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Robust transport over networks
Yongxin Chen, Tryphon Georgiou, Michele Pavon and Allen Tannenbaum

Abstract—We consider transportation over a strongly connected,
directed graph. The scheduling amounts to selecting transition proba-
bilities for a discrete-time Markov evolution which is designed to be
consistent with initial and final marginal constraints on mass transport.
We address the situation where initially the mass is concentrated on
certain nodes and needs to be transported over a certain time period
to another set of nodes, possibly disjoint from the first. The evolution is
selected to be closest to a prior measure on paths in the relative entropy
sense–such a construction is known as a Schrödinger bridge between
the two given marginals. It may be viewed as an atypical stochastic
control problem where the control consists in suitably modifying the prior
transition mechanism. The prior can be chosen to incorporate constraints
and costs for traversing specific edges of the graph, but it can also be
selected to allocate equal probability to all paths of equal length connecting
any two nodes (i.e., a uniform distribution on paths). This latter choice
for prior transitions relies on the so-called Ruelle-Bowen random walker
and gives rise to scheduling that tends to utilize all paths as uniformly as
the topology allows. Thus, this Ruelle-Bowen law (MRB) taken as prior,
leads to a transportation plan that tends to lessen congestion and ensures
a level of robustness. We also show that the distribution MRB on paths,
which attains the maximum entropy rate for the random walker given by
the topological entropy, can itself be obtained as the time-homogeneous
solution of a maximum entropy problem for measures on paths (also a
Schrödinger bridge problem, albeit with prior that is not a probability
measure). Finally we show that the paradigm of Schrödinger bridges as
a mechanism for scheduling transport on networks can be adapted to
graphs that are not strongly connected, as well as to weighted graphs.
In the latter case, our approach may be used to design a transportation
plan which effectively compromises between robustness and other criteria
such as cost. Indeed, we explicitly provide a robust transportation plan
which assigns maximum probability to minimum cost paths and therefore
compares favorably with Optimal Mass Transportation strategies.

I. INTRODUCTION

Transport over networks has been the focus of a rapidly expand-
ing literature due to its intrinsic relevance in a wide range of applica-
tions that include power transmission, traffic, financial transactions,
biological systems and so on [1], [2], [3], [4]. Furthermore, the topic
relates to a host of other questions pertaining to the connectivity of
graphs and the relative significance of their nodes as in the Google
PageRank problem [5] and the study of interaction between genes in
biological networks [6].

Our starting point is an important insight on the relation between
the topological structure of a network and the entropy rate of a
random walker on the graph [7], [8]. As it turns out, there is a
unique way to specify transition probabilities at each node in such a
way that all paths of equal length joining any two particular nodes
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have equal probability. Thereby, a measure is placed on the family
of paths between graph nodes that maximizes the entropy rate of a
random walker, and this is a characteristic of the network. So far, the
use of this concept has been to assign significance to each node
in relation to the corresponding occupancy stationary distribution
(centrality measures).

The focus in our paper is on how to schedule transportation
plans across a network. The novel framework that we propose is
that of the so-called Schrödinger bridge problem, where a flow is
specified in agreement with an initial and a final marginal distribution
on the nodes while, at the same time, the probability law on the paths
is the closest possible to a prior in the relative entropy sense. The
Ruelle-Bowen random walk provides a natural notion of “uniform”
prior which gives equal importance to all paths. As a result, the
transportation flow that is selected to agree with specified initial and
final marginals tends to spread across all available paths as much as
possible given the topological structure of the network. Thereby, such
a flow leads to relatively low probability of conflict and congestion,
and ensures a certain degree of inherent robustness of the transport
plan. It is well appreciated that, typically, robustness, efficiency and
cost are conflicting criteria when designing networks.

By extending our approach to weighted graphs, we show that
the choice of a prior distribution may be used to ensure that the
resulting transportation attains a satisfactory compromise between
robustness and other criteria such as cost. Indeed, we exhibit a
robust transportation plan which assigns maximum probability to all
minimum cost paths. It appears attractive when compared to Optimal
Mass Transportation strategies which are not necessarily robust and
where the minimum cost of transportation between any two nodes
is supposed to be given. Thus, the approach to scheduling transport
based on Schrödinger bridges affords great flexibility. Moreover, it
appears computationally attractive in view of the iterative algorithm
proposed in [9].

The paper is outlined as follows. In Section II, we present
the solution to a general Schrödinger bridge problem (SBP), where
the prior measure is not necessarily a probability measure, as a
straightforward extension of the results in [10], [9]. Section III is
devoted to solutions of the SBP with equal initial and final marginals
which have a time-invariant transition mechanism so that they admit
invariant measures. We establish the surprising result (Theorem III.4)
that there is only one such bridge. This measure on paths can be
constructed generalizing a classical result by Parry [11]. In Section
IV, considering the special case of a prior transition given by the
adjacency matrix, we describe the most important features of the
Ruelle-Bowen random walker along the lines of [7]. We observe
that this measure MRB on trajectories can be viewed as a solution
to a “time-homogeneous” Schrödinger bridge problem where the
prior transition mechanism is given by the adjacency matrix. Section
V describes our procedure to produce a robust transportation plan
over a given strongly connected network: We take the Ruelle-
Bowen distribution MRB as prior in a Schrödinger bridge problem
with prescribed initial and final marginals. We also prove that the
optimal transportation can also be obtained in one step by taking the
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adjacency matrix as prior transition mechanism (Proposition V.2). In
Section VI, we outline our approach in the cases of weighted and
not strongly connected graphs. Finally, in Section VII we illustrate
our approach on a simple unweighted and weighted graph.

