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THE GREENBERG FUNCTOR REVISITED

ALESSANDRA BERTAPELLE AND CRISTIAN D. GONZALEZ-AVILES

ABSTRACT. We extend Greenberg’s original construction to arbitrary schemes over (cer-
tain types of) local artinian rings. We then establish a number of properties of the
extended functor and determine, for example, its behavior under Weil restriction. We

also discuss a formal analog of the functor.
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2 ALESSANDRA BERTAPELLE AND CRISTIAN D. GONZALEZ-AVILES

1. INTRODUCTION

As already noted by Lang in his thesis [Lal, p. 381], the problem of finding a zero of
a polynomial f(x1,...,x,) with coefficients in a complete discrete valuation ring & with
perfect residue field k is equivalent to finding a common zero of infinitely many polyno-
mials with coefficients in k. Working modulo powers of the maximal ideal of & effectively
simplifies the problem since, in this setting, one only has to deal with finitely many poli-
nomials with coefficients in k. The general case is then treated via a limit construction.
Lang’s idea was developed by his student Greenberg in the papers [Grell, [Gre2], where
Greenberg introduced and studied the objects that are now called the Greenberg realization
and the Greenberg functor. While Greenberg was writing his thesis, Grothendieck clarified
his construction as an analog of Weil restriction [CS| p. 89]. Sometime later Serre applied
the Greenberg functor in an unpublished proof of the so-called Serre-Tate theorem on
formal liftings of abelian varieties in the case of ordinary reduction [CS| p. 161]. Serre also
used the Greenberg functor in [Se] in order to prove that, when k is algebraically closed,
the abelian extensions of the fraction field of & correspond bijectively to isogenies of the
group of units of &, regarded as a projective limit of algebraic k-groups. Since those times
the Greenberg functor has played an important role in arithmetic and algebraic geometry.
See [Bég, BLRL [CGP}, [Lip] and, more recently, [BT, NS, [NS2| [Sta]. The work of Greenberg
came to our attention in the course of our attempts to generalize the results of Bégueri
[Bég] over a non-algebraically closed residue field k. Our main difficulty in understanding
Greenberg’s ideas originated in his use of a pre-Grothendieck language to describe the key
construction of Greenberg algebras [Grell, §1]. Further, some of his original results, stated
for varieties, do not easily extend to more general schemes. These problems have affected
other researchers as well, since a number of errors connected with the use of the Greenberg
functor have appeared in print.

In this paper we revisit Greenberg’s construction using a modern scheme-theoretic lan-
guage and generalize it in various ways, removing in particular certain unnecessary re-
ducedness and finiteness conditions assumed in [Grell, [Gre2]. Further, we refine known
properties of the classical Greenberg functor, establish new properties and correct certain
erroneous claims about this functor that appear in the literature. We also clarify the
relation that exists between the Greenberg algebra % associated to a local artinian ring
R (of a certain type) and the Greenberg module .# associated to an ideal J of :R. We
expect to use the results of this paper to investigate (elsewhere) certain interesting prob-
lems in arithmetical algebraic geometry. We should also note that the present paper is an
abridged, and hopefully more readable, version of our preprint [BGA|, where all tedious
calculations omitted from this version have been fully worked out for the benefit of the
punctilious reader.

We now describe in more detail the contents of the paper. Section [2] contains a general
discussion of Greenberg modules/algebras associated to finite W, (k)-modules/algebras,
where m > 1 and (the field) k is assumed to be perfect and of positive characteristic if
m > 1. Readers who are familiar with Greenberg’s original construction will have noticed
that this author encountered a number of technical difficulties that forced him to work
only up to purely inseparable morphisms, e.g., in the proof of the fundamental theorem

in [Gre2]. See Remark and Appendix In this paper we correctly identify the
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ideal subscheme of the relevant Greenberg algebra that must be chosen in order to
circumvent all such technical difficulties.

In Section [3]we specialize the discussion of Section 2] to truncated discrete valuation rings
and refine, for use in future applications, the presentation given in this case by Nicaise
and Sebag [NS|. Incidentally, the above authors seem to have been the first to have
noticed that a certain formula involving Greenberg algebras that appears in [BLRI p. 276,
line -18] is incorrect. In Remark we explain why the indicated error is (fortunately)
inconsequential when working with the tower of Greenberg algebras.

Section 4| discusses the behavior of Greenberg algebras under (possibly) ramified ex-
tension of local artinian rings. The very brief Section [5| contains the definition of the
Greenberg algebra associated to a discrete valuation ring and some related remarks. Sec-
tion |6 introduces the Greenberg functor Gr™ in the general setting of this paper. This
functor associates to an M-scheme X a k-scheme Gr”'(X) whose set of k-rational points
is in bijection with the set of M-sections of X. The existence of Gr¥(X) is established
via a careful discussion of the functor A™ that is left-adjoint to Gr™. The constructions
of Section [6] are then specialized to truncated discrete valuation rings in Section [7} In
Section |8 we show that the change of rings morphism Gr™*(X) — Gr™¥(X’) is al-
ways affine, and surjective (respectively, an isomorphism) if X is smooth (respectively,
étale) over R. In Section |§| we show that the Greenberg functor preserves a number of
basic properties of morphisms. In particular, we show that it preserves quasi-projective
schemes (see Proposition [9.1]). Section [10] describes the behavior of the Greenberg functor
under Weil restriction. See Theorem To our knowledge, only a very specific instance
of this result has appeared in print (within the context of formal geometry), namely [NS|
Theorem 4.1].

In Section |11| we describe the kernel of the change of level morphism using the
Structure Theorem from Appendix In particular, we show in Remarkthat [Bég,
Lemma 4.1.1(2)] is false. In spite of the above, the main results of [Bég|] are (fortunately)
valid since [Bég] works mostly with the perfect Greenberg functor (discussed here in Section
, which annihilates all possible infinitesimal error terms. See Remark for more
details.

We now observe that Sebag defined in [Sebl §3] the Greenberg realization of a separated
formal scheme of topologically finite type. In Section we extend his construction to
the larger category of adic formal schemes and determine the behavior of the new functor
under Weil restriction. In particular, we generalize [NS, Theorem 4.1]. The constructions
of Section are then applied in Section to discuss the Greenberg realization of an
R-scheme, where R is a complete discrete valuation ring.

Section [15| contains information on the Greenberg realization of a finite group scheme,
which may not itself be finite over k.

Section [16] discusses the Greenberg realization of a flat, commutative and separated
R-group scheme F'; where R is as above, using a smooth resolution of F' when one exists
(this is the case if F' is finite over R). In particular, we obtain results on the kernel and
cokernel of the change of level morphism (see Proposition and on certain algebraic
groups related to F-torsors. See (16.7) and (|16.11)).

The Appendix consists of three Subsections. In subsection we discuss the Weil re-
striction functor and show that the hypotheses in the basic existence theorem [BLRI, §7.6,
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Theorem 4, p. 194] can be weakened. We also record here the fundamental fact that the
WEeil restriction of a scheme along a finite and locally free universal homeomorphism always
exists. In Section we extend Greenberg’s structure theorem |Gre2, p. 263], showing
in particular that the original version of the indicated result is unaffected by Greenberg’s
occasional replacement of certain Greenberg modules by inseparably-isogenous group vari-
eties. Subsection consists of a single proposition where sufficient conditions are given
for a morphism of smooth and commutative group schemes over a field to be flat.

Acknowledgements

We thank James Borger and Maurizio Candilera for helpful comments on Witt vectors,
Brian Conrad for enlightening comments on Weil restriction and Johannes Nicaise for
helpful comments on Greenberg approximation. We also thank Michel Raynaud for an-
swering some of our questions regarding [Bég]. Finally, we are grateful to both referees
for several helpful suggestions.

2. GREENBERG MODULES AND ALGEBRAS

Let k be a perfect field of positive characteristic and let m > 1 be an integer. In [Lip,
Appendix A], Lipman translated into scheme-theoretic language Greenberg’s construction
of Greenberg modules in [Grel]. In this Section we extend Lipman’s translation to other
constructions/statements from [Grell, [Gre2].

For any scheme S, we will write Qg (or Q4 if S = Spec A is affine) for the S-ring scheme
V(Os) = Spec O5[T].

2.1. Finitely generated modules over arbitrary fields. In this Subsection k is an
arbitrary field. Let 971 be a finitely generated k-module of rank r > 1. The Greenberg
module associated to 9%, denoted by ., is the affine k-scheme that represents the functor
Spec A — M@ A, where A is a k-algebra, i.e.,

(2.1) M(A) Y Homy(Spec A, .4 ) = M @, A.

Note that, for any choice of k-basis {mi,...,m;} of M, there exists an isomorphism of
Op-module schemes A}, ~ .# given on A-sections by A” = 4 (A), (a;) = >, m; ® a;.

Remarks 2.2.

(a) If A — B is an injective (respectively, surjective) homomorphism of k-algebras,
then the induced homomorphism of k-modules .#(A) — .#(B) is injective (re-
spectively, surjective).

(b) If M — M’ is a surjective homomorphism of finitely generated k-modules and A is
a k-algebra, then the induced map .#(A) — .#'(A) is a surjective homomorphism
of A-modules.

Let R be a finite k-algebra. Since (R is a finitely generated k-module, its associated
Greenberg module Z can be defined as above. Now

(2.3) Z(A) = R @A

is naturally endowed with an fR-algebra structure. The resulting k-ring scheme Z is called
the Greenberg algebra associated to R. Note that Z(k) = . By construction, there exists
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a (non-canonical) isomorphism of k-group schemes

(2.4) R =Gy,

where ¢ = dim; R > 1. Further, by (2.3)), we have Z = Resg/k(On) (Weil restriction. See
Apprendix . If fe A, then Z(A)y = Z#(A) ®a Ay, whence

(25 R(A); = B(Ay).

Now let B — R’ be a homomorphism of finite k-algebras with kernel & and let 2, %’
and " be the Greenberg algebras/modules associated to R, R’ and R, respectively. By
, the canonical exact sequence of k-modules 0 — & — R — R’ induces, for every
k-algebra A, an exact sequence of R-A-bimodules 0 — #(A) — Z(A) — Z'(A), where

(2.6) H(A) = RA=RZ(A).
We conclude that
(2.7) A =Ker|# — %' .

2.2. Modules over rings of Witt vectors. In this Subsection k is a perfect field of
characteristic p > 0 and W,;, denotes the k-ring scheme of Witt vectors of length m > 1.
Let 9 be a finitely generated W,,(k)-module and let M denote the fpqc sheaf on the
category of affine k-schemes associated to the presheaf Spec A — M@ yy1,)W(A), where A is
a k-algebra. By [Lipl Proposition A.1], there exists an affine W,,,-module scheme .#, called
the Greenberg module associated to 9, which represents M, i.e., M(Spec A) = .#(A),
where

(A) Y Homy(Spec A, .4).
Further, by [Lip, Corollary A.2], the canonical map
(2.8) M Qw,, (k) Win(A) — A (A)

is surjective for every k-algebra A. By construction, a choice of an isomorphism of W, (k)-
modules M ~ [[._, Wy,(k), where n; < m for every i, induces an isomorphism of W,,-
module schemes .# ~ [[._, W,,. In particular, there exists an isomorphism of k-schemes
M~ AY | where N = >!_, n; is the length of the W, (k)-module 9. Every homomor-
phism of finitely generated W, (k)-modules 9t — 9’ induces a morphism of associated
W,,-module schemes .# — 4" [Lipl, Proposition A.1, p. 74].

Remarks 2.9.

(a) Since A ~ AY | an injective (respectively, surjective) homomorphism of k-algebras
A — B induces an injective (respectively, surjective) homomorphism of W, (k)-
modules .#Z(A) — .#(B).

(b) If MM — M’ is a surjective homomorphism of finitely generated W, (k)-modules
and A is a k-algebra, then the surjectivity of (for both .# and .#") implies
that the induced homomorphism .#(A) — .#'(A) is surjective.

(c) If A = AP, then is an isomorphism by [Lip, Corollary A.2]. Further, there
exists a canonical isomorphism of W;,,(A)-modules M @ ;1) Win(A) = A (A) via
the identification Wy, (k) @y ) W(A4) = Wi (A).
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Let R be a finite W, (k)-algebra. The Greenberg algebra associated to R is the Greenberg
module associated to R together with its Wy,-algebra structure induced by . Every
isomorphism of Wy, (k)-modules R ~ []7_, W, (k) induces an isomorphism of W,,-module
schemes # ~ [[;_ W,, and the k-ring scheme structure on & is induced by the ring
structure on R [Lip, Proposition A.1 and Corollary A.2]. In particular, there exists a
(non-canonical) isomorphism of k-schemes

(2.10) % ~ Ay, (where £ = lengthy, ;) R)

and we have Z(k) = R. If R = W),,(k), then Z = W,,,. Further, every finitely generated
R-module B defines an Z-module scheme % and every homomorphism B — € of finitely
generated R-modules induces a k-morphism % — % of associated Z-module schemes.

Remark 2.11.
(a) If R is an ideal of R, then the image of the canonical homomorphism J#(A) —
H(A) equals RZ(A), as follows from the surjectivity of (for both .# and
(b) If A = AP, then the homomorphism of W, (A)-algebras R @w;, 1y Win(A) — Z(A)
is an isomorphism. Further, there exists a canonical isomorphism of R-W(A)-
bialgebras R @y () W(A) ~ Z(A). See Remark (c)

Together with (2.5), the following proposition is the key to establishing the repre-
sentability of the Greenberg functor in a general scheme-theoretic setting.

Proposition 2.12. Let R be a finite W, (k)-algebra with associated Greenberg algebra
Z and let A be a k-algebra. For every f € A, there exists a canonical isomorphism of

K (A)-algebras
R(A) () = Z(Ay)
where [f] = (f,0,...,0) € Wy, (A).
Proof. By [, (1.1.9), p. 505, and (1.5.3), p. 512], the homomorphism

Win(A) () S Win(Ay), (a0, - - am1)/[f]7 = (ao,- -y am—1) - [1/f7],

is an isomorphism. Thus, by Remark b), the proposition holds if A = AP. The general
case follows by using the existence of faithfully flat extensions A — B with B = BP [Lip),
Lemma 0.1, p. 18]. See [BGA2, Proposition 3.16] for the details. O

We discuss next the k-morphism % — % induced by an inclusion of finitely generated
Wy (k)-modules B C €. We begin with an example.

