
www.theoryofgroups.ir

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669

Vol. x No. x (2017), pp. xx-xx.

c⃝ 2017 University of Isfahan

www.ui.ac.ir

DETECTING THE PRIME DIVISORS OF THE CHARACTER DEGREES AND

THE CLASS SIZES BY A SUBGROUP GENERATED WITH FEW ELEMENTS

ANDREA LUCCHINI

Communicated by Patrizia Longobardi

Abstract. We prove that every finite group G contains a three-generated subgroup H with the

following property: a prime p divides the degree of an irreducible character of G if and only if it divides

the degree of an irreducible character of H. There is no analogous result for the prime divisors of the

sizes of the conjugacy classes.

1. Introduction

Let G be a finite group and denote by π(G) the set of the primes dividing the order of G. In [8] the

authors prove that every finite group G contains a two-generated subgroup H such that π(H) = π(G).

A natural question is whether similar results can be proved considering instead of π(G) the set πcd(G)

of the prime divisors of the degrees of the irreducible complex characters of G or the set πcs(G) of

the prime divisors of the sizes of the conjugacy classes of G. In other words, we ask whether there

exists a positive integer d that that every finite group G contains a d-generated subgroup H such

that πcd(H) = πcd(G) or respectively πcs(H) = πcs(G). Several results in the literature goes in the

direction of showing that the influence of irreducible character degrees and conjugacy class sizes on

the structure of finite groups is analogous: it seems that there is a “parallel” relation between them.

This is not the case with our question. Indeed it has a positive answer in the case of the character

degrees, but a negative one in the case of the class sizes.

Theorem 1. Every finite group G contains a three-generated subgroup H such that πcd(H) = πcd(G).
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Theorem 2. For every positive integer d there exists a finite group G with the property that πcs(H) ̸=
πcs(G) whenever H is a d-generated subgroup of G.

The statement of Theorem 1 cannot be improved: it is not in general true that a finite group G

contains a two-generated subgroup H such that πcd(H) = πcd(G). The nonabelian group P of order

27 and exponent 3 admits an automorphism α of order 2, acting on P/Frat(P ) as the inverting

automorphism. Let G = P ⋊ ⟨α⟩. The character degrees of G are (1, 1, 2, 2, 2, 2, 3, 3, 3, 3) and

πcd(G) = {2, 3}. It is easy to prove that G is three-generated but not two-generated. Consider now

a proper subgroup H of G. If H ≤ P, then πcd(H) ⊆ {3}. Otherwise |H ∩ P | ≤ 9, hence H ∩ P is

a normal and abelian Sylow 3-subgroup of H and, by the Ito’s Theorem (see for example [3, 6.15]),

πcd(H) ⊆ {2}.
If x is a positive integer, we use π(x) to denote the set of the prime divisors of x. To every set X

of positive integers a graph ΓX can be associated, called the prime vertex graph of X. The vertex set

of ΓX is the union ∪xπ(x) where x runs through the elements of X, and there is an edge between two

distinct vertices p and q if p · q divides x for some integer x ∈ X. In particular, if we consider the set

X of the orders of the elements of a finite group G, the corresponding prime vertex graph is called

the prime graph Γ(G) of G: it has been introduced by Gruenberg and Kegel in the 1970s and studied

extensively in recent years (see for examples [5], [10], [11]). For a finite group G, let Xcd(G) be the set

of the degrees of the irreducible complex characters and let Xsc(G) be set of the sizes of the conjugacy

classes. The corresponding prime vertex graphs are called, respectively, the character degree graph

and the conjugacy class graph (see for example [6] for more information). We will denote these graphs

by Γcd(G) and Γcs(G). Notice that the vertex set of Γ(G), Γcd(G) and Γcs(G) is, respectively, π(G),

πcd(G) and πcs(G). As we recalled above, a finite group G contains a two-generated subgroup H with

π(G) = π(H). Not only its vertex set π(G), but also the prime graph Γ(G) itself can be recognized

by a subgroup H generated by few elements: indeed every finite group G contains a three-generated

subgroup H such that Γ(H) = Γ(G) (see [8, Theorem C]). A natural question, arising from Theorem

1, is whether a similar result can be proved for the character degree graph.

Question 1. Does there exist a positive integer d such that every finite group G contains a d-generated

subgroup H with the property that Γcd(H) = Γcd(G)?

