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Abstract
Air may be easily incorporated by vigorous mechanical stirring, with the help of

surfactants, of activated geopolymer-yielding suspensions. The cellular structure is

stabilized by the viscosity increase caused by curing reactions, configuring an

“inorganic gel casting”. The present paper is aimed at extending this approach to

mullite foams, obtained by the thermal treatment of engineered alkali activated

suspensions. “Green” foams were first obtained by gel casting of a suspension for

Na-geopolymer enriched with reactive c-Al2O3 powders. Sodium was later

extracted by ionic exchange with ammonium salts. In particular, the removal of

Na+ ions was achieved by immersion in ammonium nitrate solution overnight,

with retention of the cellular structure. Finally, the ion-exchanged foams were

successfully converted into pure mullite foams by application of a firing treatment

at 1300°C, for 1 hour. Preliminary results concerning the extension of the concept

to mullite three-dimensional scaffolds are presented as well.
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1 | INTRODUCTION

Geopolymers, i.e., products of the condensation of hydrated
alumino-silicate oligomers (in turn provided by alkaline dis-
solution of alumino-silicate raw materials) are receiving a
growing interest in many industrial fields, particularly for the
replacement of traditional cementitious materials as well as
of traditional ceramics. In fact, besides being formed at low
temperature, geopolymer components can be used up to
medium-high temperature (typically below 1200°C).1-4

The present paper is essentially aimed at merging con-
cepts, corresponding to two different emerging research
directions in the field of geopolymers, represented by the
obtainment of highly porous foams by frothing of geopoly-
mer-yielding suspensions,5 and the conversion of geopoly-
mers into advanced ceramics by controlled heat treatment.6-8

The foaming of geopolymers, by frothing, relies on the
significant increase of viscosity caused by the progressive cur-
ing of oligomers, dispersed in aqueous suspensions, in turn
due to alkali activation. More precisely, alkali activated sus-
pensions exhibit a marked pseudoplastic behavior, so that air
bubbles, incorporated by intensive mechanical stirring (with
the help of surfactants), at high shear rates and low viscosity,
are effectively “frozen” when stirring stops, at low shear rate
and high viscosity.5,9,10 Since this behavior does not depend
on the introduction of any organic gelling additive (typically
adopted for gel casting of ceramic and glass-ceramic
foams11,12), we can define the process as “inorganic gel cast-
ing”. The zeolitic gel from sialate oligomers can actually be
replaced by other gels, caused by alkali dissolution and subse-
quent condensation of corrosion products, like C–S–H gels
from the use of glass powders as starting materials.13,14
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The conversion of geopolymers into advanced ceramics
generally corresponds to the transformation of hydrated
zeolite-like gels (i.e., alumino-silicate network structures,
consisting of cross-linked AlO4

� and SiO4 tetrahedra),
incorporating alkali ions, such as Na+, K+, and Cs+ (pro-
viding the charge balance), into anhydrous alkali alumino-
silicates, in the form of feldspathoids, at temperatures from
800°C to 1400°C.6-8 The chemical and thermal stability of
the developed phases depend on the alkali ion: Cs-based
geopolymers, as an example, are known to yield more
refractory phases, such as pollucite (Cs2O�Al2O3�4SiO2),

8

featuring also a low thermal expansion coefficient.15

The molecular balance between alkali oxides, Al2O3

and SiO2, in the final ceramic, obviously depends on the
formulation of the geopolymer. Chemical treatments on the
geopolymer, however, may determine significant changes,
especially for the removal of alkali. In fact, the alkali con-
taining charge-balancing sites of alumino-silicate networks
can be replaced with a range of other cations, not only for
enhancing the functional properties of geopolymers (e.g.,
as antimicrobial agents or photocatalysts)16,17 but also for
modifying the thermal transformation products. In particu-
lar, alkali-free ceramics are fundamentally achievable by
ion exchange of alkali ions with ammonium ions, before
firing.16,18,19 Mullite containing ceramics are thus feasible,
although the low Al2O3/SiO2 ratio in geopolymers does not
allow for the obtainment of this relatively alumina-rich
phase (3Al2O3�2SiO2) as the only phase (the silica excess
forming a vitreous matrix).16,18