Ezample 2.13. Let B = pW,,(k) and € = W},,(k). The isomorphism of W, (k)-modules
Wmfl(k‘) %me(k),(ao,...,am,Q) — (0,(15),... a? ),

» Um—2
induces an isomorphism of W,,-module schemes W,, 1 ~ 4. On the other hand, the
morphism of W,,,-module schemes # — % induced by the inclusion B C € corresponds to
the morphism W,,_; — W,,, given by

Win—1(A) = Wi (4), (ag, - . ., am—2) = (0,af,...,a> ).

m—2

Thus, if A is not reduced, then the preceding map is not injective.



Tr-max

m-bar

THE GREENBERG FUNCTOR REVISITED 7

As the above example shows, we cannot expect 8 — % to be a closed immersion
in general. This fact has the following undesiderable consequence. Let R — PR’ be a
homomorphism of finite W, (k)-algebras with kernel 8 Let Z — %’ be the induced
morphism of associated W,,,-module schemes and let £ be the Z-module scheme which
corresponds to K. Since the composite map & — R — R’ is the zero homomorphism,
the composite of induced morphisms of Greenberg modules #* — #Z — %' is the zero
morphism. However, in contrast to , 2 may fail to be equal to the kernel of Z — %’.

Remark 2.14. The following statement appears in [Gre2, p. 257]. Suppose that J is the
kernel of a surjective homomorphism [of finite and local W, (k)-algebras| ¢: R — R’ and
IM = 0 [where 9 is the maximal ideal of R|. Then, for every pre-scheme Y over k, the
homomorphism p(Y): Z(Y) — Z'(Y) is surjective with kernel I (Y') and #(Y)I(Y) =
0. The preceding statement is false if .# and .# are the Greenberg module schemes
associated to J and 9 or, in the terminology of [Grell Proposition 3, p. 628], if .# and
M are the Greenberg varieties equipped with their maximal structures associated to J and
M. We believe that Greenberg was well aware of this fact, which led him to changing the
way in which a module variety is attached to a Wy, (k)-module depending on the particular
situation being considered. See [Grell, lines above Proposition 4, p. 629] and [Gre2] p. 257,
lines 5-8].

In order to obtain a correct scheme-theoretic version of Greenberg’s statement just
quoted, we proceed as follows.

Let 2R be a finite W, (k)-algebra and let J be an ideal of . The ideal subscheme of Z#
associated to J is the ideal subscheme of Z#

(2.15) I =Ker|# —Z%'],

where #’ is the Z-algebra associated to R’ = 9/J. The canonical exact sequence of
W, (k)-modules 0 — T — R — R’ induces a complex of W,,-module schemes . — #Z —
#'. Consequently, there exists a canonical morphism of %-module schemes

(2.16) O5: I = 7.

By Remark [2.11f(a), we have

(2.17) Im[O5(A): F(A) — F(A)] = TR (A)

for every k-algebra A.

Proposition 2.18. Let R be a finite Wy, (k)-algebra and let J be an ideal of R. If A is a
k-algebra such that A = AP, then the homomorphism of %(A)-modules

05(A): F(A) — F(A)

is surjective. Further, if A is perfect, then the preceding map is an isomorphism.
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Proof. Recall R’ = M/J. There exists a canonical commutative diagram of W, (A)-
modules

(219) 00— —>T @y W(A) —= R @y W(A) —= R'@ ) W(A) —=0

0- - — - = 7(A) %(A) %'(A) 0
jonto | |
0 F(A) %(A) Z'(A) 0.

The vertical arrows in the top rectangle are isomorphisms by Remark (b) Further,
the top row of the diagram (excluding the broken arrow) is exact by the right-exactness
of the tensor product functor. Thus the middle row (excluding the broken arrow) is exact
as well. Since the bottom row of the diagram is exact by and Remark (b), the
surjectivity of ©5(A) follows.

Now assume that A is perfect. Then the broken arrows in the above diagram can be
filled in since W(A) is flat over W (k) [BGA2, Lemma 2.24]. The bijectivity of O5(A) is
then immediate. g

Lemma 2.20. Let R — R’ and R — R” be surjective homomorphisms of finite Wy, (k)-
algebras with kernels 3 and J which satisfy 33 = 0. Then, for every k-scheme Y, the ring

homomorphism Z(Y) — #'(Y') induced by R — R’ is surjective with kernel S(Y') and
F(Y)AY) =0,

Proof. Up to isomorphisms we may assume that R’ = 91/J and R” = R/J. Now, since
Z' is affine, the morphism #Z — %’ has a section by Remark (b) and the surjectivity
of Z(Y) — Z'(Y) is clear. The kernel of the latter map is #(Y) by definition of 7.
In order to check that Z(Y).#(Y) = 0, we may assume that Y = Spec A, where A is a
k-algebra. Since A has a faithfully flat extension B with B? = B [Lip, Lemma 0.1, p. 18],
we may assume that A = AP. In this case the assertion follows from diagram , and
the analogous diagram for J in place of J, using the fact that JJ = 0. U

Remark 2.21. If m = 1 and k is arbitrary, then the preceding considerations work equally
well and the resulting Greenberg modules (respectively, algebras) coincide with those
defined in the previous Subsection. In this case .¥ = .#, ©5(A) is the identity map and
Lemma 2.20 is also valid.

2.3. A common approach. We discuss the two cases of the previous subsections simul-
taneously using the following convention: R will denote a finite W,,(k)-algebra, where
m > 1 and k is assumed to be perfect and of positive characteristic if m > 1.

Let J be an ideal of %, i > 1 an integer and A a k-algebra. We will write .#* for the
Wy,-module scheme associated to the ideal ’Jilﬂ

By Lemma and Remark the exact sequence of S-modules 0 — J* — R —
2,/ — 0 induces an exact exact sequence of %Z(A)-modules

(2.22) 0— Ji(A) = Z(A) » 27 )(A) — 0,

1 7% should not be mistaken for an “i-th power of #”. The latter, in fact, cannot be defined since, in
general, .# is not an ideal subscheme of Z.
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where 2" is the Greenberg algebra associated to‘i)%/j‘i. Now let 4,7 > 1 be integers.
Applying Lemma to the ideals J'/3'" and 37/3%7 of |/T*, we conclude that
J1(A) FI(A) C #iti(A). In particular, for every integer r > 1,

(2.23) F(A)" C I7(A).
Thus, since ™ =0 when J" = 0, we have
(2.24) FA)"=0  (fI"=0).

We will also need the following construction. By Remarks [2.2(b) and 2.9(b), if A is a
k-algebra and I is a proper ideal of A, then there exists an exact sequence of SR-modules

(2.25) 0—=>2%(I)— Z(A) — Z(A/I) — 0,
where Z(I) = Ker[Z(A) — Z(A/I)].
Lemma 2.26. Let A be a k-algebra and let I and J be ideals of A. Then
HIVZ(T) R (1JT).
Proof. This follows from the fact that the functor Z(—) is representable. O

3. THE GREENBERG ALGEBRA OF A TRUNCATED DISCRETE VALUATION RING

In this Section we discuss the Greenberg algebras associated to truncated discrete valu-
ation rings, which are the motivating examples of the theory. Let R be a discrete valuation
ring with valuation v, maximal ideal m and residue field kK = R/m, assumed to be perfect
in the unequal characteristics case. For every n € N, set R,, = R/m". Since in this section
we discuss constructions that depend only on the truncations R,,, we now assume, without
loss of generality, that R is complete. Now, for every n € N, set M,, = m/m". If 7 € m is
a uniformizer, m,, will denote the corresponding element in M,,. We will write S = Spec R
and S,, = Spec R,,.

Now let n, s be integers such that n > s > 1. Then multiplication by 7° on R induces
a surjective homomorphism of R,-modules R, — M, whose kernel is M ~%. Thus we
obtain an isomorphism of R,-modules

(3.1) Rp s = M, r+m" 5 r5r+m" (r€R).

If R is an equal characteristic ring, then there exists an isomorphism ¢: k[[t]] = R and

7 = £(t) is a uniformizer of R. Note that R, is a finite k-algebra with basis 1, 7, ..., 771

In particular, the ring R, is of the type discussed in Subsection [2.1] and the Greenberg
algebra associated to R, is the k-ring scheme

(3.2) Kn = Resg, /1(Or,,).

Note that %, = Oy and %, (k) = R,, for every n > 1. Now, by (2.1)) and (2.3)), for every
k-algebra A we have

(3'3) %n(A) =R, ®, A
and Mp(A) = My, @ A = 10 %n(A) C B0 (A).
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If R has unequal characteristics and perfect residue field k, then R is a totally ramified
extension of W (k) of degree € = v(p) > 1. If € > 1, then there exists an isomorphism

(3.4) & WHIT)/(f) =R

where f is an Eisenstein polynomial of degree e. Further, 7 = (T4 (f)) is a uniformizer
of R and the artinian local ring R,, has characteristic p™, where

(3.5) m = [n/e]

is the smallest integer that is larger than or equal to n/e. As a W, (k)-module, R,
can be written as an internal direct sum W, (k) & Wy (k) - mp & -+ - & Wi (k) - 7}, with
r =min{e — 1,n — 1}. Since

Wi (k) -7l ~ Wy, (k), with n; = [(n —i)/€],

there exists an isomorphism of W, (k)-modules

(3.6) R, ~ H W, (k).
=0

Thus the Greenberg algebra %, is the Wy,-module scheme [[;_ W, equipped with the
ring structure induced by the rules f(m,) = m; = 0. See also [NS, pp. 1591-94] and [NS2|
§2.2]. If R =W (k), then Z,, = W,,.

Remarks 3.7.
(a) Write n =¢ge+ ¢, where 0 < ( < éand ¢ > 0. If ( # 0, then n; = m for i < ¢ and
n; =m — 1 for ¢ > (. If { =0, then n; = m for all 4.
(b) If n < e, then m = 1 and R, is a finitely generated k-algebra. If n > €, then
m > 1 and R, is a type of ring discussed in Subsection

Let R again be an arbitrary discrete valuation ring and let n,s be integers such that
n > s > 1. Then R, and Ry are finite W,,(k)-algebras, where m is given by
if R is an unequal characteristics ring and is equal to 1 otherwise. Thus we may now
apply the discussion of Subsection with (R,J) = (R,, My,). Up to the identification
R, /M; = R,, we have an exact sequence of %, (A)-modules

(3.8) 0 — ME(A) = Bn(A) — Zs(A) — 0.

Now, by Lemma and Remark

(3.9) MUA)MIA) =0 ifi4j>n.
Further, if » > 1 is an integer, then yields

(3.10) M(A) C T(A)

Thus, since M = 0, we have .#,(A)" = 0. Now observe that, by (2.17)), 5%, (A) C
ME(A). Next, (3.9) with i = s yields

(3.11) TSMIA) =0  ifj>n—s
In other words, .#;](A) is a wi-torsion %, (A)-module for every j > n — s. We will write

(3.12) Ons: M — M
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for the canonical map (2.16). Recall that, by Remark (3.12]) is the identity morphism
in the equal characteristic case.

power | Remarks 3.13.

(a) If R =W (k) and V denotes the Verschiebung map, then .Z5(4) = V*W,,_s(A) C
W, (A) for every k-algebra A.

(b) In general, the inclusion .#,(A)" C 4] (A) is strict. For example, choose
R=W(k) and set n =3 and s = 1 in (a). If A # AP, then (VWs(A))? is properly
contained in the ideal V2Wj(A)) of W5(A).

(¢c) The containment is an equality in the unequal characteristics case if A is
perfect and n > € = v(p) (so that m > 1 in ) Indeed, by Proposition m
the map ©,, s(A): A2 (A) — A3 (A) is an isomorphism for every n and s > 1. On
the other hand, .#3(A) ~ w5%,(A) ~ Mu(A)*, as follows from Remark 2.11|b)
and the flatness of W(A) over W (k).

(d) If R, is a k-algebra, then (3.10) is an equality for every A. Indeed, in this case
ME(A) = ME(A) by Remark and M3(A) = 75 Bn(A) = My (A)* by ([21).

The isomorphism of R,-modules R, s — M3 induces an isomorphism of %,-
module schemes %,,_s— 4. We will write
pis| (3.14) On,s: Fn—s — //75

for the composition %, s ~ #° — 3, where the second map is the morphism of
pn-module schemes O, 5 (3.12)).

rom-2 | Proposition 3.15. If R is an equal characteristic ring, then ¢p s: Hn—s — //7;;’ (3.14) s
an isomorphism of %,-module schemes. If R is a ring of unequal characteristics and A
is a k-algebra, then gy, s(A) is a surjection if A = AP and an isomorphism if either A is
perfect or n < e.

Proof. The fact that ¢, s is an isomorphism in the equal characteristic case follows from
Remark [2.21] In the unequal characteristics case, see Proposition and note that, by

Remark [3.13(d), ¢n s(A) is an isomorphism for every A if n <e. O
twist | Remarks 3.16. Let k be a perfect field of characteristic p > 0, set R = W (k) and let A be
a k-algebra.

(a) The homomomorphism of W, (A)-modules ¢, s(A) is the multiplication by p®
map. In particular, ¢, ,—1(A) is the map A — V" Wi (A) C W, (A),a —
(0,...,0,a”" ).

(b) By (a), for every integer 7 > 1, ., ,(A) = V"Wi(A) has a canonical structure of
A-module given by a-V"(b) = (a,0,...,0)V"(b) = V"(a? b). Now let P’A be the
ring A endowed with the A-module structure given by a -b = a?' b for a,b € A.
Then the map P’A — V"Wi(A), b V" (b), is bijective and A-linear. If we identify
P’A and V"Wi(A) as A-modules via the preceding map, then the homomorphism
of A-modules ¢,41,(A): W1(A) — V"Wi(A) is identified with the A-linear map
A—PAa— al.

Now let ?"Qy, be the Qg-module scheme given by P"Qy(A) = P"A for every k-algebra A,
where P"A is defined above.
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Proposition 3.17. Let R be a finite local W (k)-algebra of characteristic p™, where m >
1, and let J be a minimal ideal of R. Then there exists an isomorphism of QOr-module
schemes & ~ pt(D)k, where t > 0 is a uniquely defined integer.