I proposed this question to several experts in combinatorial problems connected with the behaviour

of the character degrees. It seems that is it quite difficult to find the answer. One of the purpose of

the present note is to draw the attention on this open problem.

2. Proof of Theorem 1

The proof of Theorem 1 combines the arguments used in [8] with the information about πcd(G)

provided by the Ito-Michler Theorem (see [4] and [9]), which asserts that a prime p does not divide

the degree of any irreducible character of a finite group G if and only if G has a normal abelian Sylow
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p-subgroup. In other words, we have that

πcd(G) = π(G) \ {p | the Sylow p-subgroup of G is abelian and normal in G}.

Denote by d(G) the smallest cardinality of a generating set of G.We deduce Theorem 1 as a corollary

of the following result:

Theorem 3. Let G be a finite group such that πcd(G) ̸= πcd(H) for each H < G. Then d(G) ≤ 3.

Proof. There exists a normal subgroup Y of G such that d(G) = d(G/Y ) but d(G/Y ∗) < d(G) for

each Y < Y ∗ ⊴ G. Information about the structure of Y can be deduced from [1, Theorem 1.4 and

Theorem 2.7]: there exist a positive integer t and a monolithic primitive group L (with socle N) such

that

G/Y ∼= Lt = {(l1, . . . , lt) ∈ Lt | l1N = · · · = ltN}.

Let ϕ : G → Lt be a group epimorphism with kerϕ = Y and let X = ϕ−1(soc(Lt)). Since soc(Lt) = N t,

there exists t normal subgroups X1, . . . , Xt of G such that ϕ(X) = ϕ(X1)×· · ·×ϕ(Xt) and ϕ(Xi) ∼= N.

Moreover let K = ϕ−1({(l, . . . , l) | l ∈ L}). Since K/Y ∼= L, G/Y ∼= Lt and π(L) = π(Lt), it must be

π(G) = π(K). We have two possibilities:

1) K = G. In this case t = 1 and, by the main theorem in [7],

d(G) = d(G/Y ) = d(L) ≤ max(d(L/N), 2) ≤ max(d(G)− 1, 2),

hence d(G) ≤ 2.

2) K ̸= G. In this case πcd(K) ̸= πcd(G) and consequently, by the Ito-Micher theorem, there exists a

prime p such that the Sylow p-subgroup of K is abelian and normal in K, while the Sylow p-subgroup

of G is not. Let P be the Sylow p-subgroup of K. If P ≤ Y then p does not divide |K/Y | = |L|,
and consequently does not divide |G/Y | = |Lt| so P is also a Sylow p-subgroup of G; in this case G

would have an abelian normal Sylow p-subgroup against our assumption. So PY/Y is a nontrivial

abelian normal subgroup of K/Y ∼= L and this is possible only if N ∼= PY/Y is an elementary abelian

p-group. In this case N = soc(L) has a complement, say T , in L. In particular {(t, . . . , t) ∈ Lt | t ∈ T}
is a complement of N t in Lt and all the minimal normal subgroups of Lt are T -isomorphic to N.

This implies that there exists a complement C/Y of X/Y in G/Y and that X1/Y, . . . ,Xt/Y are

C-isomorphic irreducible C-module. We must have |C/Y | = |K/Y : PY/Y | = |T |, hence |C/Y |
is not divisible by p. For 1 ≤ i < j ≤ t let Kij = XiXjC and let Pij be a Sylow p-subgroup of

Kij . Since p does not divide |C/Y |, we have Pij ≤ XiXj . We claim that there exist i < j such

that Pij is not a normal abelian subgroup of Kij . If not, the Sylow p-subgroup Pi of Xi is normal

in Xi for every i and Pij = PiPj is abelian for every i < j, hence P1, . . . , Pt are normal, abelian

and pairwise commuting. It follows that P = P1 · · ·Pt is a normal Sylow p-subgroup of G and is

abelian, against our assumption. Now we choose i < j so that the Sylow p-subgroup of Kij is not

an abelian normal subgroup of Kij . Let r ∈ π(G). Assume r ̸= p and let R be a Sylow r-subgroup

of Kij . Since |G : Kij | = |N |t−2, R is also a Sylow subgroup of G. We claim that if R is normal

in Kij , then R is also normal in G. Indeed R ⊴ Kij implies that R is a normal subgroup of C and
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that Y R/Y centralizes Xi/Y and Xj/Y. Since Xk/Y ∼=C Xi/Y for every k ∈ {1, . . . , t}, we get that

Y R/Y centralizes X/Y , hence Y R⊴CX = G. Being R a characteristic subgroup of Y R, we conclude

Y ⊴G. Therefore if r ̸= p, then Kij contains an abelian normal Sylow r-subgroup if and only if G does.

