
S ′ = SpecB and S = SpecA are affine, we will write ResB/A(X ′) for ResS ′/S(X ′).

It follows from the above definition that ResS ′/S is compatible with fiber products. In
particular, if X ′ is an S ′-group scheme such that ResS ′/S(X ′) exists, then ResS ′/S(X ′) is
an S-group scheme. On the other hand, if ResS ′/S(X ′) exists and T → S is a morphism
of schemes, then there exists a canonical isomorphism of T -schemes

wrbcwrbc (A.2) ResS ′/S(X ′)×S T
∼→ ResS ′T/T (X ′×S′S ′T ).

Moreover, if S ′′ → S ′ → S are morphisms of schemes, then there exists a canonical
isomorphism of S-schemes

wrcompwrcomp (A.3) ResS ′/S(ResS′′/S ′(X
′′ ))

∼→ ResS′′/S(X ′′ )

(when the indicated Weil restrictions exist).
We now discuss existence results. Let f : S ′ → S be a finite and locally free morphism

of schemes. For every s ∈ S, let

gfsgfs (A.4) γ(f ; s) = #
(
S ′ ×S Spec k(s)

)
be the cardinality of the geometric fiber of s. If S has a unique point s, we will write γ(f)
for γ(f ; s).

Remarks A.5. Let f : S ′ → S be a finite and locally free morphism of schemes.

(a) If k is a field, A is a finite étale k-algebra and f : SpecA → Spec k is the corre-
sponding morphism of schemes, then γ(f ) = dimkA.

(b) Let g : T → S be a morphism of schemes and consider the finite and locally free
morphism f ×S T : S ′×S T → T . Let t ∈ T and set s = g(t). Then γ(f ×S T ; t) =
γ(f ; s).
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(c) Let s ∈ S and let g : T ′ → S ′ be a universal homeomorphism such that h =
f ◦ g : T ′ → S is finite and locally free. Then γ(h; s) = γ(f ; s).

adm Definition A.6. Let f : S ′ → S be a finite and locally free morphism of schemes. An
S ′-scheme X ′ is called admissible relative to f if, for every point s ∈ S, every collection of
γ(f ; s) points in X ′ ×S Spec k(s) is contained in an affine open subscheme of X ′, where
γ(f ; s) is the integer (A.4).

If S ′ = SpecA and S = SpecB are affine, we will also say that X ′ is admissible relative
to B/A.

rems-adm Remarks A.7.

(a) By [EGA, II, Definition 5.3.1 and Corollary 4.5.4], a quasi-projective S ′-scheme is
admissible relative to an arbitrary finite and locally free morphism S ′ → S.

(b) If the geometric fibers of f : S ′ → S are one-point schemes, then γ(f ; s) = 1 for
every s ∈ S. Consequently, every S ′-scheme is admissible relative to f . This is the
case, for example, if f is a universal homeomorphism.

(c) If X ′ is an S ′-scheme which is admissible relative to f and g : T → S is an affine
morphism of schemes, then the (S ′ ×S T )-scheme X ′ ×S ′ (S ′×S T ) = X ′ ×S T is
admissible relative to f ×S T : S ′ ×S T → T .

(d) If X ′ is an S ′-scheme which is admissible relative to f : S ′ → S and g : T ′ → S ′ is
a universal homeomorphism such that h = f ◦ g : T ′ → S is finite and locally free,
then the T ′-scheme X ′ ×S ′ T ′ is admissible relative to h.

We can now strengthen [BLR, §7.6, Theorem 4, p. 194]:

wr-rep Theorem A.8. Let f : S ′ → S be a finite and locally free morphism of schemes and let
X ′ be an S ′-scheme which is admissible relative to f . Then ResS ′/S(X ′) exists.