Proof. There exist integers {ni,...,n,} with 1 <n; <... <n, <m and an isomorphism
of W(k)-modules A\: R = []/_, W, (k). Let M be the maximal ideal of . The minimality
hypothesis implies that J is principal and 913 = 0. Let g be a fixed generator of J and write
AMg) = (w;) € T]i_ Wy, (k). Then either w; = 0 or ord,(w;) = n; — 1, i.e., w; = p"lwy;
for some w; € Wy, (k)*. Note that (w;) # (0,...,0). Set t = min{ord,(w;),1 < i <r} and
let ¢ be an index where the minimum is attained, i.e.,

(3.18) t=ng—1.

It is possible to construct a W(k)-automorphism § of [];_, W, (k) such that the compo-
sition doX: | = [];_; Wy, (k) induces an isomorphism J = p"a W, (k) C [Ti_ Wh,(k).
See [BGAZ2, proof of Proposition 4.24] for the details. This isomorphism induces, for every
k-algebra A, an isomorphism of A-modules .#(A) ~ V"~ 11} (A). The proposition now
follows from Remark [3.16|(b). O

Remark 3.19. Let R be a discrete valuation ring of unequal characteristics and let n > 1 be
an integer. Then the pair (R,J) = (R,,, M>~1) satisfies the conditions of the proposition.
By definition of the isomorphism , the image of 77! is non-trivial only on the first
factor, i.e., the integer equals t = ng—1 = m—1 by Remark (a). Thus there exists

an isomorphism of Q;-module schemes .Z;? ~
Vol ~ P" 70y, described in Remark [3.16(b).

P" 70y, that generalizes the isomorphism

4. GREENBERG ALGEBRAS AND RAMIFICATION

We keep the notation and hypotheses of the previous Section. In particular, R is a
complete discrete valuation ring.

Let k be a fixed algebraic closure of k and let k’/k be a subextension of k/k. The
extension of R of ramification index 1 which corresponds to k' /k is (the complete discrete
valuation ring) given by R’ = R®k’ ~ k’[[t] in the equal characteristic case and R’ =
R @y W(k') in the unequal characteristics case.

For every n € N, we have R/ = R,, g R’ = R,, @ k' in the equal characteristic case
and

(4.1) R), = R, ®r R' = Ry @w, ) Walk') = Ry @) W(K'),
in the unequal characteristics case.

Lemma 4.2. Let k'/k be a subestension of k/k and let R’ be the extension of R of ram-
ification index 1 that corresponds to k'/k. Then, for every n € N, there erists a canonical
isomorphism of k'-ring schemes

Ry = B, Xspeck Speck’.
In particular, R = %) (k') = Zn(k').

n
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Proof. In the equal characteristic case the result follows from and since R/ =
R, ®p k’. In the unequal characteristics case, it suffices to check that the fpqc sheaves
of sets on the category of k’-algebras which are represented by the k’-schemes %, and
P, X spec kSpec k' are isomorphic. Since the indicated sheaves are the sheaves associated to
the functors on k’-algebras A +— R, @) W(A) and A — R, @y ) W(A) (respectively)
by [Lip, Appendix AJ, we need only check that the canonical map R, @) W(A4) —
R}, @w(wyW(A) is a bijection for every k’-algebra A. This follows from (4.1)). O

In the setting of the lemma, if A is a k’-algebra, then %, (A) is canonically endowed
with an R/ -algebra structure.

Lemma 4.3. Let k'/k be a subextension of k/k and let R’ be the extension of R of rami-
fication index 1 which corresponds to k'/k. Then, for every n € N and every k-algebra A,
there exists a canonical isomorphism of R} -algebras

By (AQpk") = Zn(A) @p, R},
Proof. In the equal characteristic case, (3.3)) yields
Zy(A®pk') = (A®kk") @k R), = (A®Ry) ®r, R), = %n(A) @r, Ry,

Now let R be a ring of unequal characteristics and assume first that k’/k is finite. By
Lemma [Lip, Theorem C.5(i), p. 84] and (4.1)), there exist natural isomorphisms of

rings
%,;(A@)k k’) = %n(A@)k k:') = %n(A) W, (k) Wa(k') & %’n(A) ®@r, R,.

By functoriality, their composition is an isomorphism of R/ -algebras, which yields the
lemma if k'/k is finite. The general case follows from the case of finite extensions via a
limit argument using the fact that the functors %, (—) and W,,(—) commute with filtered
inductive limits. O

The following lemma applies to possibly ramified finite extensions of R.

Lemma 4.4. Let R’ be a finite extension of R of ramification index e with associated
residue field extension k'/k. Then, for every integer n > 1 and every k-algebra A, there
exists a canonical isomorphism of R).-algebras

Rn(A) @R, Rho = Bho(ARE').

Proof. In the equal characteristic case, the proof is similar to the proof of the corresponding
case of Lemma If R is an unequal characteristics ring and R’/R is totally ramified
(respectively, of ramification index 1), then the lemma follows from [NS, Lemma 2.7,
p. 1593] (respectively, Lemma . The general case now follows by combining these two
cases in a well-known manner. g

5. THE GREENBERG ALGEBRA OF A DISCRETE VALUATION RING

Let R be a discrete valuation ring. The Greenberg algebra associated to R is the affine
k-scheme

B —

—

glf%na
S

3
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where the transition morEhisms are induced by the canonical maps R,+1 — R,. Note
that, if R = W (k), then Z = W. Now, if A is a k-algebra, set

(5.1) H(A) = Hom (Spec A,@) = lim (Zn(A)).

If k'/k is a subextension of k/k and R’ is the extension of R of ramification index 1 which
corresponds to k’/k, then, by Lemma

(5.2) Z(k') =R’

Further, since the underlying scheme of %, is isomorphic to A’} (see Section , the un-
derlying scheme of the ring scheme Z is isomorphic to A(N) = Speck[zy;n € N]. In
particular, % is not locally of finite type. On the other hand, 2 has the properties listed

in Remark [2 . We also note that, since the k-algebra that represents %( ) is not of
finite presentatlon, the functor Z(—) does not commute with filtered inductive limits.

Remarks 5.3.
(a) If R ~ k[[t]] and A is a k-algebra then, by ( @,

#(A) =lim (R, ® A) ~ lim A[]/(t") ~ A[[t] ~ R 84 A,

where the last term is the completion of R ®, A relative to the (¢)-adic topology.
Consequently, definition (5.1)) coincides with that in [NS2|, p. 256].

(b) Let R ~ W(k)[T]/(f) be as in (3.4) and let A be a k-algebra such that A = AP.
Then, by Remark [2.11](b), we have

Fonl(A) = Ry @11y WI(A) = W(A)T]/(f,T")
for every n > 1. Consequently,
(5.4) Z(A) = lm W(A)[T]/(f,T") ~ W(A)[T]/(f) ~ R Dy W(A).

We also note that, since R is a finitely generated W (k)-module, definition (/5.1))
above generalizes the definition given in [NS2l p. 256] when A = AP.

6. THE GREENBERG FUNCTOR

The Greenberg realization of a scheme of finite type over an artinian local ring was
introduced in |Grel]. In this Section we generalize Greenberg’s construction.

We work in the setting of Subsection Let R be a local finite W}, (k)-algebra with
maximal ideal 9t and residue field k. Let Y be a k-scheme. We will write Z(0y) for the
Zariski sheaf on Y defined by

I'U,%(0y)) = Hom (U, %) (U C Y open)
If U = Spec A is an affine subscheme of Y, then
(6.1) (U, 2(6y)) = %(A).

If J is an ideal in R, we define .7 (0y) similarly. By (2.22), there exists a canonical exact
sequence of Zariski sheaves on Y

(6.2) 0— J(Oy) = Z(Oy) — Z)(Oy) = 0
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For example, if 7 = 90, then the sequence of Zariski sheaves

(6.3) 0 — . (Oy) — Z(Oy) — Oy — 0.

is exact. Note that, since 9 is a nilpotent ideal, .#Z(0y) is a nilpotent ideal sheaf by
(2.24). We now consider the locally ringed space over R

WNY) = (Y, 2(6y)).

Proposition 6.4. Let Y be a k-scheme. Then h™(Y) is an M-scheme which is affine if
Y is affine. If Y' is a closed (respectively, open) subscheme of Y, then h¥(Y") is a closed
(respectively, open) subscheme of K (Y).

Proof. Assume first that Y = Spec A is affine. Then I'(|h™(Y)], Opn(yy) = Z(A) by (6.1).
Let

o B(Y) — Spec Z(A)

be the morphism of locally ringed spaces which corresponds to the identity map of Z(A)
under the bijection

(6.5) Hombc(h‘ﬁ(Y), Spec%(A)) ~ Hom(Z%(A), #(A))

of [EGA T,y Proposition 1.6.3, p. 210]. If & = k, then #Z = Oy, and ¢*: h*(Y') — Spec A
is the identity morphism of Y. Now, if R is arbitrary, then the identity map of |Y'| and the
projection in (6.3)) define a morphism of locally ringed spaces §: Y — hA%(Y). On the other
hand, by he sequence induces a surjective homomorphism of W, (k)-algebras
#(A) — A with nilpotent kernel .#Z(A). Thus the morphism ¢: Spec A — Spec Z(A)
induced by #Z(A) — A is a nilpotent immersion. By the functoriality of (6.5]), the following
diagram commutes:

(6.6) Wh(y) — 2" Spec A
ai . ig
RR(Y) Z Spec Z(A).

Since § and ¢ are homeomorphisms, the above diagram shows that ¢ is a homeomorphism
as well. If m > 1, then with Y = D(f) = Spec Ay, where f € A, and Proposition
2.12| together show that ¢ maps the open locally ringed subspace h™(D(f)) of h™(Y)
onto the open subscheme Spec %Z(A)(y) of Spec Z(A). Further,

L(ID(f)], Onnyy) = Z(Ap) = Z(A) ) = T(07(ID(£)]); Ospec ) -

If m = 1, the analogous result holds by . We conclude that o™ is an isomorphism of
locally ringed spaces and, consequently, h”{(Y) is a scheme.

If Y is arbitrary, let {Y;} be a covering of Y by open affine subschemes. By definition,
the restriction of Z(0y) to |Y;| is Z(0y,). Thus h™(Y) is obtained by gluing the affine
R-schemes hR(Y;), whence h™(Y) is an 9R-scheme, as claimed. Consequently, if Y’ is an

open subscheme of Y, then A%(Y”) is an open subscheme of h*(Y). Finally, the assertion
on closed subschemes follows from (2.25)). O
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It follows from the above proof that if A is a k-algebra, then

(6.7) h?(Spec A) = Spec Z(A).
In particular, h?Y(Spec k) = SpecR. Thus there exists a covariant functor
(6.8) R%: (Sch/k) — (Sch/R), Y — B(Y),

which respects open, closed and arbitrary immersions as well as Zariski coverings.
Now, for every fR-scheme Z, consider the contravariant functor

(6.9) (Sch/k) — (Sets), Y — Homgy(h™'(Y), Z).

Proposition-Definition 6.10. For every R-scheme Z, the functor is represented
by a k-scheme which is denoted by Gr™(Z) and called the Greenberg realization of Z. The
assignment

(6.11) Gr™: (Sch/M) — (Sch/k), Z+— Gr™(Z),
is a covariant functor called the Greenberg functor associated to R, and the bijection
(6.12) Homy, (Y, Gr”'(Z)) ~ Homw (WY, Z)

is functorial in the variables Y € (Sch/k) and Z € (Sch/R). If Z is of finite type
(respectively, locally of finite type), then Gr™(Z) is of finite type (respectively, locally of
finite type).

Proof. The proof of [Grell, Theorem, p. 643]E| shows that, if Z is (locally) of finite type
over R, then Gr™*(Z) exists, is (locally) of finite type over k and the bijection is
bifunctorial. In [Grel], Gr®(Z) is constructed in a number of steps from the particular
case

(6.13) Gr™(A%) = %7,
where d > 0 (see [Grell, Proposition 3, p. 638] for this particular case). The same construc-
tion can be used to define Gr%\(Z ) for any Z via possibly infinite-dimensional affine spaces,
as follows. Let {x;};cs be a (possibly infinite) family of independent indeterminates and
set A(ZQ = SpecR[{z;}ie1]. Standard facts on projective limits show that
G (AY) = lim G(AY)) =~ ln 7
Jcr JCI

where the limits range over the family of finite subsets .J of I and |.J | denotes the cardinality
of J. ]

The above proof shows that the k-scheme Gr®(Z) agrees with the realization con-
structed in [Grell Proposition 7, p. 641] when Z is of finite type over R. Further

(6.14) Gr™(Spec R) = Speck.
In addition, for every R-scheme Z and k-algebra A, (6.7) and (6.12)) yield a bijection
(6.15) Gr(2)(4) = Z((4),

2 Note that in [Grell [Gre2] ™ and Gr™ are denoted by G and F, respectively.
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where Z(#(A)) = Homwn(Spec Z(A),Z). More generally, let 7' be an PR-scheme, Z a
T-scheme and Y a Gr®(T')-scheme. Then the adjunction formula (6.12) yields a canonical
bijection

(6.16) Hom 007 (Y, Gr*(2)) = Homp (h(Y), Z).

Remarks 6.17.

(a) Both h* and Gr* are the identity functors on (Sch/k).

(b) The functor transforms affine JR-schemes into affine k-schemes and respects
open, closed and arbitrary immersions. Further, if {Z;} is an open covering of an
M-scheme Z, then the open subschemes Gr¥(Z;) cover Gr™(Z). The proofs of the
preceding statements are similar to the proofs of the analogous results in [Grel],
using possibly infinite-dimensional affine spaces.

(c) Assume that R is a finite k-algebra and let Z be an P-scheme. Since |Y| =
Y Xspeck Spec R| for every k-scheme Y, (2.3)) yields

(6.18) A(Y) = Y Xspec Spec R.
Thus, in this case, is the left adjoint of the Weil restriction functor Resg/y
(see Section Consequently, Gr”* = Res g .
(d) The functor (6.11)) respects fiber products (the proof of this fact is similar to that
in [Grel, Theorem, p. 643]). Consequently, Gr™ defines a covariant functor from

the category of fR-group schemes to the category of k-group schemes. Further,
there exists a canonical isomorphism of k-ring schemes Grm(@)m) =4%.