II. THE DISCRETE SCHRÖDINGER BRIDGE PROBLEM

We first describe the “ingredients” of the discrete Schrödinger
Bridge problem (SBP) considered in [10], [9]. In fact, we will
consider a slight generalization, where the “prior” is not necessarily
a probability law. The goal is to determine a time-evolution of
probability distributions νt(·) having support on a discrete space

X = {1, . . . , n},

e.g., the nodes of a network, over a time-indexing set

T = {0, 1, . . . , N}

in a way such that it matches the specified marginal distributions
ν0(·) and νN (·) and the resulting random evolution is closest to the
“prior” in a suitable sense. Regarding notation, we use µt(·), νt(·)
for distributions, where typically, µ relates to a “prior” law while ν
represents a “new” distribution with end-points specified and obtained
by solving the SBP.

The prior law is induced by the Markovian evolution

µt+1(xt+1) =
∑
xt∈X

µt(xt)mxtxt+1 (1)

for nonnegative distributions µt(·) over X with t ∈ T . Throughout,
we assume that mij ≥ 0 for all indices i, j ∈ X and for simplicity,
for the most part, that the matrix

M = [mij ]
n
i,j=1

does not depend on t. In this case, we will often assume that all
entries of MN are positive. The rows of the transition matrix M do
not necessarily sum up to one, in which case the “total transported
mass” is not necessarily preserved. This is the case, in particular, of
a Markov chain with “creation” and “killing”. In fact, M may simply
encode the topological structure of a directed network with mij being
zero or one, depending whether a certain transition is allowed.

The evolution (1), together with measure µ0(·), which we
assume positive on X , i.e.,

µ0(x) > 0 for all x ∈ X , (2)

induces a measure M on XN+1 as follows. It assigns to a path1

x = (x0, x1, . . . , xN ) ∈ XN+1 the value

M(x0, x1, . . . , xN ) = µ0(x0)mx0x1 · · ·mxN−1xN , (3)

and gives rise to a flow of one-time marginals

µt(xt) =
∑

x0,x1,...,xt−1,xt+1,...,xN

M(x0, x1, . . . , xN ), t ∈ T .

The “prior” distribution M on the space of paths may be at odds
with a pair of specified marginals ν0 and νN in that one or possibly
both,

µ0(x0) 6= ν0(x0), µN (xN ) 6= νN (xN ).

1Here a path is a sequence of adjacent nodes, which is different to most
literature where a path does not pass through the same node more than once.

We denote by P(ν0, νN ) the family of probability distributions
on XN+1 having the prescribed marginals. We seek a distribution in
this set which is closest to the prior M in a suitable entropic sense.
To this end, let us first recall the definition of relative entropy for
probability distributions.
Definition II.1. The Relative Entropy between the probability distri-
butions P and Q is

D(P‖Q) :=

{ ∑
x P (x) log P (x)

Q(x)
, Supp(P ) ⊆ Supp(Q),

+∞, Supp(P ) 6⊆ Supp(Q),

where, by definition, 0 · log 0 = 0 and the summation is over the
common set where they are supported.

As is well known, D(P‖Q) is not symmetric and does not
satisfy the triangle inequality. It does, however, satisfy D(P‖Q) ≥ 0
and D(P‖Q) = 0 if and only if Q = P , see, e.g., [12]. It can also be
extended to positive measures that are not probability distributions. In
fact, it is quite common to consider Q to be a uniform measure that
may not be a probability measure, such as the Lebesgue measure
or the stationary Wiener measure [13]. Naturally, while the value
of D(P‖Q) may turn out negative due to miss-match of scaling,
the relative entropy is always jointly convex. We view the prior
M (specified by M and µ0) in a similar manner, and consider the
Schrödinger Bridge problem:
Problem II.2. Determine

M∗[ν0, νN ] = argmin{D(P‖M) | P ∈ P(ν0, νN )}. (4)

Provided all entries of MN are positive, the problem has a
solution, which is unique due to strict convexity. This is stated next.
Theorem II.3. For a nonnegative square matrix M such that MN

has all positive entries and positive measures ν0 and νN on X , there
exist nonnegative functions ϕ(·) and ϕ̂(·) on [0, N ] × X satisfying
for t ∈ [0, N − 1] the system

ϕ(t, i) =
∑
j

mijϕ(t+ 1, j), (5a)

ϕ̂(t+ 1, j) =
∑
i

mijϕ̂(t, i), (5b)

with the boundary conditions

ϕ(0, x0) · ϕ̂(0, x0) = ν0(x0) (5c)

ϕ(N, xN ) · ϕ̂(N, xN ) = νN (xN ), (5d)

for all x0, xN ∈ X . Moreover, the solution M∗[ν0, νN ] to Problem
II.2 is unique and obtained by

M∗[ν0, νN ](x0, . . . , xN ) = ν0(x0)πx0x1(0) · · ·πxN−1xN (N − 1),

where2

πij(t) := mij
ϕ(t+ 1, j)

ϕ(t, i)
. (6)

Equation (6) specifies one-step transition probabilities that are well
defined.