In this investigation, the ceramic residue of the transfor-
mation of geopolymers, after dealkalinization, is corrected in
order to have nearly phase pure mullite, by introduction of a
reactive alumina filler in the starting suspensions. A valuable
inspiration came from previous experiences concerning
geopolymers embedding a reactive carbon filler,19,20 allow-
ing for carbothermal reduction and nitridation of ion-
exchanged geopolymers, with the obtainment of SiAlONs,18

in the form of powders. A similar approach is known to lead
to SiC nanoparticles.21 In our case, the introduction of the
filler, consisting of c-phase Al2O3 (already known to yield
mullite by interaction with silicone resins, pyrolized in air,
as silica precursors22), did not compromise the shaping into
highly porous foams, by frothing. The approach was later
extended to the fabrication of three-dimensional scaffolds,
by direct ink writing of suspensions undergoing progressive
gelification (by analogy to what was previously done with
conventional geopolymers10).

2 | EXPERIMENTAL PROCEDURE

Metakaolin (Argical 1200s, AGS Mineraux) and commer-
cial c-Al2O3 (Puralox TH 100/150, of mean particle size

<35 lm, SASOL, Hamburg, Germany) were dissolved in
an aqueous solution of 2.5 mol/L NaOH (reagent grade,
Sigma– Aldrich, Gillingham, UK), in order to achieve an
overall SiO2/Al2O3 molar ratio of 0.67 (SiO2/Al2O3 = 2/3,
typical of mullite); the total solids content of the suspen-
sion was 28 wt%. The mixture was kept under mechanical
stirring (500 rpm) at room temperature for 2 hour in order
to achieve the dissolution of the metakaolin and the disper-
sion of the alumina filler in the slurry. The mixture was
cast in closed polystyrene (PS) cylindrical molds and
underwent a precuring step of 2 hour at 75°C. The suspen-
sion was later added with Triton X-100 (polyoxyethylene
octyl phenyl ether—C14H22O(C2H4O)n, n = 9-10, Sigma-
Aldrich, Gillingham, UK) surfactant, for a total amount of
4 wt%, and subsequently subjected to intensive mechanical
stirring (2000 rpm, for 10 minute), in PS molds. After cur-
ing at 40°C for 48 hour, foamed samples could be
demolded and subjected to ion exchange, consisting of
immersion for 24 hour in a 0.1 mol/L NH4NO3 solution
(following the approach of Bortnovsky et al18), for a solid/
liquid ratio of 1/100. Finally, ion-exchanged samples were
subjected to thermal treatment at 1300°C for 1 hour (10°C/
min heating rate).

The partially gelified suspension, after the precuring
step, could be used also for direct ink writing experiments.
It was transferred into plastic syringes (having a volume of
approx. 30 mm3), which served as a cartridge for extrusion
by means of a Delta printer (Delta Wasp 2040 Turbo,
Wasproject, Massa Lombarda, Italy) equipped with a pres-
surized vessel. The syringe base system mounted conical
nozzles (Nordson Italia S.p.a., Segrate, IT) with a diameter
of 400 lm, while the printer operated at a layer resolution
of 50 lm. Printed pastes were subjected to curing, ion
exchange and firing in the same conditions as adopted for
the foams.