(e) Let Y be a k-scheme and let h?(Y) denote the special fiber of h”™(Y"). Note that
the ideal sheaf which corresponds to h™(Y)s is M Z(Cy). Then the composition

ROV MR Oy) — ROy |A(Oy) S Oy

(see (2.17) and (6.3))) induces a nilpotent immersion of k-schemes ¢y : Y — h¥(Y),.
If R is a k-algebra, then ¢y is an isomorphism for every Y. See(2.6) and Remark
2211

7. THE GREENBERG FUNCTOR OF A TRUNCATED DISCRETE VALUATION RING

The definitions and constructions of the preceding Section apply, in particular, to the
truncated discrete valuation rings R = R,, of Section [3 where n € N. Let
(7.1) hlt = hft»: (Sch/k) — (Sch/R,), Y = (|Y|,%n(Oy)),

be the functor associated to R = R, = R/m" and let Gr® = Grf» be its right
adjoint. Then Gr.' is called the Greenberg functor of level n associated to R. For every
k-scheme Y and every R,-scheme Z, ((6.12)) induces a canonical bijection

(7.2) Homy, (Y, Grf(Z)) ~ Hompg, (RE(Y), Z).

Lemma 7.3. Let n € N and let Z be an R,,-scheme.
(i) If A is a k-algebra, then Crl¥(Z)(A) = Z(%,(A)).
(ii) If k'/k is a subextension of k/k and R’ is the extension of R of ramification index
1 which corresponds to k'/k, then Gr2(Z)(k") = Z(R)).

n
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Proof. Assertion (i) follows from and (ii) follows from (i) using Lemma [4.2] O

Remark 7.4. If R = W(k), then %Z, = W,, and hE(Y) = W, (Y) for every k-scheme Y,
where W,,(Y') is the scheme defined in [III, §1.5]. More generally, assume that R/W (k) is
totally ramified of degree € and let Y be any k-scheme such that the absolute Frobenius
morphism of Y is a closed immersion. By Remark (b) and the fact that is local
for the Zariski topology, we have

(7.5) hE(Y) = Wi (Y) X, k) Sns

where m = [n/é | . We call attention to the fact that (7.5} . ) does not hold for arbitrary
k-schemes Y. In particular, the formula in [BLRI, p. 276, line -18] is incorrect, as previously
noted in [NS| p. 1592]. Note, however, that is indeed valid for every Y provided
n = me, as follows from Lemma [£.4]

Example 7.6. Let k be a field of positive characteristic p and let R ~ k[[t]]. By Remark
(6.17)(c) and [BLRI §7.6, proof of Theorem 4, pp. 194-195], Grf(Aan) = ResRn/k(Aan) =
A". On the other hand, by (6.18), we have hf}(A7) = A . Now (7.2)) or, equivalently,
Appendix (A.1)), yields a canonical morphism
hyi(Gry (Mg, ) — A,

which is induced by the ring homomorphism ¢™: R,[z] — Ryu[zo,..., %, 1] given by
the formula ¢ (z) = Y0 a;t’. Since t/ = 0 in R, for j > n, we have ¢ (2P) =
ZL(n Vel g Ptir. We conclude that

(7.7) Grl(Spec (R, [z]/(2P))) =~ Spec (k[xo, . . ., 2n_1]/(zF,i < (n —1)/p)).
Compare with [BLR] §7.6, proof of Proposition 2(ii), pp. 193-194]. In particular, (7.7) is
not a finite k-scheme for any n > 2.

8. THE CHANGE OF RINGS MORPHISM

We return to the setting of Section @ Thus R is a local finite W}, (k)-algebra with
residue field k.

Let J be a nilpotent ideal of R, write SR’ for the artinian local ring R/J and let £’ be
the corresponding Greenberg algebra. Let X be an PR-scheme and write X’ for Xg/. If A
is a k-algebra, the canonical homomorphism Z(A) — #2'(A) induces a map X (Z(A)) —
X'(%'(A)) and thus a map Gr¥(X)(A4) — Gr¥(X')(A) (6.15). In particular, there exists
a morphism of k-schemes

(8.1) o G (X) — G (X)
which is called the change of rings morphism associated to X. By (|6.14]), we have
R,R

QSpeciR 1Speck
Further, if J is an ideal of R which contains J and R” = R/J, then

9;{ m// m/ m// m %l
(8.2) ox" = Oox/ ooy .
In particular, if R is a complete discrete valuation ring and R,4; and R, are the

Rn-&-w R'n

truncations associated to a pair of integers n > 1,7 > 0, then o, is defined for every
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Ry i-scheme Z. The preceding map will be called the change of level morphism associated
to Z and denoted by

(8.3) QTiL,Z3 GTEH(Z) - Grf(Z),

where we have written Gr(Z) for Gr%(Zx g, ..Spec R,,).

n—+1i

For every k-scheme Y and fR-scheme Z, let
(8.4) ©3 7+ Homy, (Y, Gr”(2)) 5 Homup (R(Y), Z)

be the bijection (6.12). Now recall the schemes A%(Y) and A%(Y) introduced in Section
[6] and the surjective morphism (of Zariski sheaves on Y') Z(0y) — %'(0y) with nilpotent
kernel #(Oy) (see (6.2]) and (2.24])). The preceding map induces a nilpotent immersion

(8.5) S B () = (Y

which is functorial in Y. By standard applications of the adjunction isomorphisms (|8.4))
for R and R’ (see [BGA2, Section 9] for more details), the following holds.

Proposition 8.6. Let Y be a k-scheme, X an RM-scheme and u: Y — Gr™(X) a mor-

phism of k-schemes. Then Q;“)?’Wou is the unique morphism of k-schemes a: Y — Grm/(X’)
such that the diagram

, o3 (a)
R (Y) o X'
5)9?72}{/ i/ \LPTX
R ‘Pyyx(u)
h(Y) X
commautes. O

We now discuss the functoriality of the assignment X +— gg‘;’ml.

Let f: Z — X be a morphism of fR-schemes and write f': Z' — X' for fx,. By
definition of the change of rings morphism ({8.1)), the following diagram commutes

9%”,9R%/

(8.7) ar¥(z) —~ (2
Grm(f)i iGr“'(f’)
Q?’m/ ’
Cri(X) Gr¥(X").

In particular, if X is an fR-group scheme, then the change of rings morphism (8.1) is a
morphism of k-group schemes.

Proposition 8.8. Let f: Z — X be a formally étale morphism of R-schemes. Then
the diagram (8.7)) is cartesian. Consequently, there exists a canonical isomorphism of
k-schemes

Cr(Z) = Gr™(X) x

GrV(x) ar(2').
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Proof. It suffices to check that (8.7)) satisfies the required universal property on A-sections
for every k-algebra A. This follows from (6.15) since

Hom x (Spec Z(A), Z) — Homyx (Spec Z'(A), Z),v — v o (558)2’2;14,

is a bijection by (2.22)), (2.24) and the assumption on f. O

Corollary 8.9. Let f: Z — X be a formally étale morphism of R-schemes. Then there
exists a canonical isomorphism of k-schemes

Gr(2) = Zsx x,Gr(X).
Consequently, Gr™(f): Gr¥(Z) — Gr¥(X) can be identified with fsxx, Gr¥(X).

Corollary 8.10. Let Z be a formally étale R-scheme. Then the change of rings morphism
g?’% : Gr™(Z) = Gr™(Z') is an isomorphism.

Next we derive some properties of the change of rings morphism.

Proposition 8.11. Let Z be an R-scheme. Then Q?7%/Z GrN(Z) — Gr™(Z') is affine.

Proof. Recall that Z' — Z is a nilpotent immersion. Let U be an open subscheme of Z
and let U’ be the corresponding subscheme of Z’. By Proposition

(QQZR’m/)_l(Grm’(U/)) = Gr"'(2) e (1) Gr™M(U') = GrY(U).

Since the functor Gr® maps open affine coverings to open affine coverings (see Remark
6.17(b)), the proposition follows. O

Proposition 8.12. Let Z be a formally smooth R-scheme. Then the change of rings
morphism ,Q?’m . GrN(Z) = Gr™(Z) is surjective.

Proof. By definition of g?’ml, it suffices to check that the natural map Z(#Z(A4)) —
Z'(#'(A)) is surjective for every k-algebra A. This follows from the universal property
of formal smoothness, since Z(A) — Z'(A) is a surjective map with nilpotent kernel by

and (221). 0

9. BASIC PROPERTIES OF THE GREENBERG FUNCTOR

We keep the notation of the previous Section. In this Section we discuss properties of
schemes/morphisms which are preserved by the functor Gr™? (properties that are not pre-
served by Gr™ include flatness, properness and finiteness, for which the reader is referred
to [BGA2, Examples 11.10]).

Proposition 9.1. Let Z be a quasi-projective R-scheme. Then Grm(Z) 18 a quasi-projective
k-scheme.

Proof. The commutativity of diagram for X = Spec A shows that the structure mor-
phism Gr®(Z) — Speck factors through the change of rings morphism g?’k: Gr(2) —
Zs, which is affine and of finite type by Proposition [8.11] Thus, since Zs — Speck is
quasi-projective, Grm(Z ) — Spec k is quasi-projective as well. O
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The preceding result is new in the unequal characteristics case. In the equal charac-
teristic case, the Greenberg functor of level n coincides with the Weil restriction functor
Resg,, /i and the corresponding result is a particular case of [CGP, Proposition A.5.8].

Proposition 9.2. Consider, for a morphism of schemes, the property of being:

(i) quasi-compact;

(ii) quasi-separated;

(iii) separated;
(iv) locally of finite type;
(v) of finite type;

(vi) affine.
If P denotes one of the above properties and the R-morphism f: X — Y has property P,
then the k-morphism Gr2(f): Gr™(X) — Gr™(Y) has property P as well.

Proof. Recall diagram (8.7) with ' = R/M = k:

QiR,k
Gri(x) —= X,
Grm(f)\L QER,k l/fs
Cri(y) —= Y.

By Proposition the horizontal morphisms in the above diagram are affine and there-
fore separated and quasi-compact. Thus (i) follows from the diagram using [EGA T,eyk
Propositions 6.1.4 and 6.1.5(v), p. 291]. To establish the proposition for properties (ii) and
(iii), assume that the diagonal morphism Af: X — XxyX is quasi-compact (respectively,
a closed immersion). Then, by Remarks|6.17, (b) and (d), and the first part of the proof,

G (Ay) = Agpy: Cr(X) - Gr{(X) XarR(y) Cr(X)

is quasi-compact (respectively, a closed immersion). Since Gr™ respects open and closed
immersions, to prove the proposition for property (iv) we may assume that ¥ = Spec B
and X = A‘fg, where B is an R-algebra. In this case f is the map Aﬁlﬁ Xm Spec B — Spec B,
whence (by Remark d)) Gr?(f) is the base change along Gr”(Spec B) — Speck of
the canonical morphism #Z¢ — Spec k, which is clearly a morphism of finite type. The
proposition holds for property (v) since it holds for properties (i) and (iv). Finally, by
Remark (b), Gr™(Y) is covered by affine open subschemes of the form Gr™(U), where
U is an affine open subscheme of Y. Since Gr¥(X) X (v) G U) = G (X xy U) is
affine, the proof is complete. O

Proposition 9.3. Let f: Z — Z' be a formally smooth (respectively, formally unram-
ified, formally étale) morphism of R-schemes. Then the induced k-morphism GrY(f):
Gr™(Z) — Gr™(Z') is formally smooth (respectively, formally unramified, formally étale).

Proof. We need to show that, if Y = Spec A is an affine scheme and J C A is a nilpotent
ideal, then the canonical map

Hom 2y (Spec 4, cr{(2)) — Hom 4y (Spec (A/J), cri(2))
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is surjective (respectively, injective, bijective). By and , the above map may
be identified with the map Homy (Spec Z(A),Z) — Homy (Spec #(A/J), Z), which is
surjective (respectively, injective, bijective) since the kernel of Z(A) — Z(A/J) is a
nilpotent ideal by Lemma [2.26 g

Corollary 9.4. Let f: Z — Z' be a smooth (respectively, unramified, étale) R-morphism.
Then Gr™(f): Gr¥(Z) — Gr™(Z") is a smooth (respectively, unramified, étale) k-morphism.

Proof. This follows by combining the proposition and Proposition (iv). O

It follows from Proposition [0.2{(vi) that, if (Z)) is a projective system of 9R-schemes
with affine transition morphisms, then so also is (Gr”(Zy)) and I‘LnGrm(Z \) exists in the
category of k-schemes. Thus, by and the universal property of projective limits, we
obtain the following statement.

Proposition 9.5. The functor Gr™ commutes with the formation of projective limits of
schemes with affine transition morphisms.

10. WEIL RESTRICTION AND THE GREENBERG FUNCTOR

For n € N let R, be the n-th truncation of a complete discrete valuation ring R and
recall S, = SpecR,,. Recall also the functors hZ and GrZ introduced in Section If
R’ is an extension of R, let k' /k denote the corresponding residue field extension and set
S’ = Spec R'.

Lemma 10.1. Let R’ be a finite extension of R of ramification index e. Then, for every
k-scheme Y,
(V) X5, Sne = hi(Yxx Speck’)

Proof. Since h% is local for the Zariski topology, we may assume that Y = Spec A. In this
case hf(Y') = Spec %, (A) (6.7) and the lemma follows from Lemma O

The following is the main result of this section. For the meaning of the term “admissi-
ble”, see Definition [A.6]

Theorem 10.2. Let R’ be a finite extension of R of ramification index e. If Z is an S}, -
scheme which is admissible relative to S,, — Sn, then Res (Grﬁé(Z)) and Resg: ss,(Z)
ezxist and

(103) Resk//k (Grff’;(Z)) = GI‘T}E(RGSS;w/Sn(Z)).
Proof. By Lemma Z xg; S| is admissible relative to k'/k. Thus, since
Grfe’(Z) — Gr{%/(ZXST/Le Sll) = ZXS/LE S{

is an affine morphism of k’-schemes by Proposition Grff;(Z ) is admissible relative to
k'/k. The existence assertions now follow from Theorem @ On the other hand, (|10.3)
follows from Lemma using the adjunction formula @ , the definition of the Weil
restriction functor and Yoneda’s lemma. U
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Remark 10.4. In the equal characteristic case ((10.3)) is a particular case of the well-known

transitivity of the Weil restriction functor (A.3)). On the other hand, Remark[A.7|(a) shows
that the admissibility condition on Z is satisfied if Z is quasi-projective over R),..