Proof. The argument in [10, Theorem 4.1] and [9, Section III] applies
verbatim to this setting which is slightly more general in that M does
not prescribe a probability kernel. The system (5a-5d) is known as a

2Here we use the convention that 0/0 = 0.
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Schrödinger system. The existence of solution is shown in [9, Section
III] by establishing that the composition

ϕ̂(0, x0)
(MT )N−→ ϕ̂(N, xN )

(5d)−→ ϕ(N, xN ) −→ . . .

. . .
MN

−→ ϕ(0, x0)
(5c)−→ (ϕ̂(0, x0))next (7)

is contractive in the Hilbert metric [14], [15]. The fact that πij(t) in
(6) satisfy

∑
j πij(t) = 1 follows from (5a).

Notice that ϕ and ϕ̂ are unique up to multiplication of ϕ by
a positive constant and division of ϕ̂ by the same constant. This
is a direct consequence of the proof above as the Hilbert metric
is a metric on the projective space. The statement of the theorem
is analogous to results for the classical Schrödinger system (5) of
diffusions see[13]. The requirement that MN has only positive entries
can be slightly relaxed and replaced by a suitable condition that
guarantees existence of solution for the particular ν0 and νN . The
case when M is time-varying can also be readily established along
the lines of [10, Theorem 4.1] and [9, Theorem 2].

Finally, to simplify the notation, let ϕ(t) and ϕ̂(t) denote the
column vectors with entries ϕ(t, i) and ϕ̂(t, i), respectively, with
i ∈ X . In matrix form, (5a), (5b) and (6) read

ϕ(t) = Mϕ(t+ 1), ϕ̂(t+ 1) = MT ϕ̂(t), (8a)

and

Π(t) = [πij(t)] = diag(ϕ(t))−1M diag(ϕ(t+ 1)). (8b)

III. TIME-HOMOGENEOUS BRIDGES

In this section, we consider the case of Schrödinger bridge
problems when the marginals are identical, namely, ν0 = νN = ν. In
particular, we are interested in the case when the solution of the SBP
corresponds to a time-homogeneous Markov evolution. Note that,
from Theorem II.3, M∗[ν, ν] is in general time inhomogeneous. We
first recall the following celebrated result on the spectral properties
of nonnegative matrices [16].
Theorem III.1 (Perron-Frobenius). Let A = (aij) be an n × n
matrix with nonnegative entries. Suppose there exists N such that
AN has only positive entries, and let λA be its spectral radius. Then

i) λA > 0 is an eigenvalue of A;
ii) λA is a simple eigenvalue;

iii) there exists an eigenvector v corresponding to λA with strictly
positive entries;

iv) v is the only non-negative eigenvector of A;
v) let B = [bij ] be an n × n matrix with nonnegative entries. If

aij ≤ bij , ∀i, j ≤ n and A 6= B, then λA < λB .

Since the nonnegative matrix M is such that MN has only
positive entries, by the above Perron-Frobenius Theorem, M has a
unique positive eigenvalue λM which is equal to the spectral radius.
Let φ and φ̂ be the corresponding right and left eigenvectors and
denote their entries by φ(x) and φ̂(x) with x ∈ X , respectively.
Then both have only positive entries. We normalize φ and φ̂ so that∑

x∈X

φ(x)φ̂(x) = 1.

This leads to a special probability distribution

ν̄(x) = φ(x)φ̂(x). (9)

It turns out that ν̄ is the only probability measure such that the
associated SBP has a time-homogeneous solution; we shall name
it the time-homogeneous bridge associated with M . It admits the
following variational characterization.
Proposition III.2. Let M be a nonnegative matrix such that MN

has only positive entries, and M the measure on XN+1 given by (3)
with µ0 satisfying (2). Then the solution to the Schrödinger bridge
problem

M∗[ν̄, ν̄] = argmin{D(P‖M)|P ∈ P(ν̄, ν̄)}, (10)

where ν̄ is as in (9), has the time-invariant transition matrix

Π̄ = λ−1
M diag(φ)−1M diag(φ) (11)

and invariant measure ν̄.

Proof. Since φ and φ̂ are the right and left eigenvectors of M
associated with eigenvalue λM , the nonnegative functions ϕ and ϕ̂
defined by

ϕ(t, x) = λtMφ(x), ϕ̂(t, x) = λ−tM φ̂(x)

satisfy the Schrödinger system (5). By Theorem II.3, the solution
M∗[ν̄, ν̄] of the Schrödinger bridge problem (10) then has the
transition matrix (see (8b))

Π̄ = diag(ϕ(0))−1M diag(ϕ(1))

= λ−1
M diag(φ)−1M diag(φ),

which is exactly (11). Moreover, since

Π̄T ν̄ = λ−1
M diag(φ)MT φ̂ = ν̄,

it follows that ν̄ is the corresponding invariant measure.

In particular, notice that M∗[ν̄, ν̄], and its extension to infinite
paths x = (x0, x1, x2, . . .) through (11), is stationary. Indeed, we
have the following more general result which is of independent
interest.
Proposition III.3. Let P ∈ P(ν, ν) be a Markovian measure on
XN+1 having time-invariant transition matrix Π. Then ν is invariant
for Π, i.e. ΠT ν = ν.