Geopolymer composite samples, before and after firing,
were subjected to microstructural characterization, by
means of X-ray diffraction (Bruker D8 Advance, Karlsruhe,
Germany—CuKa radiation, 0.15418 nm), pycnometry, opti-
cal, and electron microscopy (AxioCam ERc 5 second
Microscope Camera, Carl Zeiss Microscopy, Thornwood,
NY; FEI Quanta 200 ESEM, Eindhoven, The Netherlands).
The phase identification, from diffraction patterns, was per-
formed by means of the Match!� program package (Crystal
Impact GbR, Bonn, Germany), supported by data from the
PDF-2 database (ICDD-International Centre for Diffraction
Data, Newtown Square, PA). Selected samples were sub-
jected to compression tests by using an Instron 1121 UTS
(Instron, Danvers, MA) machine, with a crosshead speed of
0.5 mm/min. The tests involved foam samples of about
10 mm 9 10 mm 9 10 mm, cut from larger specimens, as
well scaffold samples of about 10 mm 9 10 mm 9 6 mm.
Each data point corresponded to 5-6 samples.
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3 | RESULTS AND DISCUSSION

Figure 1 represents the evolution of samples, from the “after
foaming” condition to the “dealkalinized” and “fired” states.
We can note that despite the significant filler loading, the
inorganic gel casting approach led to a quite homogeneous
cellular structure (Figure 1A), not degraded by the ion-
exchange process; in fact, no cracks were visible in the trans-
formed foam (Figure 1B). The homogeneity and the absence
of cracks were confirmed after firing at 1300°C (Figure 1C).

Figure 2 confirms the nature of the adopted filler, effec-
tively consisting of c-Al2O3 (PDF#49-0134). This phase
remains clearly detectable in the geopolymer composite, after
curing, along with minor traces of quartz (PDF#87-2096),
attributed to impurities in the metakaolin, and paragonite
(NaAl2(Si3Al)O10(OH)2, PDF#87-0091). The latter phase is
known to form upon curing of Na-based synthetic alumino-
silicate binders.23 The broad amorphous hump, in the 2h range
of 18°-40°, is actually not consistent with amorphous stoichio-
metric geopolymers, typically exhibiting a bump from 24° to

34°.24,25 Owing to the formation of paragonite (including sig-
nificant amounts of Na and Al), the developed gel probably
did not possess the zeolite-like structure found in true
geopolymers.26 The assessment of the real nature of the gel
(e.g., by TEM) will be object of future studies.

The thermal treatment was clearly sensitive to the ion
exchange. Fragments of geopolymer foam not subjected to
ion exchange led to a glass matrix composite, with strong
peaks of a-Al2O3 (PDF#75-1862) emerging from the typi-
cal “halo” of amorphous phase. A minor peak could be
ascribed to nepheline (PDF#79-0992), in analogy with the
firing of Na-based geopolymers, as previously mentioned.7

In other words, with sodium still incorporated in the
matrix, the same matrix and the filler had a substantially
independent evolution. On the contrary, the two phases
reacted significantly, after ion exchange, with mullite
(PDF#83-1881) being clearly recognized.

The flat background revealed the practical absence of
glass phase, while only minor peaks could not be ascribed
to mullite. The best matching with experimental data was

(A) (B) (C)

FIGURE 1 Morphology of geopolymer composites at various processing steps: (A) after low temperature curing; (B) after ion exchange; (C)
after firing at 1300°C

FIGURE 2 Mineralogical evolution of
geopolymer composites at various
processing steps
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provided by sillimanite (PDF#88-0889), i.e., a silica-richer
alumino-silicate (Al2O3∙SiO2) and h-Al2O3 (PDF#86-1410),
both attributable, in our opinion, to incomplete reaction
between the constituents. h-Al2O3 can be seen as the result

of the thermal transformation of the c-phase, with progres-
sive dehydration (transition aluminas are known to trans-
form into corundum, by progressive heating, in the
sequence c ? d ? h ? a27,28), but its presence was quite

(A) (B) (C)

FIGURE 3 Morphology of geopolymer composites: (A) typical scaffold geometry after curing and ion exchange (up, top view; down, cross
section); (B) scaffold geometry after firing (up, top view; down, cross section); (C) alternative scaffold design

(A) (B)

(C) (D)

(E)

FIGURE 4 Microstructural details of geopolymer-derived mullite scaffolds: (A) after curing; (B) after firing (C) interpenetration of
overlapping filaments; (D) high magnification of a strut (Al-rich granules marked by arrows); (E) X-ray fluorescence signals through the filament
diameter
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surprising, being found after a treatment well above its sta-
bility range (1100°C).28 In our opinion this could be due to
a reaction between the hydroxyl groups of alumina and a
silicon-containing precursor (in this case represented by the
geopolymer matrix), already known to stabilize the
c-phase.29 Longer treatments at 1300°C would probably
determine a complete reaction, and will be the object of
further investigations.