Proof. See [BLR, §7.6, Theorem 4, p. 194] and note that in the last paragraph of that
proof the set of points {zj} in S ′ ×S T lying over a given point z ∈ T , where g : T → S
is an arbitrary S-scheme, has cardinality at most γ(f ; s), where s = g(z). Thus the
corresponding set of points {xj} ⊆ X ′ considered in [BLR, p. 195, line -14] has cardinality
at most γ(f ; s), whence it is contained in an open affine subscheme of X ′ by Definition
A.6. This is the condition needed in [loc.cit.] to complete that proof. �

wr-uh Corollary A.9. Let f : S ′ → S be a finite and locally free morphism of schemes which is
a universal homeomorphism and let X ′ be any S ′-scheme. Then ResS ′/S(X ′ ) exists.

Proof. This is immediate from the theorem and Remark A.7(b). �

w-lim Proposition A.10. Let k ′/k be a finite field extension and let (Xλ)λ∈Λ be a projective
system of k′-schemes, where Λ is a directed set containing an element λ0 such that the
transition morphisms Xµ → Xλ are affine if µ ≥ λ ≥ λ0. Assume that Xλ0 is admissible
relative to k′/k. Then Resk′/k

(
lim←−Xλ

)
and lim←−Resk ′/k(Xλ) exist and

Resk′/k
(

lim←−Xλ

)
= lim←−Resk′/k(Xλ).

Proof. We may assume that λ0 is an initial element of Λ. The stated formula will follow
from (A.1) once the existence assertion is established. Set X = lim←−Xλ. Since the canonical
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morphism X → Xλ0 is affine, X is also admissible relative to k ′/k. Thus, by Theorem A.8,
Resk ′/k

(
X
)

exists. Similarly Xλ is admissible relative to k′/k for every λ, and Resk′/k(Xλ)
exists. It remains only to check that the transition morphisms Resk ′/k(Xµ)→ Resk ′/k(Xλ),
µ ≥ λ, are affine. Let U be an affine open subscheme of Xλ. Then Xµ×Xλ U is affine and
therefore so also is

Resk ′/k(Xµ×XλU ) = Resk ′/k(Xµ)×Resk′/k(Xλ) Resk ′/k(U ).

Since Resk ′/k(Xλ) is covered by affine open subschemes of the form Resk ′/k(U) [BLR,
p. 195], the proposition follows. �

Let R be a complete discrete valuation ring and let R ′/R be a finite extension of R
with maximal ideal m′, residue field k ′ and ramification index e. Recall S = SpecR and
let S ′ = SpecR ′. For every integer n ≥ 1, set S ′n = SpecR ′n = Spec (R ′/(m ′)nR ′ ). Since
m = (m′)e, there exists a canonical isomorphism

ram-tenram-ten (A.11) S ′ne = S ′ ×S Sn.
Now observe that S ′ → S is finite and locally free and therefore so also is the induced

morphism fn : S ′ne → Sn. Further, γ(fn) (A.4) equals [k ′ : k ]sep. Thus Z is admissible
relative to fn if, and only if, every set of [k ′ : k ]sep points in Z ×SnS1 is contained in an
open affine subscheme of Z.

tram Remark A.12. If R ′/R is totally ramified, then k ′ = k and therefore S ′ne → Sn is, in
fact, a universal homeomorphism. Consequently, by Corollary A.9, the Weil restriction
ResS ′ne/Sn(Z) exists for every S ′ne-scheme Z.

adm1 Lemma A.13. Let n ≥ 1 be an integer and let Z be an S ′ne-scheme which is admissible
relative to fn : S ′ne → Sn. Then the k ′-scheme Z ×S ′ne S

′
1 is admissible relative to k ′/k.

Proof. Since S1 → Sn is affine and S ′ne×SnS1 equals S ′e by (A.11), the S ′e-scheme Z×S ′neS
′
e

is admissible relative to fn×Sn S1 : S ′e → S1 by Remark A.7(c). Now, since S ′1 → S ′e is a
universal homeomorphism, Remark A.7(d) shows that (Z×S ′ne S

′
e)×S ′e S

′
1 = Z×S ′ne S

′
1 is,

indeed, admissible relative to S ′1 → S1. �
gstr

A.2. Greenberg’s structure theorem. Let R be a finite Wm(k)-algebra, where m ≥ 1
and k is assumed to be perfect and of positive characteristic if m > 1.