On the other hand neither G nor Kij contains an abelian and normal Sylow p-subgroup. But then

we deduce from the Ito-Michler Theorem that πcd(G) = πcd(Kij), hence G = Kij and consequently

t = 2. It is known (see [2, Proposition 6]) that if N = soc(L) is abelian and F = EndL(N), then

d(Lt) = max(d(L/N), θ+ ⌈(t+s)/r⌉), where r = dimF N, s = dimF H1(L/N,N), θ = 0 or 1 according

to whether N is a trivial L/N -module or not and where ⌈x⌉ denotes the smallest integer greater or

equal to x. In our case, since L/N ∼= T and N have coprime orders, we have that H1(L/N,N) = 0,

hence d(G) = d(L2) ≤ max(d(L/N), 1 + 2) ≤ max(d(G)− 1, 3), which implies d(G) ≤ 3. □

3. Proof of Theorem 2

Let Ω = {1, . . . ,m} and let P2(Ω) be the set of the 2-subsets of Ω. To each σ ∈ P2(Ω) we associate a

different prime pσ. Let Aσ be a cyclic group of order pσ and A =
∏

σ Aσ. For 1 ≤ i ≤ m, let Ci = ⟨xi⟩
be a cyclic group of order 2 and let C =

∏
iCi. We define an action of C on A as follows: xi centralizes

Aσ if i /∈ σ, xi acts of Aσ as the inverting automorphism otherwise. Consider the semidirect product

G = A⋊ C. No Sylow subgroup of G is central, so πcs(G) = π(G) = {2} ∪ {pσ | σ ∈ P2(Ω)}.

Lemma 4. Let H be a subgroup of G. If πcs(G) = πcs(H), then d(H) ≥ log2(m).

Proof. First we prove, by induction on t, the following claim: (∗) let t be a positive integer and let

D = ⟨c1, . . . , ct⟩ be a t-generated subgroup of C; if t ≤ log2m, then there exists Ω∗ ⊆ Ω with |Ω∗| ≥
m/2t such that D ≤ CG(Aσ) (and consequently pσ /∈ πcs(AD)) for every σ ∈ P2(Ω

∗). First assume

t = 1. Let c1 = (y1, . . . , ym) and let Ω1 = {i ∈ Ω | yi = 1} and Ω2 = {i ∈ Ω | yi = xi}. If σ = (i1, i2)

and a ∈ Aσ, then ac1 = ayi1yi2 : this implies that c1 centralizes Aσ for every σ ∈ P2(Ω1) ∪ P2(Ω2).

Clearly there exists j ∈ {1, 2} with |Ωj | ≥ m/2 and we can take Ω∗ = Ωj . Now assume t > 1 and let

E = ⟨c1, . . . , ct−1⟩. By induction there exists Ω∗∗ ⊆ Ω such that |Ω∗∗| ≥ m/2t−1 and E centralizes Aσ

for every pσ ∈ P2(Ω
∗∗). Let ct = (z1, . . . , zm), Ω∗

1 = {i ∈ Ω∗∗ | zi = 1} and Ω∗
2 = {i ∈ Ω∗∗ | zi = xi}.

Notice that ct centralizes Aσ for every σ ∈ P2(Ω
∗
1) ∪ P2(Ω

∗
2). Again, there exists j ∈ {1, 2} with

|Ω∗
j | ≥ |Ω∗∗|/2 ≥ m/2t and we can take Ω∗ = Ω∗

j .

We can now complete the proof of our statement. Suppose πcs(G) = πcs(H). This implies that pσ

divides |H| for every σ ∈ P2(Ω), and consequently A ≤ H. More precisely it must be H = AD, for

some subgroup D of C. By (∗) we must have d(H) ≥ d(D) ≥ log2(m). □

Proof of Theorem 2. Take m = 2d + 1 and consider the group G described at the beginning of this

section. Since d < log2(m), we deduce from Lemma 4 that πcs(G) ̸= πcs(H) for every d-generated

subgroup of G.

□
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