Proposition 10.5. Let R’ be a finite and totally ramified extension of R of degree e and
let Z be an arbitrary S, -scheme. Then Resg /s,(Z) exists and

Grﬁ(ReSS{Le/Sn(Z)) == Grfe(Z).
Proof. The existence assertion is Remark The formula now follows as in the proof
of Theorem [10.2) O

The behavior of the functor GrZ under finite extensions of R was discussed in [NS|,
Theorem 3.1] for R,-schemes of finite type. We now extend the indicated theorem to
arbitrary R,-schemes.

Proposition 10.6. Let k'/k be a subextension of k/k and let R’ be the extension of R of
ramification index 1 which corresponds to k'/k. Then, for every S,-scheme Z, there erists
a canonical isomorphism of k'-schemes

Gr2(Z) x;, Speck’ = Grff/(ZxSnS/l).

Proof. By Lemma we have Z,(A) = %), (A) for every k'-algebra A. Thus, for every
k’-scheme T, there exists a canonical isomorphism of Sp-schemes hZ'(T) = hE(T). The
proposition now follows from ((6.12]). O

Proposition 10.7. Let R’ be a finite extension of R of ramification index e. Then, for
every Sy-scheme Z, there exists a canonical closed immersion of k’-schemes

Gr2(Z) xj Speck’ — Grfel(Z XS, She)
which is an isomorphism if e = 1.
Proof. The indicated map is an isomorphism if e = 1 by Proposition If Z is of finite
type over S, the proposition was established in [NS, Theorem 3.1]. The method used in

[loc.cit.] easily extends to arbitrary Sp-schemes Z provided the finite-dimensional affine
space Ajl\én considered in [NS| proof of Lemma 3.5, p. 1598] is replaced by the affine space

Agr)b introduced in the proof of Proposition-Definition [6.10 U

11. THE CHANGE OF LEVEL MORPHISM FOR SMOOTH GROUP SCHEMES

Let R be a complete discrete valuation ring and let G be a smooth R-group scheme.
Let r > 1 and i > 0 be integers. By Remark [6.17(d) and Corollary the change of level

morphism (8.3))
(11.1) ol Git (G) — Gr(G)
is a morphism of smooth k-group schemes, where Gr*(G) = Gr2(G x g S,,). Further, by

®.2),

o
(11.2) 01G = 0r.G 0 0 a
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In this Section we will describe the kernel of (11.1). To this end, let le /R = c* Qé IR

where €: Spec R — G is the unit section of G. When i = 1, the kernel of (11.1)) is
described by Corollary namely if Fj, denotes the Frobenius endomorphism of Spec k

when chark = p > 0 and V(w),_, )" ) = V((F™")"wl, ), then

V(we, /r) if char R = chark,

11.3) Kerpl o= m—
8 Ko=) e e, o — [ ]

Proposition 11.4. Let G be a smooth R-group scheme and let r,i be positive integers.
Then e (11.1)) is a smooth and surjective morphism of k-group schemes and Ker 0. 1S
smooth, connected and unipotent.

Proof. By Propositions and and Corollary Qﬁ’G is an affine surjective mor-
phism of smooth k-group schemes. Now ((11.3]) shows that g%’G is smooth and the smooth-

ness of Q:, ¢ for arbitrary ¢ follows by induction from (11.2)). In particular, Q}; ¢ is faithfully
flat and the sequence

(11.5) 1 — Kergl. g — Gr%,(G) 28 Grf(@) — 1

is exact for the fppf topolgy on (Sch/k). It remains to check that U = Kerg}i,G is
connected and unipotent. By (11.3)), this is the case if i = 1. The proposition now follows
by induction since there exist exact sequences for the fppf topology on (Sch/k)

T —

where u = Qi+1,G X GrR(@) Speck. O

Note that (2.4), (2.10) and (6.13)) yield a (non-canonical) isomorphism of k-schemes
(11.6) R (V(wh ) S AT,

where d = dim Gs. Further, if either i < € = v(p) or char R = chark, then ([11.6) is induced
by an isomorphism of k-group schemes

(11.7) Gri(V(w p)) = Gy

We will now define, for an arbitrary R-group scheme G, a canonical morphism of k-group
schemes

(11.8) q),iG: GrlR(V(wé/R)) — Kergi’G (1<i<r)

and show that it is an isomorphism under certain conditions.

For every k-algebra A, set B = %#,,(A) and J = .4 ;(A). By and (3.9)), we
have J2 = 0 and %, (A) is isomorphic to B/.J. Also recall that, by definition, gf (A4) can
be identified with the canonical map G(B) — G(B/J) and therefore also with the map
Gp(B) — Gp(B/J). Thus there exists a canonical isomorphism of groups

(11.9) Kergi}G(A) 5 HomB_mod(leB/B,J),
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where wéB/B = F(Spec B,wIGB/B) [DG, Theorem 3.5, p. 208]. On the other hand, we
may make the identifications

GrlR(V(le/R))(A) = V(wéc/c)(C) = Homc_mod(lec/C, C)= HomB_mod(leB/B, ),
where C' = %;(A). Now recall the homomorphism of B-modules ¢, ,(A4): C — J (3.14).
Under the above identifications, Hom B_mod(wéB /B ©r+ir(A)) can be identified with a map
(11.10) GrlR(V(wIG/R))(A) — HomB_mOd(fwéB/B, J).

Composing the preceding map with the inverse of (11.9)) and letting A vary, we obtain the

canonical morphism of k-group schemes ‘IJ;"G 11.8: .

Proposition 11.11. Assume that R is an equal characteristic ring and let G be a smooth
R-group scheme. Then the map % (11.8) is an isomorphism of k-group schemes. Con-

sequently, Kergi’G is (non-canonically) isomorphic to Gfldk, where d = dim Gs.

Proof. By Proposition ©ryir(A) is an isomorphism for every k-algebra A. Con-
sequently, the map (11.10)) is an isomorphism for arbitray A and therefore <I>TZ,,G is an

isomorphism. The proposition now follows from (11.7)). O

Proposition 11.12. Let R be a ring of unequal characteristics (0,p) and let G be a smooth
R-group scheme. Then the map @;{G s an isogeny of smooth, connected and unipo-
tent k-group schemes. Its kernel is an infinitesimal k-group scheme which is trivial if
r+i<eée=uv(p). Further, ifi <e, then Kergfn,G is (non-canonically) isomorphic to Gflflk,
where d = dim Gs.

Proof. By and Proposition Gri{(V(wg, / r)) and Ker gf‘?G are smooth, connected
and unipotent k-group schemes. On the other hand, by Proposition ©r4ir(A) is an
isomorphism of abelian groups if 7 +i < € and A is any k-algebra or if r +¢ > € and
A is perfect. Thus ®, ¢ is an isomorphism if r +4¢ < €. When r +14¢ > €, the maps
and <I>7f'7G(A) are isomorphisms of abelian groups for every perfect k-algebra
A. Consequently (Ker <I>7?7G)(E) = Ker (<I>7f7G(E)) = {1} and <I>7f7G(E) is surjective. Thus
Ker <I>Ti7G is an infinitesimal k-group scheme and @f’G is faithfully flat. The last assertion
of the proposition follows from . O

Remark 11.13. The infinitesimal k-group scheme Ker <I>7fG of Proposition |11.12 can be
nontrivial. In effect, let R = W(k) and G = G4, r. Then Ker CIJ%’ ¢ is isomorphic to the
infinitesimal k-group scheme «, since, for every k-algebra A, the map @] (A) may be

identified with the map ¢21(A4): A — VW3(A4),a — (0,aP) (see Remark [3.16(a)). In
particular, [Bég, Lemma 4.1.1(2), p. 37] is false. See also Remark below.

The preceding considerations yield the following exactness result.

Proposition 11.14. Let 1 — F — G 4 H — 1 be a sequence of smooth R,-group
schemes. Assume that F = Ker(q) and q is quasi-compact and surjective. Then the
induced sequence of smooth k-group schemes 1 — GrE(F) — GrB(G) — GrE(H) — 1 is
exact.
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Proof. The indicated sequence is left-exact since Grf has a left-adjoint functor. Since
Grl(q) is smooth, it remains only to check that GrZ(q) is surjective. The case n = 1
is clear. The surjectivity of g5 and show that the induced morphism Kerg}ﬂ a—
Ker Q%’ 5 s surjective for every r > 1. The surjectivity of Gr%¥, (¢) now follows by induction

from the surjectivity of Grff(q) and the surjectivity of the change of level morphisms Q}LG
and Q}h  established in Proposition O

Corollary 11.15. Let G be a smooth R-group scheme. Then
(i) dim Gr®*(G) = ndim Gs.
(ii) GrR(Q) is connected if, and only if, Gy is connected.
(iii) GrE(GY) = GrE(@)°.
(iv) Gri(m0(G)) = mo(Gry(G)).
Proof. Assertion (i) follows by induction from and and (ii) follows from

Proposition Now, since G is an open subgroup scheme of G, (iii) follows from (ii)
and Remark |6.17|(b). Finally, (iv) follows from (iii) and Proposition [11.14] O

The results of this Section can also be proven for smooth R,-group schemes, provided
the integers r, 7 appearing in the first three propositions satisfy the condition r + ¢ < n.

12. THE PERFECT GREENBERG FUNCTOR

Let R be a discrete valuation ring with perfect residue field k of positive characteristic p
and write (Perf/k) for the category of perfect k-schemes. The inclusion functor (Perf/k) —
(Sch/k) has a right-adjoint functor (Sch/k) — (Perf/k),Y + YPf where YP! is the inverse
perfection of Y, defined as the projective limit over N of copies of Y with all transition
morphisms equal to the Frobenius endmorphism of Y. See [BGA| §5] for more details.

If n € N, the perfect Greenberg functor of level n (associated to R) is
Grl': (Sch/R,) — (Perf/k), Zw— GrF(z)P.

Analogs of Propositions 110.5} [10.6] and [10.7] with GrZ in place of Grf are easily
established. Further, since the perfection functor preserves exact sequence of smooth k-
group schemes by [BGA] Theorem 6.1], Proposition [11.14{ holds also when GrZ is replaced
with Gr.t.

Remark 12.1. Since the perfection of an infinitesimal k-group scheme is the trivial k-group
scheme [BGAl Lemma 5.20], Propositions|11.11{and [11.12|show that the perfection of the
canonical morphism of k-group schemes @ (11.8) is an isomorphism for every smooth
R-group scheme G. It follows from the above that, despite the fact that the possibly non-
trivial infinitesimal kernel of <I>7f7 ¢ 1s ignored in [Bég| (see Remark , the indicated

oversight had no consequences for the validity of the main results of [Bég].

We will write R™ for the extension of R of ramification index 1 which corresponds to
T/

Proposition 12.2. Let 0 — F i> G — H — 0 be a complex of commutative R, -group
schemes, where G and H are smooth. Assume that
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(i) f is quasi-compact,
(ii) mo(G)(R)") is a finitely generated abelian group, and
(iii) the induced sequence of abelian groups 0 — F(R}) — G(R}*) — H(RJ') — 0 is
exact.
Then the induced complex of perfect and commutative k-group schemes

0 — GrlY(F) - Grl(G) —» GrE(H) =0
is exact for the the fpqc topology on (Perf/k).
Proof. By (iii), Lemma ii) and Corollary the sequence

0 — Gr{(F) = Gr®(@) — G (H) = 0
is a complex of commutative k-group schemes such that the sequence

0 — Gr(F) (k) — Grf(G) (k) — Grf(H) (k) — 0

is exact. Thus the proposition will follow from [BGAL Proposition 6.3] once we check
that the following additional conditions hold: (a) GrZ(f): Gr¥(F) — Gif(G) is quasi-

compact, and (b) GrZ(G) — Gr'(H) is flat. Condition (a) follows at once from (i) and
Proposition On the other hand, by Corollary [I1.15(iv), Lemma [7.3(ii) and Lemma

we have

mo(GrH(G)) (k) = o(@)) (k) = mo(G) (R,
which is finitely generated by (ii). Thus since Gr, (G)(E) — Gr (H)(k) is surjective, we
conclude from Lemma that Gr(G) — GrF (H ) is flat, i.e., (b) holds. O

13. THE GREENBERG REALIZATION OF AN ADIC FORMAL SCHEME

We continue to assume that R is a complete discrete valuation ring with perfect residue
field in the unequal characteristics case. Let & = S be the formal completion of S along
S1 = Spec k. We will write (Ad-For/&) for the category of adic formal &-schemes, whose
objects are (also) adic in the (non-standard) terminology of [Abl Definition 2.1.16, p. 121].
By the equivalence of [AD, Proposition 2.2.14, p. 130], we have X = hg%n for every adic
G-scheme X, where X,, = (|.Z7|, Ox/m"O%) for n € N. Further, for every G-adic scheme
% we have

Homg (x7 2)) = 1&1 HOmSn(xnﬁ Q.)n)

Now set

(13.1) crf(x) = arf(x,)
and define

(13.2) Grf(%X) = lim Gr}(%),

where the transition morphisms are the change of level morphisms, which are affine by
Proposition Then Grf(X) is a k-scheme and Gr™(&) = Speck by (6.14). We now
generalize the adjunction formula .

Let Y be a k-scheme. Recall the R,-schemes h2(Y) = (|Y|,%,(0y)) and the nilpotent

immersions 5Z =t — 5R“RJ RE(Y) — h?(Y) (8.5)), where 1 <4 < j. Then
R () = ting FE(Y)
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is a formal G-scheme equal to (|Y |, Z(0y)), where Z(0y) is the Zariski sheaf on Y defined
by
%(ﬁy) = l&l%n(ﬁy)
In particular, if U = Spec A is an affine subscheme of Y, then (5.1) and (6.1)) yield
(13.3) (U, %(6y)) = %(A)

and hf(U) = SpfZ(A). Further, it R = W (k) then, using (13.3), hF(Y) = W(Y) is
the formal scheme considered in [III, §1.5, p. 511]. Note that, as illustrated in Remark
3.13|(b), the inclusion (VW,(Oy))™ C V™(W,(Oy)) can be strict, whence W (Y') is not, in
general, an adic formal scheme. However, combining Remarks and [3.13|(c)-(d), (7-2)
and [EGA T,y Corollary 10.6.4 p. 414], the following holds.

Proposition 13.4. Let Y be a k-scheme and let X be an adic formal S-scheme. Assume
that

(i) R is an equal characteristic ring, or
(ii) R is a ring of unequal characteristics and'Y is a perfect k-scheme.