Proof. Let ΠT ν = m. Then

dH(ν,m) = dH((ΠT )Nν, (ΠT )Nm) ≤ λdH(ν,m)

where dH is the Hilbert distance [14], [9] and λ < 1 is the contraction
ratio of the map (ΠT

ν )N . Since both ν and m are probability
distributions, it follows that m = ν and ν is invariant.

We show next that, under mild assumptions, there is only one
time-homogeneous bridge between equal marginals. In the following
result, we shall use the following notation. As before, let M be given
by (3) with µ0 satisfying (2). We denote by M(2N) the unique
extension of M to all of the discrete interval [0, 2N ] by its time-
invariant transition mechanism. We also denote by M∗[ν, ν](2N)
the Schrödinger bridge with prior M(2N) and equal marginals ν at
times t = 0 and t = 2N .
Theorem III.4. Let M be a nonnegative matrix such that MN has
only positive entries. Let ν be a probability measure. Suppose N > 1
and that the transition matrix Πν of M∗[ν, ν](2N) does not depend
on time. Then ν = ν̄ as in (9) and Πν = Π̄ as in (11).
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Proof. Let ϕν(t) = Mϕν(t+1) be the space-time harmonic function
associated to the minimizer M∗[ν, ν]. Suppose first that M has only
positive entries and consider times t = N − 2, N − 1, N . By (8) and
the time invariance of Πν , we must have

Πν = diag(ϕν(N − 2))−1M diag(ϕν(N − 1))

= diag(ϕν(N − 1))−1M diag(ϕν(N)).

It follows that

M = Dν(N − 1)MDν(N)−1,

where

Dν(t) = diag(ϕν(t)) diag(ϕν(t− 1))−1

= diag(dν1(t), . . . , dνn(t))

is diagonal for all t. Hence,

mij = eTi Mej = di(N − 1)mijdj(N)−1, ∀i, j.

Varying j for a fixed i, since mij 6= 0, we get that D(N) is a scalar
matrix, say λI , not dependent on t and ϕ(N) is a right eigenvector
of M . By the Perron-Frobenius Theorem, it follows that ϕ(N)
corresponds to λM . It readily follows that ϕ̂(0) is an eigenvector
of MT with positive entries corresponding to the same eigenvalue
λM . By (5c)-(5d), ν is equal to ν̄.

A similar argument establishes the result when M has merely
nonnegative entries. Indeed, looking at the N -step transition matrix
Π

(N)
ν = ΠN

ν on the time intervals [0, N ] and [N, 2N ] the same
argument as in the full positive case gives that ϕ(2N) is a right
eigenvector of MN with positive entries. But so is ϕ. By Theorem
III.1, iv), they can be taken to be equal.

Consider now the following special case. We have a strongly
connected, aperiodic directed graph (V, E) with vertex set V =
{1, 2, . . . , n} and edge set E ⊆ V × V . Let A be the adjacency
matrix of the graph so that aij = 1 if there is an edge from i to j and
aij = 0 otherwise. Then, there exists N such that AN has all positive
entries. As we shall see in the next section, the Schrödinger bridge
problem (10) just considered with M = A as prior transition turns
out to have as solution the Ruelle-Bowen measure MRB [7, Section
III]. This probability measure has a number of useful properties, in
particular it gives the same probability to paths of the same length
between any two given nodes. All of this is discussed in the next
section.

IV. THE RUELLE-BOWENS RANDOM WALK

In this section, we follow closely the beautiful paper [7] by
Delvenne and Libert, which explains the Ruelle-Bowens (RB) random
walk. The RB random walk amounts to a Markovian evolution on a
directed graph that assigns equal probabilities to all paths of equal
length between any two nodes. The motivation of [7] was to assign
a natural invariant probability to nodes based on relations that are
encoded by a graph, and thereby determine a centrality measure,
akin to Google Page ranking, yet more robust and discriminating. Our
motivation is quite different. The RB random walk provides a uniform
distribution on paths. Therefore, it represents a natural distribution to
serve as prior in the SBP in order to achieve a maximum spreading of
the mass transported over the available paths. In this section, besides
reviewing basics on the RB random walk, we show that the RB
distribution is itself a solution to the Schrödinger bridge problem
II.2.

We consider a strongly connected, directed graph

G = (V, E).

The idea in Google Page ranking the nodes is based on a random
walk where a jump takes place from one node to any of its neighbors
with equal probability. The alternative proposed in [7] is an entropy
ranking, based on the stationary distribution of the RB random walk
[11], [17]. The transition mechanism is such that it induces a uniform
distribution on paths of equal length joining any two nodes. This
distribution is characterized as the one maximizing the entropy rate
[12] for the random walker. Let us briefly recall the relevant concept.
The Shannon entropy for paths of length t is at most

log |{paths of length t}|.

Hence, the entropy rate is bounded by the topological entropy rate

HG = lim sup
t→∞

[log |{paths of length t}|/t].

Here |{·}| denotes the cardinality of a set. Notice that HG only
depends on the graph G and not on the probability distribution on
paths. More specifically, if A denotes the adjacency matrix of the
graph, the number of paths of length t is the sum of all the entries of
At. Thus, it follows that HG is the logarithm of the spectral radius
of A, namely the maximum of the absolute values of the eigenvalues
of A, that is

HG = log(λA). (12)

We next construct the Rulle-Bowen random walk. Let A as in
the Perron-Frobenius Theorem III.1 and let u and v be its left and
right eigenvectors3 with positive entries corresponding to λA, so that

ATu = λAu, Av = λAv. (13)

Suppose u and v are chosen so that

〈u, v〉 :=
∑
i

uivi = 1.