Consider the following cases and notations:

(i) R is a k-algebra, I an ideal of R such that IM = 0 and t = dimkI, or
(ii) R is a finite W (k)-algebra of characteristic pm, where m > 1, I is a minimal ideal

of R and t is the unique non-negative integer such that I ' ptOk (see Proposition
3.17).

Note that IM = 0 in either case. In particular, since I ⊂M, we have I2 = 0. As in the
main text, we will write R′ = R/I. For every R-scheme X, consider the quasi-coherent
OXs-module

EXs/k =


t⊕
i=1

Ω1
Xs/k

in case (i)(
F t
Xs

)∗
Ω1
Xs/k

in case (ii),
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where, in case (ii), FXs denotes the absolute Frobenius endomorphism of Xs.

val Remark A.14. Let R be a discrete valuation ring with residue field k and let n > 0 be an
integer. Then (Rn,M

n−1
n ) is a valid choice for (R, I). If R is an equal characteristic ring

or R has unequal characteristics (0, p) and n ≤ ē = v(p), then (Rn,M
n−1
n ) is of type (i)

with t = 1. If R has unequal characteristics (0, p) and n > ē = v(p), then (Rn,M
n−1
n ) is

of type (ii) with t = m− 1, where m = dn/ēe (as noted in Remark 3.19).

Now let the following data be given: a k-scheme Y , an R-scheme X and a k-morphism
u ′ : Y → GrR

′
(X ′), where X ′ = X ×R SpecR′. Note that Y is an Xs-scheme via the

k-morphism a : Y → Xs which is defined by the commutativity of the diagram

Y
u′ //

a

''

GrR
′
(X ′)

%R
′,k

X′

��
Xs,

where %R
′,k

X′ is the change of rings morphism (8.1). Next, consider the Zariski sheaf of
abelian groups on Y

Ha = HomOY

(
a∗Ω1

Xs/k
,I(OY )

)
.

Proposition A.15. Let R be as in (i) or (ii) above, let X be an R-scheme and let Y be

a GrR
′
(X ′)-scheme. Then there exists an isomorphism of Zariski sheaves on Y

Ha ' V
(
EXs/k

)
×Xs GrR

′
(X ′),

where GrR
′
(X ′) is regarded as an Xs-scheme via %R

′,k
X′ .

Proof. In case (ii), the isomorphism of Ok-modules I ' ptOk of Proposition 3.17 yields

an isomorphism of Zariski sheaves I(OU) ' ptOU for every open subset U of Y . Thus, by
[BGA, (4.12) and Caveat 4.14], we have

Ha(U) ' HomOU

(
(a|U )∗Ω1

Xs/k
, p
t
OU
)
' HomOU

((
F t
U

)∗
(a|U)∗Ω1

Xs/k
,OU

)
' HomOU

(
(a|U)∗

(
F t
Xs

)∗
Ω1
Xs/k

,OU
)

= HomOXs

(
EXs/k, (a|U)∗OU

)
' HomXs

(
U,V(EXs/k)) ' Hom

GrR
′
(X′)

(
U,V(EXs/k)×Xs GrR

′
(X ′)).

Similar calculations establish the proposition in case (i). �

Now let P(u′) be the following Zariski sheaf of sets on Y : for every open subset
U ⊆ Y , let P(u′)(U) be the set of k-morphisms v : U → GrR(X) (if any exist) such that

v ◦ %R,R
′

X : U → GrR
′
(X ′) equals u ′ |U . Then, by (6.12) and Proposition 8.6, P(u′)(U)

is in bijection with the set of R-morphisms fU : hR(U) → X (if any exist) such that the
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following diagram commutes

hR(U)
fU // X

hR
′
(U)

δR,R
′

U

OO

ϕR′
Y,X′(u

′)|hR′
(U) // X ′.

prX

OO

Clearly, the existence of v (or fU ) is equivalent to the non-emptyness of P(u′)(Y ) .

Lemma A.16. For every (respectively, every smooth) R-scheme X, P(u′) is a pseudo-
torsor (respectively, torsor) under Ha = HomOY

(
a∗Ω1

Xs/k
,I(OY)

)
on the Zariski site of

Y .