Then bR(Y) is an adic formal G-scheme and there exists a canonical bijection

Homy (}/7 GrR(%)) = Hom (Ad-For/6) (hR(Y)a x) O

Consequently, if R is an equal characteristic ring, then the functor Gr't: (Ad-For/6) —
(Sch/k) is right adjoint to hf: (Sch/k) — (Ad-For/&). The corresponding statement in
the unequal characteristics case is false. However, the following generalization of [NS2|
line 10, p. 256] is valid.

Lemma 13.5. Let X be an adic formal &-scheme and let A be a k-algebra which is as-
sumed to be perfect if R is a ring of unequal characteristics. Then Grf{(%)(A) = X(Z(A)).

Proof. The lemma is immediate from (|13.3)) and Proposition m O

Proposition 13.6. Consider, for a morphism of formal schemes, the property of being:
(i) quasi-compact;
) quasi-separated;
) separated;
) a closed immersion;
) affine;
) an open immersion;
(vii) formally étale.
If P denotes one of the above properties and f: X — 2 is a morphism of adic formal
G-schemes with property P, then the morphism of k-schemes Grf(f): Gr®(%) — Grf ()
has property P as well.

Proof. If P denotes one of properties (i)-(v) and f has property P, then each f,,: X, — D,
has property P by [FK|, Propositions 1.6.9, 4.6.9 and 4.4.2]. Consequently, GrR(f) has
property P by [BGAl Proposition 3.2], Remark (b) and Proposition In the case
of properties (vi) and (vii), a different argument is needed since a projective limit of open
immersions may not be an open immersion. If f has one of the indicated properties,
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then each f, is formally étale. Thus Corollary [8.9) shows that GrZ(f,) and Grf{(f) can
be identified with fi xg, GrZ(9) and f; X9, GrY(Q), respectively. Thus, since fi is an
open immersion (respectively, formally étale), Gr'( f) is an open immersion (respectively,
formally étale). O

Proposition 13.7. Let X and Q) be adic formal G-schemes. Then there exists a canonical
isomorphism of k-schemes

Gri(x xe ) = Grf(%) x;, GrE(D).

Proof. By [FK], Corollary 1.3.5, p. 267], X xg9Q) = hén (X5 %5, Dn). Thus the proposition
follows from Remark [6.17|(d) and the fact that {(n,n): n € N} is cofinal in N x N. O

In particular, if X is an adic formal &-group scheme, then GrR(%) is a k-group scheme.
We will now discuss the behaviour of Gr’® under Weil restriction.

Let R — R’ be an extension of complete discrete valuation rings and let &’ — & be the
corresponding morphism of adic formal schemes. Let X’ be an adic formal &’-scheme. We
will say that the Weil restriction of X' along &' — & exists if the contravariant functor
(Ad-For/S) — (Sets),T — Homg/ (T xg &',X’), is represented by an adic formal &-
scheme Resg /e (X’) (which will then be called the Weil restriction of X' along &' — &).

Proposition 13.8. Let R’ be a finite extension of R of ramification index e with residue
field k' and let X' = hgl.'{é be an adic formal &'-scheme such that X, is admissible

relative to S, — S, for every n > 1 (see Definition . Then Resgr e (X') and
Resp//, (GrRl(.’{’)) exist and

GrR(ReSG//G (f{')) = Resy (GrRl(.’{’)).

Proof. By Theorem Resgr /g, (X)) exists for every n € N. Further, by (A.2) and
(A.11), Resgr /s, (X)) = Resgr /s, (Xpe) Xs, Sy for 1 <r <n. Thus

(139) RGSGI/g (3’:/) dgf. theSShe/Sn(%;Le)

is the Weil restriction of X’ along &’ — &. Now, by (13.1), Theorem and Proposition
we have

GI'R(RGSGI/G (x") = @Resk//k((}rﬁé(%ge)) = Resk//k(GrR/(%')),
neN

as claimed. O

Remark 13.10. Recall that, if R’/R is a finite and totally ramified extension of degree e
and X' = hgfﬂb is an adic formal &’-scheme, then Proposition yields a formula

ne

Gr® (%') = Grﬁ (Ressée/gn (%’))

for every integer n > 1, where Resg: /g, (x7) def. Resgs /s,(X). In particular, if n =
1, then Grf (X') = Respy,(X’), which generalizes [NS, Theorem 4.1]. Note that the

hypothesis “nice” (i.e., admissible) in the statement of [NS, Theorem 4.1] is unnecessary.
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Proposition 13.11. Let k’/k be a subextension of k/k and let R’ be the extension of R
of ramification index 1 which corresponds to k'/k. Then, for every adic formal &-scheme
X, there exists a canonical isomorphism of k'-schemes

Grf(%) xspeck Speck’ = Gri(% xg &').
Proof. Set S" = SpecR'. Since X Xg &' = lim (X, xg, 5,) by [FK| Corollary 1.3.5,

p. 267], (13.1) yields Grff,(% xg6') = Grf,(%n x s, Sp). Thus, since Gr}(X) = Grl(X,),
Proposition yields, for every n € N, a canonical isomorphism of k’-schemes

Grf(%) X Speck Speck’ = Grfl(% X & 6’).

The proposition now follows from ([13.2)) noting that projective limits of schemes commute
with base extension. O

The following proposition generalizes [NS, Theorem 3.8].

Proposition 13.12. Let X be an adic formal S-scheme and let R’ be a finite extension
of R with associated residue field extension k'/k. Then there exists a canonical closed
immersion of k’'-schemes

GrR(%) XSpeck Speck’ — GrR/(% X & 6’).
If R'/R has ramification index 1, then the preceding map is an isomorphism.

Proof. The second assertion is a particular case of Proposition [13.11} Let e be the ramifi-
cation index of R’ over R. Since (X Xg & )ne = Xne X3,. Spe = Xn Xs, S, e, Proposition
yields, a canonical closed immersion of k’-schemes

Grf(%) XSpeck Spec k‘, — Gl"fe/(:f XS 6/).
The proposition now follows by taking projective limits [BGAl Proposition 3.2(v)]. O

14. THE GREENBERG REALIZATION OF AN R-SCHEME

Let X be an R-scheme and let X = lim (X xgSy) be the formal completion of X along
X xgSpeck, which is an object of (Ad-For/&). The Greenberg realization of X is the
k-scheme

(14.1) Gri(X) = GrfY(X) =lim G (X),

where Gr(X) = Gr*(X x55,) and the transition morphisms of the limit are the change
of level morphisms thx: Grf (X)) — Grf'(X). The resulting functor Gr®: (Sch/R) —
(Sch/k), X + Grf(X), satisfies Grf{(S) = Speck. Note that, by (14.1), Gr(AL) =
Jim Grlt(AL ) = Wm % = R ~ A(E ), which is not locally of finite type.

Remark 14.2. A proof analogous to that of Proposition shows that Gr’ preserves all
the properties of morphisms of schemes listed there.

The following lemma is an analog of Lemma [7.3]1).

Proposition 14.3. Let X be an R-scheme and let A be a k-algebra which is assumed to
be perfect if R is a ring of unequal characteristics. Then Grf{(X)(A) = X (Z(A)).
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Proof. By and Proposition we may assume that X = Spec B is affine. As-
sume first that R is a ring of unequal characteristics, so that A is perfect. Set Y =
Resg/w(x)(X), which is an affine W(k)-scheme. Then Crf(x) = Gr"®)(v) by Propo-
sition [13.8] Further, by (5.4), @(A) is canonically isomorphic to R ®yy () W(A), which
yields X (Z(A)) = Y(W(A)) by (A1). Thus Gri(X)(A) = X(%(A)) if, and only if,
Gr"®)(v) = Y(W(A)). In other words, we may assume that R = W (k). By and
Lemma ﬁ we have Gr'(®)(X)(4) = X (Spf W(A)), whence it remains to check that
X(SpfW(A)) = X(W(A)). This follows from the universal property of the p-adic com-
pletion. Finally, assume that R ~ k[[t]]. Then, by (14.1), Lemma and Remark [5.3{(a),
we have Gr2(X)(A) = X (Spf A[[t]]). As above, the equality X (SpfA[[t]]) = X(A[[t]])
follows from the universal property of the t-adic completion. g

Corollary 14.4. Let X be an R-scheme which is separated and locally of finite type. Then
Gri(X) (k) = X(R™).

Proof. This follows from ([5.2]) and the proposition. O
Lemma 14.5. If X is a smooth R-scheme, then Gr'¥(X) is a reduced k-scheme.

Proof. Since Xx g5, is smooth over S, for every n, Gr*(X) is smooth over k for every n by
Corollary Consequently, each Gr(X) is reduced and therefore Grf(X) = Jim Gri¥(X)
is reduced as well by [EGAl IV3, Proposition 8.7.1]. O

If k£ is perfect of positive characteristic and X is an R-scheme, the perfect Greenberg
realization of X is the perfect k-scheme

(14.6) Grfi(X) = Gr(x)PL.

Remark 14.7. Assume that R is a ring of unequal characteristics and let X be an R-scheme
such that Respg/y(x)(X) exists. In [Bég, §4.1, p. 36] the author defined the Greenberg
realization of level n of X to be

Gra(X) = Gry/ ®) (Res gy (X) xwr(r) Spec Win(k)).
By (A.2)) and (A.11)), we have
ReSR/W(k) (X) XW(k) Spec Wn(k)) = ReSRné/Wn(k) (X XS Sné),
where € denotes the ramification of R/W (k), whence

(14.8) Cra(X) = G}/ W (Resg,,./w, ) (X X5 Sne))-

Note that, since R/W (k) is totally ramified, Resg,. /w, k) (Xne) exists for every R-scheme
X by Remark [A.12] Thus (14.8) may be taken to be the definition of Gr,(X) when

Resp/w (k) (X) fails to exist. Now observe that, if A is any k-algebra, then
Grn(X)(4) = X (R @w ) Wa(A)).
Indeed, since Rpe = R @y () Wa(k), and Lemma (1) show that
Grn(X)(A) = Resp,../w, (1) (X X5 Sne) Wi(4)) = X(Rne Qw,(x) Wa(A))
= X(R®w@w) Wa(4)),
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as claimed. Next, by Proposition [10.5, (T4.8) may be written as Gr,(X) = Gr&(X). Tt
follows that, if Gr(X) = lglgﬂn(X) is the object introduced in [Bég, §4.1, p. 36|, then

Gr(X) = Grf{(X), where Gr®(X) is the k-scheme (I4.1). Further, if G(X) e Gr(X)Pf

is the perfect k-scheme considered in [loc.cit.] and Grf(X) is the object (14.6), then
G(X) = Grf(X). Regarding the latter functor, [loc.cit., p. 36, line —11] contains the

(unproven) claim that, for every perfect k-algebra A,
Grf(X)(A) = X(R@wu W (A)).
The latter is indeed valid and follows from ((14.6|), Proposition and (5.4)).

The next result applies to commutative R-group schemes.

Proposition 14.9. Let 0 - F — G L H 0 bea sequence of smooth and commutative
R-group schemes. Assume that F' = Kerq and q is quasi-compact and surjective. Then
the induced sequence of smooth and commutative k-group schemes

0 — GrfY(F) — Gr(@) — Gr®(H) = 0
is exact for the fpgc topology.

Proof. By Proposition the induced sequence of smooth and commutative k-group
schemes
G R
0 — Grl(F) — arf(@) Y Gr(H) — 0

is exact. Now observe that, since Grf(q) is smooth, quasi-compact and surjective by
Propositions and Grl(q) is faithfully flat and quasi-compact. On the other hand,
since F = G xS is smooth over S, the transition morphisms of the system (GrZ(F)) are
surjective by Proposition We may now apply [BGA| Proposition 3.8] to complete
the proof. n

If S’ = Spec R', where R/ is a finite extension of R of ramification index e, let & = 3.
More generally, if X’ is an S’-scheme, its formal completion along its special fiber is
X7 =l (X' x5/ 4.

Lemma 14.10. Let R’ be a finite extension of R and let X' be an R'-scheme which is
admissible relative to R'/R (see Definition Then ResG//G(X’) and ResR//R(X')
exist and

RQSG//G()/(\/) = Resp/r(X').
Proof. The R-scheme Res R//R(X’ ) exists by Theorem |A.8 Using (A.11) and Remark

A.7(c), X' x5/ S,, is admissible relative to S, — S, for every n € N. Thus Resg//g ()/(\’)
exists by Proposition m Further, (13.9), (A.2)) and (A.11]) yield

ResG//G()/(\’) = hgr] ReSS/m/Sn(X/ Xgr Svlle) = hﬂ ReS(S/XSSn)/Sn(X/ X8 Sn)
= M(RGSS’/S(X/) XS Sn) = RGSR//R(X,),

as claimed. O
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Proposition 14.11. Let R’ be a finite extension of R with associated residue field ex-
tension k'/k and let X' be an R'-scheme which is admissible relative to R'/R. Then

Respyp(X') and Resy (GrR,(X’)) exist and
GrR(ResR//R(X’)) = Resy (GrR/(X')).
Proof. The R-scheme Resg// g (X ! ) exists by Theorem Now, as noted in the proof of

Lemma each X'x /S, is admissible relative to Sy, — S,. Thus Resyy, (GrR’(X’)) =
Resp// (GrR/()/(\’)) exists and

Res g/, (GrR/(X’)) = GrR(ReSGI/G ()/(\’))
by Proposition m The result now follows from and Lemma g

15. THE GREENBERG REALIZATION OF A FINITE GROUP SCHEME

In this Section R is a complete discrete valuation ring with fraction field K. Recall
S = Spec R.

Let I be a finite and flat R-group scheme. By Proposition and Remark
Grff(F ) = Grﬁ(F XgSp) is an affine and algebraic k-group scheme. Recall that, by
Example Gr'(F) and Gr®(F) = lim Grl'(F) may fail to be finite over k.

Let H! be the schematic image of the change of level morphism g} = Q}% 7 (8.3), which
then factors as

GrR (F) — H} < Gifi(F).

Using Greenberg approximation, we will derive conditions on  and i so that H/ is a finite
k-group scheme. Note that the finiteness of H! implies that of H! for every integer [ > 1.

Lemma 15.1. There exist integers c > 1, d > 0 and M > 0 such that, if r > M, then
Im[F(R¢rtq) = F(Ry)] = Im[F(R) — F(R,)].

Proof. This follows at once from [Gre3, Corollary 1, p. 59], taking there d = sc and
M = max{[(N —d)/c],0}, where s,c and N are the integers in [loc.cit.]. O

Proposition 15.2. Let ¢ > 1, d > 0 and M > 0 be as in Lemma I50 Ifr > M and
i > (c—1)r+d, then H} is finite over k.