As in the previous section, it is readily seen that their entrywise
multiplication

νRB(i) = uivi (14)

defines a probability distribution which is invariant under the transi-
tion matrix

R = [rij ], rij =
vj
λAvi

aij . (15)

that is,
RT νRB = νRB . (16)

If A in (13) represents the adjacency matrix A of a graph, then the
transition matrix R in (15) together with the stationary measure νRB
in (14), define the Ruelle-Bowen path measure

MRB(x0, x1, . . . , xN ) := νRB(x0)rx0x1 · · · rxN−1xN . (17)

Proposition IV.1. The measure MRB (17) assigns probability
λ−tA uivj to any path of length t from node i to node j.

Proof. Starting from the stationary distribution (14), and in view of
(15), the probability of a path ij is

uivi

(
1

λA
v−1
i vj

)
=

1

λA
uivj ,

3We are now conforming to notation in [7] for ease of comparison. Hence
we use u and v rather than φ̂ and φ.
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assuming that node j is accessible from node i in one step. Likewise,
the probability of the path ijk is

uivi

(
1

λA
v−1
i vj

)(
1

λA
v−1
j vk

)
=

1

λ2
A

uivk

independent of the intermediate state j, and so on. Thus, the claim
follows.

The striking property of MRB is that induces a uniform proba-
bility measure on paths of equal length between any two given nodes.
We quote from [7] “Since the number of paths of length t is of the
order of λtA (up to a factor) the distribution on paths of fixed length
is uniform up to a factor (which does not depend on t). Hence the
Shannon entropy of paths of length t grows as t log λA, up to an
additive constant. The entropy rate of this distribution is thus log λA
which is optimal” by the expression for HG in (12).

The analysis also shows that the Ruelle-Bowen distribution
is the solution of the particular SBP where the “prior” transition
mechanism is given by the adjacency matrix! This observation is
apparently new and beautifully links the topological entropy rate to a
maximum entropy problem on path space. We state next this special
case of Proposition III.2.
Proposition IV.2. Let A be the adjacency matrix of a strongly
connected aperiodic graph G. Let M the nonnegative measure on
XN+1 given by (3) with M = A and µ0 satisfying (2). Then, the
Ruelle-Bowen measure MRB (17) solves the SBP (10) with marginals
ν0 = νN = νRB .

V. ROBUST TRANSPORT OVER NETWORKS

Once again we consider a strongly connected, directed graph
G = (V, E) with n vertices. We identify node 1 as a source and
node n as a sink and seek to transport a unit mass from 1 to n in at
most N steps. The task is formalized by setting an initial marginal
distribution ν0(x) = δ1(x) Kronecker’s delta. Similarly, the final
distribution is νN (x) = δn(x). Generally, we seek a transportation
plan which is robust and avoids congestion as much as the topology
of the graph permits. This latter feature of the transportation plan will
be achieved in this section indirectly, without explicitly bringing into
the picture the capacity of each edge (this is done in Section VI). With
these two key specifications in mind, we like to control the flux so
that the initial mass spreads as much as possible on the feasible paths
joining vertices 1 and n in N steps before reconvening at time N in
vertex n. We shall achieve this by constructing a suitable Markovian
transition mechanism. As we want to allow for the possibility that
all or part of the mass reaches node n at some time less than N ,
we always include a loop in node n so that our adjacency matrix
A always has ann = 1. We observed in the previous section that
the Ruelle-Bowen MRB measure on paths can be obtained as the
solution of the maximum entropy problem when the “prior transition
matrix” is the adjacency matrix. Since MRB gives equal probability
to paths joining two specific vertices, it is natural to use it as a prior
in a new maximum entropy problem with marginals δ1, δn so as to
achieve the spreading of the probability mass on the feasible paths
joining the source with the sink. Thus, we consider the following
maximum entropy problem
Problem V.1. Determine

M∗[δ1, δn] = argmin{D(P‖MRB)|P ∈ P(δ1, δn)}.

By Theorem II.3, the optimal, time varying transition matrix
Π∗(t) of the above problem is given, recalling the notations in (8),
by

Π∗(t) = diag(ϕ(t))−1R diag(ϕ(t+ 1)), (18)

where
ϕ(t) = Rϕ(t+ 1), ϕ̂(t+ 1) = RT ϕ̂(t),

with the boundary conditions

ϕ(0, x)ϕ̂(0, x) = δ1(x), ϕ(N, x)ϕ̂(N, x) = δn(x) (19)

for all x ∈ X . In view of (15), if we define

ϕv(t) := λ−tA diag(v)ϕ(t), ϕ̂v(t) := λtA diag(v)−1ϕ̂(t),

then we have

ϕv(t) = Aϕv(t+ 1), ϕ̂v(t+ 1) = AT ϕ̂v(t), t = 0, . . . , N − 1.

Moreover,

ϕv(t, x)ϕ̂v(t, x) = ϕ(t, x)ϕ̂(t, x), t = 0, . . . , N − 1, x ∈ X .

Here, again, A is the adjacency matrix of G and v is the right
eigenvector corresponding to the spectral radius λA.

