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Abstract 15 

The Tat protein is able to translocate through the plasma membrane and when it is fused with other 16 

peptides may act as a protein transduction system. This ability appears particularly interesting to 17 

induce tissue-specific differentiation when the Tat protein is associated to transcription factors. In 18 

the present work, the potential of the complex Tat-MyoD in inducing equine peripheral blood 19 

mesenchymal stem cells (PB-MSCs) towards the myogenic fate, was evaluated. Results showed that 20 

the internalization process of Tat-MyoD happens only in serum free conditions and that the nuclear 21 

localization of the fused complex is observed after 15 hours of incubation. However, the 22 

supplement of Tat-MyoD only was not sufficient to induce myogenesis and, therefore, in order to 23 

achieve the myogenic differentiation of PB-MSCs, conditioned medium was added. The latter was 24 

obtained coculturing PB-MSCs with C2C12 without direct contact. These results suggest that TAT- 25 

transduction of Tat-MyoD, when supported by conditioned medium, represents a useful 26 

methodology to induce myoblasts differentiation. 27 

KEYWORDS: Tat-MyoD, equine PB-MSCs, C2C12, coculture, myogenic induction. 28 

 29 
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Adult skeletal muscle presents a low cellular turnover in the absence of disease or damages 32 

(Cheung et l 2013). On the contrary, during regenerative mechanisms the muscle tissue becomes 33 

very dynamic thanks to the involvement of satellite cells. The use of these cells for therapeutic 34 

purpose appears promising for treatment of diseases and injuries affecting skeletal muscle, 35 

including muscular dystrophy (Partridge 2003). Both skeletal muscle injuries and disorders are 36 

actually quite common among athletic animals such as horses (Freestone and Carlson, 1991; Lee et 37 

al., 2016). However, the self-renewal potential of adult satellite cells is per se limited, decreases 38 

with age, sarcopenia (Chen and Goldhamer 2003) and is depleted by wasting muscular dystrophies 39 

(Yusuf and Brand-Saberi 2012). Given the need to use an unlimited cell population, mesenchymal 40 

stem cell (MSCs) deserves a particular attention to offer an alternative therapeutic solution for 41 

muscle diseases (Mizuno 2010). MSCs can be isolated from various anatomical districts such as 42 

bone marrow, adipose tissue, amniotic fluid, peripheral blood (Kuznetsov et al. 2001; Kern et al. 43 

2006; Koerner et al. 2006;  Martinello et al. 2010; Martinello et al. 2011) and they share the ability 44 

to differentiate along several pathways (Chamberlain et al. 2007; Giovannini et al. 2008). Up to 45 

now, scarce data are present in literature about the differentiation of MSCs into myoblasts. In vitro, 46 

it has been shown that MSCs may differentiate into skeletal muscle cells with conditioned medium 47 

as well as in coculture with a fusion between MSCs and myoblasts (Dezawa et al. 2005; Sung et al. 48 

2013; Dugan et al. 2014). Specific signaling molecules, such as dexamethasone together with 49 

insulin and EGF (epidermal growth factor) (Tehrani et al. 2014), are able to induce the 50 

differentiation into skeletal muscle. Furthermore, MSCs isolated from bone marrow and treated 51 

with FGF (Fibroblast Growth Factors), forskolin, PDGF (Platelet-Derived Growth Factor) and 52 

transfected with an NICD plasmid were able to express MyoD (Dezawa et al. 2005), although the 53 

frequency of spontaneous cell fusion was very low. Recently, Rabiee et al. demonstrated that the 54 

overexpression of FND5, using an inducible lentivirus system, increased the transcription level for 55 

cardiac progenitors in embryonic stem cells (Rabiee et al. 2014) and Sung et al. induced equine 56 

MyoD expression in equine adipose-derived mesenchymal stem cell using a MyoD lentiviral vector 57 
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(Sung et al. 2016). Moreover, embryonic stem cells were induced to differentiate also into smooth 58 

muscle cells if Olfm2 (olfactomedin 2) overexpression was promoted (Shi et al. 2014). In a 59 

coculture of stem cells from amniotic fluid and cardiac cells, the physical contact between the two 60 

types of cells seems to be necessary but not sufficient to induce the cardiogenic potential (Gao et al. 61 

2014); this fact means that a specific microenvironment is required to induce the maturation of 62 

myogenic cells. Therefore, the innovative approach of protein transduction with Tat domain fused 63 

with various transcription factors (Lin and Kao 2015; Woo et al. 2015), including MyoD (Sung et 64 

al. 2013; Hidema et al. 2014), appears to be a valid technical approach. Even though some data 65 

indicate that Tat-MyoD induces myogenic differentiation in naturally predisposed cells only, like 66 

the C2C12 cell line (Noda et al. 2009) or the mouse muscle primary cells (Hidema et al. 2014) Sung 67 

et al. demonstrated that myogenic differentiation of human adipose-derived stem cells was reached 68 

usingTat-MyoD transduction when the cells were fused with C2C12 myoblasts (Sung et al. 2013). 69 

In the present study, we described that myogenic differentiation of equine peripheral blood 70 

mesenchymal stem cells (PB-MSCs) using the Tat-MyoD transduction can be achieved simply with 71 

a coculture C2C12 myoblasts. .  72 

 73 

2. Materials and methods 74 

 75 

2.1.Generation of Tat-MyoD fused proteins 76 

 77 

The nucleotide sequence encoding human MyoD was amplified from a human cDNA library with 78 

the following oligonucleotides (CAGCTAGCATGTCCTTCGCCATGCTGCGTTCAG -  79 

TGCAAGCTTCTAACTTCGAATCGCCGTCTTTTC) and cloned in plasmid Tat-Prp (Vicario et 80 

al. 2014) between NheI and HindIII restriction site, in order to obtain plasmid pTat-MyoD. The 81 

plasmid pTAT-MyoD is able to coding for MyoD sequence fused to peptide containing the 82 

translocation of HIV-1 protein TAT with 6x Histidine tag at N-terminus.  83 
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 4 