Proof. By Proposition [10.6] and faithfully flat and quasi-compact descent, we may assume
that k is algebraically closed. By Lemma (ii), we have H(k) = Im[F(R,+;) — F(R,)].
Thus, by Lemma m 2V (k) = Im[F(R) — F(R,)]. Since F(R) is finite, we

conclude that Hﬁcil Hd(k‘) is finite as well, which yields the proposition. O

The previous result can be strengthened when F' is generically étale, i.e., F' xg Spec K
is étale. In this case wllw/R = E*Q%/R is a torsion R-module and the defect of smoothness
of F is defined by

(15.3) §(F) = lengthp(wpyg)-
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We note that (15.3)) behaves well with respect to extensions of R of ramification index 1
and coincides with the defect of smoothness of F' (at any R"-rational point of F') defined
in [BLRI, p. 65].

Lemma 15.4. Assume that F is generically étale. Then H] is finite over k for every
integer r > 0(F') + 2, where 6(F) is the defect of smoothness of F ([15.3]).

Proof. If F is étale over R (which is the case if chark = 0), then o! in an isomorphism
for all r,7 (cf. Corollary and therefore H! = Fj is indeed finite over k. Assume
now that chark = p > 0. Using the étale-connected sequence of F' and the left exactness
of the Greenberg functor, we may assume that /' = F° has a connected special fiber.
Choose an isomorphism F' ~ Spec(R[X1,...X,]/(®1,...,Py,)) as in [MR, Lemma 6.1,
p. 220]. By adapting the proof of |Gre3, Lemma 2, p. 567], it is possible to show that
c=1,d=06(F)and M = 6(F) + 2 are valid choices in Lemma See [BGA2| proof
of Lemma 16.11] for the details. Since M = 6(F) +2 > d = §(F'), it is then possible to
choose i =r > M = §(F) + 2 in Proposition which yields the lemma. O

We will now discuss the affine k-scheme Grft(F) = Jim Gri(F).

Lemma 15.5. The affine k-group scheme GrR(F) has finitely many points and each of
its residue fields is an algebraic extension of k. In particular, dim GrR(F) =0.

Proof. Let ¢ > 1,d > 0 and M > 0 be as in Lemma |15.1|and let 7 > max{M,d} and ¢t > 0

be integers. Since r > max{M/c’,d/c'}, Proposition [15.2 shows that H:CC:H is a finite
k-subgroup scheme of Gr’t,(F). Set H = im H, e By construction, H is isomorphic

rct

to Grf{(F). The lemma now follows by applying [BGA] Proposition 3.6] to H. O

Proposition 15.6. Assume that k is perfect. Then GrR(F)red is a finite and étale k-group
scheme.

Proof. By (14.1)) and Proposition [13.11, we may assume that k = k. By the proof of

Lemma GrfY(F)peq = Hieq is profinite since it is an inverse limit of finite and constant
k-group schemes. Since |Gr2(F).q| = |Grf{(F)|, Lemma now shows that Gr(F),eq
is indeed finite and étale. O

Remarks 15.7. The functor Gr? does not respect the étale-connected sequence for F i.e.,
the k-scheme Grf(F°) may be disconnected. For example, let R = W (F3) and consider
the connected finite R-group scheme F' = F'° = s r of square roots of unity. We have
F°(R) = FO(K) = {£1} and Gr(F),eq is finite and étale by Proposition Further,
by Proposition F°(R) = Grf{(F°)(k) = Grf(F°)eq(k), whence Grl'(F°),eq, and
therefore also Gr''(F°), is disconnected.

16. COMMUTATIVE GROUP SCHEMES

Let R be a complete discrete valuation ring. Recall that, if G is an R-group scheme
and n € N, Gr®(G) denotes Gr¥(G x5S,), where S, = Spec R,, is the spectrum of the
n-th truncation of R.
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Let F be a flat, commutative and separated R-group scheme of finite type and assume
that I' has a smooth resolution, i.e., there exists a sequence of commutative and separated
R-group schemes of finite type

(16.1) 05F5H 6% H—o0,

where G and H are smooth, q is faithfully flat and j is a closed immersion which identifies
F with the scheme-theoretic kernel of ¢q. If F is finite over .S, then F' has a smooth
resolution by [MR, Proposition 5.1(i) and its proof, pp. 217-218]. See also [Bég, §2.2,
pp. 25-27].

Now recall the change of level morphism g;7F: Gl (F) — Gif(F) and the
canonical morphism of k-group schemes

(16.2) q)fz,F: Grﬁ(V(w}r/R))%KerQ;R
where 1 <4 < n.
Proposition 16.3. Let n > 1 and i > 1 be integers. Then
(i) Ker QZL’F is a unipotent k-group scheme of finite type.
(ii) q):;,F is a morphism of unipotent k-group schemes of finite type whose kernel and
cokernel are unipotent and infinitesimal.
(iii) ®, p is an isomorphism if R is an equal characteristic ring or if R is a ring of
unequal characteristics and n+1i < e = v(p).

Proof. Since Gr* is a left-exact functor, (16.1]) induces an exact and commutative diagram
of k-group schemes of finite type

Gr§+z‘(j) Griﬂ,-z’(‘])
-

(16.4) 0— GYEH(F) Gr§+i(G) Grfﬂ(H)
i@é,F i@é,c l@,ﬁ,H

2 B
0 —— Gr®(F) _ ) Gri (@) G a) Gr*(H).

The above diagram induces an exact sequence of k-group schemes of finite type
(16.5) 0— KerQ,’A%F — Kergf%G — KeerhH.

Since Ker QAG and Ker Qé’ g are unipotent and of finite type by Proposition assertion
(i) is clear. Now, by [LLRI Proposition 1.1(a), p. 459] and the left exactness of the functor
Grf”, the sequence ([16.1]) induces an exact sequence of k-group schemes of finite type

(16.6) 0 = Grf(V(wpg)) = Gri(V(wg,g)) = Gri¥(V(wyp))-

We now assume that 1 < i < n. Since G and H are smooth, Propositions [11.11] and [11.12]
show that Grff(V(wl, / r)) is a unipotent k-group scheme. Now the exact and commuta-

tive diagram whose top row is ([16.6]), bottom row is (16.5) and vertical arrows are the

: 7 7 7 :
morphisms U e and @, 5 induces an exact sequence

0 — Ker®} » — Ker®} o — W — Coker @ o — 0

for some k-subgroup scheme W of Ker <I>f;7 ;- Using the above sequence, (ii) and (iii) follow
from Propositions [11.11| and [11.12] O
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Since the category of commutative k-group schemes of finite type is abelian, we may
now define

(16.7) HYR,, F) = Coker Grl*(q).

Since Gr*(H) is smooth, H'(R,,, F) is smooth as well. Further, (16.7) is independent, up
to isomorphism, of the choice of the smooth resolution ((16.1)) (cf. [Bég, proof of Lemma
4.2.1(b)] and [BGAL pp. 106-108]). Note also that, since ¢ = Gri¥(q) is surjective, we have

(16.8) HYR, F) = H'(k,F) = 0.

Further, since the canonical morphism Gr2(H)(k) — H'(Rn, F)(k) is surjective, Lemma
ii) yields an exact sequence of abelian groups

0 — F(R™) - G(R™) —» H(R™) — H'(R,,F)(k) = 0.

Consequently, H'(R,, F)(k) = Hg,
(6.7).

Now, by diagram ({16.4)), the following diagram is exact and commutative

(RM F), which explains our choice of notation in

(16.9) 0—Gr2, (G)/GrE, (F)——= Gl (H) —=HY Rpsj, F) —=0

m-+j m—+j m+j
i‘gg‘l,G ig;”H i
0 Gri* (@) /GrE(F) Grit(H) HY Ry, F) —0

for all integers m > 1 and j > 0, where @ﬂl ¢ is induced by 97{1 G-

Lemma 16.10. For every n € N, HY(R,,, F') is a smooth, commutative, connected and
unipotent k-group scheme.

Proof. Commutativity is clear and smoothness was observed above. Now set m = 1 and
j = n—1 in diagram ((16.9) and use ((16.8]) to obtain the following exact sequence of
k-group schemes of finite type:

0 — Kerp]'c! — Kerol'y = H'(Rn, F) — 0.
The lemma now follows from Proposition O

The lemma and diagram ((16.9)) yield a projective system of smooth, commutative,
connected and unipotent k-group schemes (H!(R,, F)). The projective limit of this system
is the commutative, affine, reduced and connected k-group scheme

1 1 1
(16.11) H (R, F) = lmH (R, F),

We now note that, if &’ is an algebraic extension of & and R’/R is the corresponding
extension of ramification index 1, then Proposition yields a canonical isomorphism of
k-group schemes of finite type

(16.12) HY (R, F) Xspeck Speck’ = HY(R],, F xgS").

Since projective limits commute with base extension, the projective limit of ((16.12)) is an
isomorphism

Hl(R,F) XSpeck Speck’ = Hl(R/,FXSS/).
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Theorem 16.13. Assume that F' is generically smooth. Then there exists an integer ig €
N such that, for every integer n > ig, the transition morphism H'(Rni1, F) — HY(Ry, F)
s an tsomorphism of k-group schemes.

Proof. By and faithfully flat and quasi-compact descent, we may assume that
k = k. It is shown in [LLR} p. 465] (with G’ = F, G"” = H, u = q and g” = h in the
notation of that paper) that there exists a commutative diagram of flat and commutative
R-group schemes of finite type

~ ~ a’ ~

0 P G i 0
Lo
0 F2l.ag—'H 0,

where ¢ is smooth, faithfully flat and of finite presentation, and the bottom row is the
sequence (16.1). For every integer n > 1, the preceding diagram induces an exact and
commutative diagram of k-group schemes of finite type

(16.14) 0 — Grf{(F) — Gri(G) — Grf{(H)
l lermg) lerff?(h)
R Ry G (@) o R 1
0 — Gr{(F) — Gr(G) = Gtf{(H) — HY(R,,, F) — 0,

n
where the top row is exact by Proposition (11.14]). By the functoriality of the change of
level morphism ({8.7)), we conclude that there exists an exact and commutative diagram of
k-group schemes of finite type

Coker Grf, | (g9) — Coker Gt | (h) ——= HY(Rp41, F) —0

S e

Coker Gr*(g) —— Coker Gr*(h) HYR,, F) ——0.

Now it is shown in [LLR] p. 471] (set g; = apy1 and g/ = By41 in [loc.cit.]) that there
exists an integer ig € N such that the maps «,, and (3, appearing above are isomorphisms
of smooth k-group schemes for every integer n > ig. The theorem is now clear. O

corl| Corollary 16.15. Assume that F is generically smooth and let ig € N be as in the theo-
rem. Then, for every integer n > ig, the following holds:

(i) The canonical projection HY(R, F) — H'(R,, F) is an isomorphism.
(ii) There exists an isomorphism of k-group schemes of finite type Coker Q}L,F ~ Gy 1)
where Q}z,F is the change of level morphism and r = dimyLie(Fy) — dim Fg.
(ili) dim Grf(F) = (n — o) dim Fy + dim Grf (F).
(iv) dimHY (R, F) = dim Grf! (F) — io dim Fy.
Proof. Assertion (i) is immediate from the theorem. Now, by (16.4)), and the theo-
rem, the smooth resolution induces an exact sequence

0— KergiL,F — Kergfl,G — Ker gf%H — Coker gfl,F — 0,



vtor

38 ALESSANDRA BERTAPELLE AND CRISTIAN D. GONZALEZ-AVILES

where n > 19 and ¢ > 1. Consequently

dim Kerg,, 7 = dimy, V(wy, ;) = dimy, Lie(F)

by Proposition W(ii). Further, by Propositions|11.11|and|11.12|7 Ker Q}“ ¢ 1s isomorphic to
Gi » Where d = dim G, and similarly with H in place of G. In particular, since dim G =
dim Fy 4+ dim Hg, we conclude that Coker Q}@,F ~ G;k with r = dimy Lie(Fs) — dim Fs.
This completes the proof of (ii). Now, by (ii), there exists an exact sequence

o,
0 — Kerg) p — Grf  (F) =5 Gef(F) — Gp p — 0.

Thus, by the definition of r, diim GrZ,,(F) = dim Gr/*(F) + dim F;. Assertion (iii) now
follows by induction. Assertion (iv) follows from the bottom sequence in ((16.14]) by com-
bining (iii) and Corollary [11.15(i). O

In connection with the above corollary, Example [7.6{ shows that dim Gr*(F) can be
unbounded as n grows if F' is not generically smooth.

Lemma 16.16. Let n and r be integers such that 1 < r <n. Then
dim Gr*(V(R,)) = r.

Proof. By and the description of Greenberg modules in Section [2, dim .Z,~" = r.
Thus, since the perfection functor on k-schemes preserves dimensions [BGA, Remark
5.18(b)], to prove the lemma it suffices to construct a morphism of k-group schemes
v: M — G (V(R,)) such that P! is an isomorphism.

Let A be any k-algebra. By Lemma (i),

Grﬁ(V(Rr))(A) = V(R;)(#n(A)) = Homp, mod(Rr, Zn(A)) = %n(A)ﬂﬁ-tors'

Further, by (3.11)), the inclusion .#;" " (A) € %,(A) factors through %, (A)xr_tors- Let
v(A) be the composition of the canonical map ., "(A) — 4y "(A) (3.12) and the
inclusion ;""" (A) € Zn(A)rr-tors- The preceding construction is functorial in A and

defines the required morphism ~: . " — GrZ(V(R,)). If R is an equal characteristic
ring, then + is, in fact, an isomorphism, which completes the proof in this case. In effect

(16.17) Rn(A)rrrors = My " "(A) = My 7" (A)

by Remark d), (2.1) and the flatness of A over k.