The above analysis provides another interesting way to express
M∗[δ1, δn]; it also solves the Schrödinger bridge problem with the
same marginals δ1 and δn while different prior transition matrix A,
the adjacency matrix. Thus, we can replace the two-step procedure
by a single bridge problem. This is summarized in the following
proposition.
Proposition V.2. Let A be the adjacency matrix of a strongly
connected aperiodic graph G, M the nonnegative measure on XN+1

given by (3) with M = A and µ0 satisfying (2), then, the solu-
tion M∗[δ1, δn] of Problem V.1 also solves the Schrödinger bridge
problem

min{D(P‖M)|P ∈ P(δ1, δn)}. (20)

The iterative algorithm of [9, Section III] can now be based on
(20) to efficiently compute the transition matrix of the optimal robust
transport plan M∗[δ1, δn].
Remark V.3. Finally, observing that if AN has also zero entries,
the robust transport described in this section may still be feasible
provided there is at least one path of length N joining node 1 with
node n, i.e., (AN )1n > 0.

As we discussed in the beginning of this section, the intuition to
use MRB as a prior is to achieve the spreading of the probability on
all the feasible paths connecting the source and the sink. It turns
out this is indeed the case; the solution M∗[δ1, δn] of Problem
V.1 assigns equal probability to all the feasible paths of lengths
N joining the source 1 with the sink n. To see this, by (18), the
probability of the optimal transport plan M∗[δ1, δn] assigns on path
x = (x0, x1, . . . , xN ) is

M∗[δ1, δn](x) = δ1(x0)

N−1∏
t=0

rxtxt+1

ϕ(t+ 1, xt+1)

ϕ(t, xt)

= δ1(x0)
ϕv(N, xN )

ϕv(0, x0)

N−1∏
t=0

axtxt+1 .

Observing that
∏N−1
t=0 axtxt+1 = 1 for feasible path and 0 otherwise,

and δ1(x0)ϕv(N, xN )/ϕv(0, x0) depends only on the boundary
points x0, xN , we conclude that M∗[δ1, δn] assigns equal probability
to all the feasible paths. Moreover, there are (AN )1n feasible paths of
length N connecting nodes 1 and n. Thus we establish the following.
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Proposition V.4. M∗[δ1, δn] assigns probability 1/(AN )1n to each
of all the feasible paths of length N connecting 1 and n.

VI. GENERALIZATION: NOT STRONGLY CONNECTED AND

WEIGHTED GRAPHS

Consider again a directed graph G = (V, E) with n vertices. We
associate to the edge ij an “energy” Uij ≥ 0. We study the following
two specific cases (and their combination):

a) Graphs that are not strongly connected: We consider the same
problem as in the previous section but the graph is not strongly
connected. Following [7], we can give a large positive energy U0

to non existing links (this kind of “teleportation” is employed in the
random walk of the Google Page rank algorithm to avoid getting
stuck in absorbing states) and energy Uij = 0 to existing links. Then
the adjacency matrix A is replaced by the matrix

B = [bij ] = [exp(−Uij)] .

The matrix B has all positive entries. Hence, we can apply the Perron-
Forbenius theorem. Let u and v be left and right eigenvectors with
positive entries of the matrix B corresponding to the spectral radius
λB of B, so that

BTu = λBu, Bv = λBv.

Suppose that u and v are chosen so that 〈u, v〉 =
∑
i uivi = 1. Then

µU given by
µU (i) = ui · vi (21)

is a probability distribution which is invariant for the transition matrix

RU = λ−1
B diag(v)−1B diag(v), (22)

namely
RTUµU = µU . (23)

The corresponding path space measure MU is no longer uniform
on paths of equal length. Indeed, the probability of the path (i =
x0, x1, . . . , xt−1, j = xt) is

λ−tB exp(−
t−1∑
`=0

Ux`x`+1)uivj .

However, it is the minimum free energy rate (topological pressure
in thermodynamics) distribution attaining the maximum value of
−F = −Ū + S given by log λB and has therefore the form of
a Boltzmann distribution, see [7, Section IV] for details. Notice
that, as soon as there are virtual links, B 6= A. By statement v)
in Theorem III.1, we then have log λA < log λB . Namely, the
topological entropy has increased in accordance to our intuition. The
expected total path energy of a path of length t is precisely t · Ū .

Again, as in Proposition IV.2, we have a special case of
Proposition III.2. Namely, the measure MU is the solution of a SBP
where the prior M is a Markovian measure on XN+1 as in (3) but
with transition mechanism given by M = B. If U0 is very large,
most of the transportation will occur on the real edges. We can then
take MU as the prior distribution in a maximum entropy problem
as in Section V obtaining again through the solution M∗U [δ1, δn] a
robust transportation plan from node 1 to node n.

b) Weighted graphs: The quantities Uij may represent the cost
of transporting a unit of mass on that edge or may be inversely

proportional to capacity of the link, etc. The measure MU in this case
may be far from uniform since it takes into account costs/capacities
of the links. Again we can set up a maximum entropy problem with
MU as prior obtaining a transport M∗U which compromises between
the need to be robust and the cost/capacities of the different paths
joining the source and the sink. For instance, if Uij = cij , the cost
of transporting a unit of goods on the link ij, is large, the solution to
the maximum entropy problem with send less mass through this link
provided the topology of the graph allows for alternative routes. In
this case, low cost and robustness of the transportation plan may be
effectively conjugated. Indeed, we have the following striking result
which generalizes Propositions IV.1 and V.4.
Theorem VI.1. M∗[δ1, δn](x) assigns equal probability to paths
x ∈ XN+1 of equal cost. In particular, it assigns maximum and
equal probability to minimum cost paths.