The high filler loading also favored a secondary shaping
option. As shown by Figure 3A, direct ink writing of
pastes available after the precuring step led to reticulated
scaffolds with no evidence of viscous collapse. The over-
lapping filaments remained parallel after curing, keeping
wide pores in the z direction (Figure 3B).

The ion exchange and the firing did not determine any
degradation. From Figure 4A, B and C we can observe that
the transformations did not cause any microcracking, even
for larger filament spacings (the absence of sagging, even
for large voids, again indicated the marked pseudplasticity
of the pastes). The practical absence of Na+ was demon-
strated along a whole filament, in Figure 4E, showing the
elemental distribution through the diameter (obtained by col-
lection of X-ray fluorescence signals): the Na-related signal
is flat and close to zero. The inherent micro- and meso-por-
osity of geopolymers evidently favoured an in-depth ion
exchange. The fluctuations in the Al and Si distributions,
along the diameter, were consistent with the X-ray analysis.
Some Al-rich granules (marked by arrows in Figure 4D), in
fact, could be ascribed to h-Al2O3.

The absence of cracks in both foams and scaffolds is
the reason for good strength-to-density ratios. With a
porosity of 73% � 3%, almost completely open (pycnome-
try analysis yielded an open porosity of 65% � 2%) the
foams reached a compressive strength of 11 � 1 MPa, in
good agreement with the values for commercial foams, typ-
ically used for thermal protection and metal filtration.30

Scaffolds (for a close filament spacing, like that in Fig-
ure 4A) achieved a compressive strength 5 � 2 MPa, with
a density of 0.84 � 0.04 g/cm3 (73% � 5% total porosity).

Given the application of time-consuming processes, such
as ion exchange, the proposed approach might be found
hardly sustainable against the processes already applied for
commercial mullite foams; however, the flexibility in the
shaping is believed to provide a valid compensation. As an
example, the refinements in the processing of geopolymer
foams by gel casting (leading to significant enhancement of
both overall porosity and specific surface, owing to the over-
lapping of contributions of surfactants and gas release, e.g.,
from decomposition of H2O2

31,32) can be reasonably trans-
fered to geopolymer composites. Additional opportunities
may be provided by the control of free water segregation,
e.g., by addition of acrylate-functional silane coupling
agents.33 Direct ink writing, on the other hand, may be

applied to a number of alternative shapes (an example is
shown in Figure 3C). Finally, the proposed technology has
some potential even beyond mullite: treatments in alternative
atmospheres (e.g., N2) are currently under investigation with
the aim of testing the formation of oxynitride phases (SiA-
lONs), in analogy with what done for ion-exchanged C-filled
geopolymer powders.19,20

4 | CONCLUSIONS

One may conclude that:

1. Gel casting of alkali activated metakaolin suspensions
can be exploited for the development of highly porous
geopolymer composite foams as well as reticulated scaf-
folds, by frothing and direct ink writing, respectively;

2. Both types of cellular geopolymer composites were suc-
cessfully subjected to dealkalinization, by means of ion
exchange in aqueous solution of ammonium nitrate,
with no degradation of the microstructure;

3. Owing to dealkanization, the geopolymer matrix could
react easily with the c-Al2O3 secondary phase, leading
to the development of nearly phase pure mullite; again,
the transformation did not cause any significant
microstructural degradation;

4. Geopolymers with the support of engineered fillers and
dealkalinization treaments have a large potential for the
obtainment of advanced ceramics, with a distinctive
coupling of synthesis and shaping.
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