Now let R be a ring of unequal characteristics. Then, by Remark [3.13{c), the equality
(16.17) holds if A is perfect. Consequently Pf is an isomorphism by [BGAL Remark
5.18(a)]. 0

Proposition 16.18. Assume that I is finite and generically étale. Then
dimH (R, F) = §(F),
where §(F) is the defect of smoothness of F (15.3]).
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Proof. By Corollary [16.15, (i), (iii) and (iv), we have dimH (R, F) = dim Gr®(F) for
every integer r > ip. On the other hand, by Lemma @ o,  factors through a fi-
nite k-subgroup scheme of Grf¥(F) if n > 6(F) + 2. Thus, by Proposition |16.3(ii),
we have dim GrZ (F) = dimGrf(V(w}v/R)) if n > r = max{ip,d(F) + 2}. Therefore
dimHY(R, F) = dim Grﬁ(V(w}y/R)) if n > r. Now, by the structure theorem for torsion

R-modules, there exists an isomorphism of R-modules wll; /R~ ®!_,R/(7"™), where > n; =
lengthR(w},/R) = §(F). Thus we are reduced to checking that dim GrZ(V(R/(7™))) = n.
This follows from the previous lemma. O

APPENDIX

A.1. Weil restriction. Let f: S” — S be a morphism of schemes and let X’ be an S’-
scheme. We will say that the Weil restriction of X' along f exists if the contravariant
functor (Sch/S) — (Sets), T +— Homg/ (T xg S’, X'), is representable, i.e., if there exists
a pair (Resgr/g(X'),q), where Resg//g(X’) is an S-scheme and ¢: Resg//g(X')sr — X' is
an S’-morphism of schemes, such that the map

(A.1) Homg (T, Resgr/s(X")) = Homg/ (TxgS', X"), g~ qogg

is a bijection. The scheme Resgg(X")) is called the Weil restriction of X' along f. 1f
S" = Spec B and S = Spec A are affine, we will write Resp,4(X"’) for Resg,/g(X").

It follows from the above definition that Resg/ s is compatible with fiber products. In
particular, if X' is an S’-group scheme such that Resg//g(X') exists, then Resgg(X') is
an S-group scheme. On the other hand, if Resg/, 5(X’) exists and T — S is a morphism
of schemes, then there exists a canonical isomorphism of T-schemes

(A2) ReSS//S(X/) Xs T :> ReSS%/T(X/XS/S%).

Moreover, if S” — S’ — S are morphisms of schemes, then there exists a canonical
isomorphism of S-schemes

(A3) RGSS//S(RGSS///S/(X”)) :> RGSS///S(X”)

(when the indicated Weil restrictions exist).
We now discuss existence results. Let f: S’ — S be a finite and locally free morphism
of schemes. For every s € S, let

(A4) v(f;s) = #(S" xg Speck(s) )
be the cardinality of the geometric fiber of s. If S has a unique point s, we will write y(f)
for 1(f; 5).

Remarks A.5. Let f: S’ — S be a finite and locally free morphism of schemes.

(a) If k is a field, A is a finite étale k-algebra and f: Spec A — Speck is the corre-
sponding morphism of schemes, then vy(f) = dimA.

(b) Let g: T'— S be a morphism of schemes and consider the finite and locally free
morphism f xgT: 8" xgT — T. Let t € T and set s = g(t). Then v(f xgT;t) =
V(f3 )
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(c) Let s € S and let g: T — S’ be a universal homeomorphism such that h =
fog: T'— S is finite and locally free. Then v(h;s) = v(f;s).

Definition A.6. Let f: S’ — S be a finite and locally free morphism of schemes. An
S’-scheme X' is called admissible relative to f if, for every point s € S, every collection of
v(f;s) points in X’ X g Speck(s) is contained in an affine open subscheme of X', where

~v(f; s) is the integer (A.4)).

If S’ = Spec A and S = Spec B are affine, we will also say that X’ is admissible relative
to B/A.

Remarks A.7.

(a) By [EGA] II, Definition 5.3.1 and Corollary 4.5.4], a quasi-projective S’-scheme is
admissible relative to an arbitrary finite and locally free morphism S’ — S.

(b) If the geometric fibers of f: S’ — S are one-point schemes, then v(f;s) = 1 for
every s € S. Consequently, every S’-scheme is admissible relative to f. This is the
case, for example, if f is a universal homeomorphism.

(¢) If X’ is an S’-scheme which is admissible relative to f and g: T — S is an affine
morphism of schemes, then the (S’ xg T)-scheme X' xg/ (S'xgT) = X' xg T is
admissible relative to f xgT: S’ xgT — T.

(d) If X’ is an S’-scheme which is admissible relative to f: S’ — S and g: T/ — S’ is
a universal homeomorphism such that h = fog: T’ — S is finite and locally free,
then the T’-scheme X’ xg T is admissible relative to h.

We can now strengthen [BLR] §7.6, Theorem 4, p. 194]:

Theorem A.8. Let f: S’ — S be a finite and locally free morphism of schemes and let
X' be an S'-scheme which is admissible relative to f. Then Resgrg(X') emists.

Proof. See [BLR] §7.6, Theorem 4, p. 194] and note that in the last paragraph of that
proof the set of points {z;} in S’ xg T lying over a given point z € T, where g: ' — S
is an arbitrary S-scheme, has cardinality at most v(f;s), where s = ¢g(z). Thus the
corresponding set of points {x;} C X’ considered in [BLR] p. 195, line -14] has cardinality
at most v(f;s), whence it is contained in an open affine subscheme of X’ by Definition
This is the condition needed in [loc.cit.] to complete that proof. O

Corollary A.9. Let f: S" — S be a finite and locally free morphism of schemes which is
a universal homeomorphism and let X" be any S’-scheme. Then Resgrg(X') exists.

Proof. This is immediate from the theorem and Remark [A.7|(b). O

Proposition A.10. Let k'/k be a finite field extension and let (X))rea be a projective
system of k'-schemes, where A is a directed set containing an element Ao such that the
transition morphisms X, — X are affine if p > X\ > Xg. Assume that X, is admissible
relative to k'/k. Then Resk//k(yLnXA) and @Resk//k(X,\) exist and

Resk//k(@X)\) = l'&nResk//k(XA).

Proof. We may assume that A\ is an initial element of A. The stated formula will follow
from (A.1)) once the existence assertion is established. Set X = lim X Since the canonical
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morphism X — X, is affine, X is also admissible relative to k’/k. Thus, by Theorem|A.8
Respr /i (X ) exists. Similarly X is admissible relative to &'/k for every X, and Resy//,(X»)
exists. It remains only to check that the transition morphisms Resy/;(X,) — Resy//i (X)),
p > A, are affine. Let U be an affine open subscheme of X . Then X, x x, U is affine and
therefore so also is

ReSk//k(XuXX)\U) = Resk//k(X#) XResk//k(X)\) Resk//k(U).

Since Res/; (X)) is covered by affine open subschemes of the form Resy,(U) [BLR,
p. 195], the proposition follows. O

Let R be a complete discrete valuation ring and let R’/R be a finite extension of R
with maximal ideal m’, residue field &’ and ramification index e. Recall S = Spec R and
let S’ = Spec R’. For every integer n > 1, set S, = Spec R], = Spec (R’/(m’)"R’). Since
m = (m’)¢, there exists a canonical isomorphism
(A.11) S, =5"xg Sy

Now observe that S’ — S is finite and locally free and therefore so also is the induced
morphism fp,: S), — Sp. Further, v(f,) (A.4) equals [k": k]sep. Thus Z is admissible

relative to f, if, and only if, every set of [k’: k]sep points in Z xg, Si is contained in an
open affine subscheme of Z.

Remark A.12. If R'/R is totally ramified, then k' = k and therefore S/, — S, is, in
fact, a universal homeomorphism. Consequently, by Corollary the Weil restriction
Resg: /g, (Z) exists for every S} -scheme Z.

Lemma A.13. Let n > 1 be an integer and let Z be an S,,.-scheme which is admissible
relative to fn: S}, — Sn. Then the k'-scheme Z xg; S7 is admissible relative to k'/k.

Proof. Since Sy — Sy, is affine and S}, x5, S1 equals S; by (A.11]), the S/-scheme Zx g/ S;
is admissible relative to f, xg, S1: S, — S1 by Remark MNOW, since S| — Sl is a
universal homeomorphism, Remark (d) shows that (Z xg; S/)xs: 8] = Z xg;_ 57 is,
indeed, admissible relative to S{ — Sj. O

A.2. Greenberg’s structure theorem. Let R be a finite W,,(k)-algebra, where m > 1
and k is assumed to be perfect and of positive characteristic if m > 1.
Consider the following cases and notations:
(i) R is a k-algebra, J an ideal of R such that J9 = 0 and ¢ = dimJ, or
(ii) R is a finite W (k)-algebra of characteristic p™, where m > 1, J is a minimal ideal
of ! and t is the unique non-negative integer such that .% ~ pt@k (see Proposition
3.17)).

Note that 39t = 0 in either case. In particular, since J C 9, we have 3% = 0. As in the
main text, we will write R = R/J. For every R-scheme X, consider the quasi-coherent
Ox.-module

t

Q} in case (i)
EXofk = El? /e

(FJgS)*Qﬁ(S/k in case (ii),
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where, in case (ii), Fx, denotes the absolute Frobenius endomorphism of Xg.

Remark A.14. Let R be a discrete valuation ring with residue field k£ and let n > 0 be an
integer. Then (R, M ') is a valid choice for (R,J). If R is an equal characteristic ring
or R has unequal characteristics (0,p) and n < & = v(p), then (R,, M~1) is of type (i)
with t = 1. If R has unequal characteristics (0,p) and n > & = v(p), then (R,, M*~1) is
of type (ii) with ¢ = m — 1, where m = [n/e] (as noted in Remark [3.19).

Now let the following data be given: a k-scheme Y, an PR-scheme X and a k-morphism
u': Y — Gr(X'), where X’ = X xg SpecR’. Note that Y is an Xy -scheme via the
k-morphism a: Y — X which is defined by the commutativity of the diagram

y — eV
l Rk
o QX/
Xs,

where Q??i’k is the change of rings morphism (8.1). Next, consider the Zariski sheaf of
abelian groups on Y

I, = t%”omgy(a*ﬁﬁfs/k, j(ﬁy)) )

Proposition A.15. Let R be as in (i) or (ii) above, let X be an R-scheme and let Y be
a Grm/(X’)-scheme. Then there exists an isomorphism of Zariski sheaves on'Y

A = V(Ex k) X x. arV(x),

/ . . /
where Gr™ (X') is regarded as an Xs-scheme via Q;‘)?/k.

Proof. In case (ii), the isomorphism of Qy-modules .# ~ P'Qy, of Proposition yields
an isomorphism of Zariski sheaves .7 (0y) ~ P'0y; for every open subset U of Y. Thus, by
[BGAL (4.12) and Caveat 4.14], we have

%(U) ~ HomﬁU((a’U)*Q}Xs/k,ptﬁU) ~ HomﬁU<(FUt)*(a\U)*Q§(5/k, ﬁU)

~ Homﬁv((alU)*(P)’é)* Qx, /1 ﬁU) = Hom gy (&x. /1 (alv)«Ov)

~ Homyx, (U, V(&x,k)) = Home o oy (U V(Ex i) Xx, G (X")).

Similar calculations establish the proposition in case (i). O

Now let Z(u’) be the following Zariski sheaf of sets on Y: for every open subset
UCY,let Z(u')(U) be the set of k-morphisms v: U — Gr™(X) (if any exist) such that

vo g?’w: U — Gr™(X') equals v/|. Then, by (6.12) and Proposition 2 (U)
is in bijection with the set of &-morphisms f;: h”(U) — X (if any exist) such that the
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following diagram commutes

WUy - - - L x
o ¢3 x/ (W) o)
W (U) X',

Clearly, the existence of v (or f7) is equivalent to the non-emptyness of Z2(u’)(Y).

Lemma A.16. For every (respectively, every smooth) R-scheme X, P’ is a pseudo-
torsor (respectively, torsor) under ¢, = L%”omﬁy(a*Qﬁ(S/k,ﬂ(ﬁy)) on the Zariski site of
Y.

Proof. By [SGAT], I, Proposition 5.1] with S = Spec 9% and go = pry o ¢ 1 ('), P(u')
is pseudo-torsor under the sheaf #om %l(ﬁy)( 96 Qﬁ( /ot 5 (ﬁy)), which is in fact isomorphic
to 7. Note that, since 5? s a nilpotent immersion, & (u’) has non-empty fibers if X
is smooth over R by the lifting property in the definition of smoothness. O

The preceding result yields the existence of a bijection of fiber products of sets

V(Ex, 1) (V) X (a GTTHX)(Y) 5 Gr™(X)(Y) x fu GrH(X)(Y).
When Y and v’ vary, the latter bijections induce an isomorphism of k-schemes

V(&x, k) ¥ x, Gr(X) = Gr{(X) x, W(X,)Gr( )

Note that, by Propositions and [8.12| and Corollary |9 is a quasi-compact

and surjective morphism of smooth k—schemes and therefore falthfully flat and locally of
finite presentation. Consequently, the following holds
Theorem A.17. Let X be an arbitrary (respectzvely, smooth) R-scheme. Then the

Gr¥(X")-scheme Gr™(X) with structural morphism oy BN s q pseudo-torsor (respectively,
torsor) under V(&x, /i) X x, Gr™(X') in the category of fppf sheaves of sets on (Sch/Gr™(X")).

The following corollary is now immediate from Remark

Corollary A.18. Let R be a discrete valuation ring and let X be a smooth R,-scheme.
Then the GrE | (X)-scheme Gr*(X) is an fppf torsor under

(i) V(Qﬁ( /k> xx,Grl* |(X) if R is an equal characteristic ring, or
(ii) V((Fm 1) Qﬁ( /k> xx, Gr® (X)) if R is a ring of unequal characteristics, where
m = [n/e]
A.3. A flatness result.

Proposition A.19. Let k be a field and let q: G — H be a morphism of smooth and
commutative k-group schemes. Assume that

(i) q(k): G(k) — H(k) is surjective, and

(ii) m0(G)(k) is a finitely generated abelian group.
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Then q is flat.

Proof. Since GY and H are both of finite type, ¢" is a morphism of smooth and connected
k-group schemes of finite type. Thus, by [SGA3,cwh VIg, Proposition 3.11 and its proof],
it suffices to check that ¢°(k): G°(k) — HO9(k) is surjective. Hypothesis (ii) and the
snake lemma applied to the exact and commutative diagram

0—> G(k) —= G(k) —> mo(G) (k) —=0
[ ) fa®) [ mo(@)()
0—H%k) —= H(k) —=mo(H)(k) —=0

show that C' = Coker qO(E) is finitely generated. Since H O(E) is n-divisible for all n prime
to the characteristic of k, C' is also n-divisible for all such n. Thus C' is trivial. U
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