Proof. For a path x = (x0, x1, . . . , xN ), we have

M∗[δ1, δn](x) = δ1(x0)
ϕv(N, xN )

ϕv(0, x0)

N−1∏
t=0

bxtxt+1

= δ1(x0)
ϕv(N, xN )

ϕv(0, x0)
exp[−

N−1∑
t=0

Uxtxt+1 ]. (24)

Observe once more that δ1(x0)ϕv(N,xN )
ϕv(0,x0)

does not depend on the
particular path joining x0 and xN . Since

∑N−1
t=1 Uxtxt+1 is the total

cost of the path, the conclusion now follows.

In the discrete optimal mass transport (OMT) problem, one
usually (e.g., see [18]) seeks to first identify the least costly path(s)
(x0, x

∗
1, . . . , x

∗
N−1, xN ) from any starting node x0 ∈ X to any

ending node xN , along with the corresponding end-point cost for
a unit mass4,

Cx0xN = min
x∗1 ,...,x

∗
N−1

(
Ux0x∗1 + . . .+ Ux∗

N−1
xN

)
.

This is a combinatorial problem but can also be cast as a linear
program [19]. Having a solution to this first problem, the OMT
problem can then be recast as the linear program

min
q

 ∑
x0,xN

qx0,xNCx0xN | qx0,xN ≥ 0, (25)

∑
x0

qx0,xN = νN (xN ),
∑
xN

qx0,xN = ν0(x0)

 .

The solution to (25) is the transport plan qx0,xN which dictates the
portion of mass that is to be sent from x0 to xN along the corre-
sponding least costly path (x0, x

∗
1, . . . , x

∗
N−1, xN ). Alternatively, the

OMT problem can be directly cast as a linear program in as many
variables as there are edges [19].

An apparent shortcoming of the OMT formalism is the “rigid-
ity” of the transportation to utilize only paths with minimal cost from
starting to ending node. The transport provided by Theorem VI.1,
which readily generalizes to any two marginals ν0 and νN , provides
an attractive alternative to the OMT approach: Minimum cost paths all
have maximum probability, but some of the mass is also transported
on alternative paths thereby ensuring a certain amount of robustness
of the transportation plan. Also notice that the Schrödinger bridge

4We assume a self loop for each node with zero cost, i.e., Uxx = 0 for
each x ∈ X .
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measure M∗U [δ1, δn] determines, as a by-product, the minimum cost
paths!

The argument provided at the end of the previous section (see
Proposition V.2) shows once more that M∗U [δ1, δn] can be obtained
in both of the above cases in one step as solution to the Schrödinger
bridge problem with the same marginals δ1 and δn and prior transition
matrix B.

Fig. 1: Network topology

VII. EXAMPLES

We present a simple academic example to illustrate our method.
Consider the graph in Figure 1. We seek to transport a unit mass from
node 1 to node 9 in N = 3 and 4 steps. We add a self loop at node
9, i.e., a99 = 1, to allow for transport paths with different step sizes.

The shortest path from node 1 to 9 is of length 3 and there are
three such paths, which are 1−2−7−9, 1−3−8−9 and 1−4−8−9.
If we want to transport the mass with minimum number of steps, we
may end up using one of these three paths. This is not so robust. On
the other hand, if we apply the Schrödinger bridge framework with
the RB measure MRB as the prior, then we get a transport plan with
equal probabilities using all these three paths. The evolution of mass
distribution is given by[

1 0 0 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 0 0 0 0 1/3 2/3 0
0 0 0 0 0 0 0 0 1

]
,

where the four rows of the matrix show the mass distribution at time
step t = 0, 1, 2, 3 respectively. As we can see, the mass spreads out
first and then goes to node 9. When we allow for more steps N = 4,
the mass spreads even more before reassembling at node 9, as shown
below 1 0 0 0 0 0 0 0 0

0 4/7 2/7 1/7 0 0 0 0 0
0 0 1/7 1/7 2/7 0 1/7 2/7 0
0 0 0 0 0 1/7 1/7 2/7 3/7
0 0 0 0 0 0 0 0 1

 .
Now we change the graph by adding a cost on the edge (7, 9)

so that the weighted adjacency matrix B has b79 = 0.5 and coincides
with the adjacency matrix in the other entries. When N = 3 steps are
allowed to transport a unit mass from node 1 to node 9, the evolution
of mass distribution for the optimal transport plan is given by[

1 0 0 0 0 0 0 0 0
0 1/5 2/5 2/5 0 0 0 0 0
0 0 0 0 0 0 1/5 4/5 0
0 0 0 0 0 0 0 0 1

]
.