Proof. By [SGA1, III, Proposition 5.1] with S = SpecR and g0 = prX ◦ ϕR′
Y,X′(u

′), P(u′)

is pseudo-torsor under the sheaf HomR′(OY )

(
g∗0Ω1

X/R,I(OY )
)
, which is in fact isomorphic

to Ha. Note that, since δR,R
′

U is a nilpotent immersion, P(u′) has non-empty fibers if X
is smooth over R by the lifting property in the definition of smoothness. �

The preceding result yields the existence of a bijection of fiber products of sets

V(EXs/k)(Y )×{a}GrR(X)(Y )
∼→ GrR(X)(Y )×{u′}GrR(X)(Y ).

When Y and u′ vary, the latter bijections induce an isomorphism of k-schemes

V(EXs/k)×Xs GrR(X)
∼→ GrR(X)×

GrR
′
(X′)

GrR(X).

Note that, by Propositions 8.11 and 8.12 and Corollary 9.4, %R,R
′

X is a quasi-compact
and surjective morphism of smooth k-schemes and therefore faithfully flat and locally of
finite presentation. Consequently, the following holds

Theorem A.17. Let X be an arbitrary (respectively, smooth) R-scheme. Then the

GrR
′
(X ′)-scheme GrR(X) with structural morphism %R,R

′

X is a pseudo-torsor (respectively,

torsor) under V(EXs/k)×XsGrR
′
(X ′) in the category of fppf sheaves of sets on (Sch/GrR

′
(X ′)).

The following corollary is now immediate from Remark A.14.

k2 Corollary A.18. Let R be a discrete valuation ring and let X be a smooth Rn-scheme.
Then the GrRn−1(X)-scheme GrRn (X) is an fppf torsor under

(i) V
(

Ω1
Xs/k

)
×Xs GrRn−1(X) if R is an equal characteristic ring, or

(ii) V
((
F m−1
Xs

)∗
Ω1
Xs/k

)
×Xs GrRn−1(X) if R is a ring of unequal characteristics, where

m = dn/ēe
last

A.3. A flatness result.

flat3 Proposition A.19. Let k be a field and let q : G → H be a morphism of smooth and
commutative k-group schemes. Assume that

(i) q
(
k
)

: G
(
k
)
→ H

(
k
)

is surjective, and

(ii) π0(G)
(
k
)

is a finitely generated abelian group.
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Then q is flat.

Proof. Since G0 and H0 are both of finite type, q0 is a morphism of smooth and connected
k-group schemes of finite type. Thus, by [SGA3new, VIB, Proposition 3.11 and its proof],
it suffices to check that q0(k) : G0(k) → H0(k) is surjective. Hypothesis (ii) and the
snake lemma applied to the exact and commutative diagram

0 // G0
(
k
)

//

q0(k )
��

G
(
k
)

//

q(k )����

π0(G)
(
k
)

//

π0(q)(k )
��

0

0 // H 0
(
k
)

// H
(
k
)

// π0(H)
(
k
)

// 0

show that C = Coker q0
(
k
)

is finitely generated. Since H 0
(
k
)

is n-divisible for all n prime
to the characteristic of k, C is also n-divisible for all such n. Thus C is trivial. �
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groupes commutatifs. Masson & Cie, Éditeur, Paris, 1970. (with an Appendix by M. Hazewinkel:
Corps de classes local). ISBN 7204-2034-2.

fk [FK] Fujiwara, K. and Kato, F.: Foundations of rigid geometry. arXiv:1308.4734v3.
gre1 [Gre1] Greenberg, M. J.: Schemata over local rings. Ann. of Math. (2) 73 (1961), 624–648.
gre2 [Gre2] Greenberg, M. J.: Schemata over local rings: II. Ann.of Math. (2) 78 (1963), 256–266.
gre3 [Gre3] Greenberg, M. J.: Rational points in henselian discrete valuation rings. Publ. Math. IHES 31

(1966), 59–64.
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