The mass travels through paths 1 − 2 − 7 − 9, 1 − 3 − 8 − 9 and
1 − 4 − 8 − 9, but unlike the unweighted case, the transport plan
doesn’t take equal probability for these three paths Since we added a
cost on the edge (7, 9), the probability that the mass takes this path
becomes smaller. The plan does, however, assign equal probability
to the two minimum cost paths 1− 3− 8− 9 and 1− 4− 8− 9 in

agreement with Theorem VI.1. Suppose now we allow for more steps
N = 4 and change the B matrix as follows: for all existing links,
the “energy” is 0.7 excepting that b79 = 0.5 and b99 = 0.9. Here,
transporting on any edge is expensive. It is, however, more expensive
to transverse link (7, 9) and less expensive to let the mass sit at the
sink node 9. The evolution of the mass distribution is now1 0 0 0 0 0 0 0 0

0 0.5042 0.3173 0.1785 0 0 0 0 0
0 0 0.1388 0.1388 0.2380 0 0.1275 0.3569 0
0 0 0 0 0 0.1388 0.0992 0.2776 0.4844
0 0 0 0 0 0 0 0 1.0000

 .
We observe that almost one half of the mass (0.4844) reaches node
9 in three steps, and then sits there, travelling on the three shortest
paths 1−2−7−9, 1−3−8−9 and 1−4−8−9. As before, more mass
(0.1785) travels on the two minimum cost paths 1− 3− 8− 9 and
1−4−8−9 in agreement with Theorem VI.1, whereas 0.1275 travels
on the more expensive, minimum length path 1−2−7−9. There are
now several other ways the mass can reach node 9 in 4 steps. Our
robust transportation plan takes full advantage of them, transporting
more that one half of the total mass along these alternative paths.

Finally, we consider the case where the graph is not strongly
connected deleting links (1, 4), (2, 7) and (9, 1) in Figure 1. Again
we want to transport a unit mass from node 1 to node 9. In order
to do this, we add an artificial energy U0 to each non existing link
as discussed in Section VI. We display the results for N = 4 steps.
When we take U0 = 2, the evolution of mass is 1 0 0 0 0 0 0 0 0

0.0415 0.4079 0.3416 0.0326 0.0462 0.0326 0.0326 0.0326 0.0326
0.0270 0.0349 0.1740 0.1477 0.2330 0.0603 0.0603 0.1614 0.1014
0.0116 0.0152 0.0199 0.0242 0.0163 0.1709 0.1709 0.2641 0.3069

0 0 0 0 0 0 0 0 1

 .
We can see that there is quite a portion of mass traveling along virtual
(non existing) edges. If we increase the value to U0 = 8, then the
mass evolution becomes1.0000 0 0 0 0 0 0 0 0

0.0001 0.5995 0.4000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0000 0.0000 0.2000 0.1999 0.3994 0.0002 0.0002 0.1999 0.0004
0.0000 0.0000 0.0000 0.0001 0.0000 0.1999 0.1999 0.3995 0.2007

0 0 0 0 0 0 0 0 1.0000

 .
The portion of mass traveling along non existing edges is negligible.
Eventually, all the mass would be transported along feasible paths
and in the limit the mass evolution (flow) is given by the rows of1 0 0 0 0 0 0 0 0

0 3/5 2/5 0 0 0 0 0 0
0 0 1/5 1/5 2/5 0 0 1/5 0
0 0 0 0 0 1/5 1/5 2/5 1/5
0 0 0 0 0 0 0 0 1

 .

VIII. CONCLUSIONS

In this paper, we have proposed a novel approach to design a
robust transportation plan on a given directed graph. It is based on a
sort of generalized maximum entropy problem (Schrödinger bridge)
for measures on paths of the given network. Taking as prior measure
the Ruelle-Bowen-Parry random walker, the solution naturally tends
to spread the mass on all available routes joining the source and the
sink. Hence, the resulting transport appears robust with respect to
links/nodes failure. This approach can be adapted to graphs that are
not strongly connected, as well as to weighted graphs. In the latter
case, it can be used to effectively compromise between robustness
and cost. Indeed, we exhibit a robust transportation plan which
assigns maximum probability to minimum cost paths and therefore
appears attractive when compared with Optimal Mass Transportation
approaches. Since the transport plan is computed as a Schrödinger
bridge, for which an efficient iterative algorithm is available, our
procedure also appears to be computationally attractive.
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In this paper, in order to avoid obscuring the fundamental ideas
and to keep the paper at a reasonable length, we have chosen to
present the essential features of our approach without touching on
a number of related fascinating topics. For instance, in this paper
robustness of a transport plan simply means that, in case of failure
of certain links (e.g. due to congestion) or nodes, most of the mass
will anyway reach the target nodes. There are, however, other notions
of robustness in graph theory [1], [20], [21], [6], [22], some related
to entropic principles [23], [24].

When weights represent costs, our approach of Section VI
compromizing between minimization and robustness can be further
compared to Optimal Mass Transport (OMT) over graphs [25], where
only cost matters, and entropically regularized OMT-schemes [26],
[27]. In discrete OMT, however, the cost function is supposed to be
given, although computing it is typically an intractable problem for
large networks.

Also, it is apparent that choosing the uniform as prior distri-
bution in the maximum entropy problem such as in Section V we
obtain a spreading of trajectories over which the transport occurs
similar to the one in Optimal Mass Transport (OMT) on manifolds
with positive Ricci-Curbastro curvature [28]. On discrete spaces and
graphs, similar notions of curvature have been defined by Ollivier
[29], [30]. They capture robustness and connectedness, convexity of
entropy, and are related to the spectral gap [31], [32]. Their relevance
in applications is discussed in, e.g., [33], [21], [6], [22]. It is therefore
natural to investigate the precise connection between the role of the
prior in random evolutions such as those studied in this paper and
deterministic evolution on discrete curved spaces. These fascinating
topics deserve investigation and will be addressed elsewhere.
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