(NH2-MRGSHHHHHHGMARGYGRKKGRQRRR-).  84 

The plasmid pTat-MyoD was trasformed in Escherichia Coli BL21 bacteria cells. The bacteria were 85 

grown at 37°C in Luria Broth (LB) medium containing ampicillin (100 µg/ml) to an OD600 of 600 86 

nm. Protein expression was induced by adding IPTG (Isopropil-β-D-1-Thiogalactopyranoside) 87 

about 4 hours at 25°C. To collect the Tat-MyoD protein, bacteria were harvested and cell membrane 88 

was lysed by sonication under denaturing condition using 6 M guanidinium. The proteins were 89 

bound to the resin IMAC and then were eluted with 8 M urea and 300 mM imidazole (pH 6.3). The 90 

fractions containing the larger quantity of protein were purified using a gel filtration PD10 column 91 

(GE Healthcare) to eliminate urea and imidazole. The purified protein was quantified using a 92 

spectrophotometer and then an SDS-PAGE was made to verify the purity of Tat-MyoD (44 KDa). 93 

The final protein concentration obtained was 0,5 mg/ml. 94 

 95 

2.2.Transduction of Tat-MyoD into peripheral blood derived-mesenchymal stem cells (PB-96 

MSCs)  97 

 98 

MSCs were isolated from equine peripheral blood (Martinello et al. 2010) and were cultured in GM 99 

(growth medium, DMEM Dulbecco’s Modified Eagle’s Medium, 10% fetal bovine serum FBS, and 100 

antibiotics 100 mg/ml streptomycin, 100 U/ml penicillin, Euroclone) at 37°C. In order to evaluate 101 

the internalization of Tat-MyoD, PB-MSCs (when reaching confluence) were incubated in the 102 

presence of 0,1µg/ml Tat-MyoD for 2, 6, 15, 24 and 48 hours in medium without serum. The time 103 

course analysis was repeated in quadruplicate. 104 

 105 

2.3.Coculture of PB-MSCs and C2C12 106 

 107 

PB-MSCs and C2C12 cells were cocultered independently by using transwell insert (BD Falcon) 108 

with a 1µm pore size of membrane to separate each cell type. PB-MSCs were plated at the bottom 109 
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 5 

of 6-well plates at concentration of 1,5x105 cells/well in GM and the day after the cells were treated 110 

with Tat-MyoD for 15h in medium without serum. Concurrently, C2C12 were seeded at density of 111 

3x105 cells per insert in GM, when the cells reached 80% of confluence the medium was changed to 112 

DM (differentiation medium, DMEM, horse serum 2%, antibiotics 1%, Euroclone). After 3 days the 113 

inserts with C2C12 were transferred into the wells with PB-MSCs in DM. The coculture was 114 

maintained for 7 days in DM and the experiment was repeated in triplicate. 115 

 116 

2.4.Immunostaining 117 

 118 

To perform immunostaining experiments cells were washed with PBS and fixed in 4% 119 

paraformaldehyde for 10 min; after further washing they were permeabilized with 0,3% Triton X-120 

100 for 5 min and blocked for 1h using 1% FBS. Anti-His tag antibody (1:100, Sigma) was 121 

employed to evaluate the internalization of Tat-MyoD. To evaluate the differentiation of cells, anti-122 

MyoD (1:100, Santa Cruz), anti-Myf5 (1:100, Santa Cruz) and anti-Myogenin antibodies (1:500, 123 

Chemicon) were used. All antibodies were maintained overnight at 4°C. Fixed cells were washed 124 

with PBS followed by addition of anti-mouse or anti-rabbit Alexa 568 conjugated antibody 125 

(Molecular Probes) at a 1:500 (v/v) dilution. Finally, staining of nuclei was obtained with DAPI 126 

(Sigma). As controls, PB-MSCs treated with Tat-MyoD without coculture and PB-MSCs in 127 

coculture, but without Tat-MyoD treatment, were used. 128 

 129 

3. Results 130 

 131 

3.1.Purification of Tat-MyoD protein 132 

 133 

Tat-MyoD was expressed in E. Coli Bl21 and purification was performed using a Ni-NTA column. 134 

Tat-MyoD purified to homogeneity shows and apparent molecular weight of 44 KDa on SDS-135 
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 6 

PAGE and migrate on gel slower respect its theoretical molecular weight of 37905.1 Da (Fig. 1). 136 

This common behavior may be explained due to the high number of basic amino acids (17.2% 137 

respect to total amino acids). 138 

 139 

3.2.Localization of Tat-MyoD into PB-MSCs 140 

 141 

In order to evaluate the cellular pathway of Tat-MyoD protein construct, an immunofluorescence 142 

assay was chosen (Fig. 2). Using confocal microscopy, it was found that after 2 and 6 hours of PB-143 

MSCs treatment with MyoD-Tat, the protein permeated cell membrane and was present in the 144 

cytoplasm; only after 15 hours of incubation, the construct was confined in the nucleus and this 145 

localization was persistent after 24 and 48 hours of treatment (Fig. 2). Experiments were performed 146 

in serum free medium since the latter inhibits this process (data not shown).   147 

 148 

3.3.Myogenic differentiation of PB-MSCs 149 

 150 

Myogenic differentiation was achieved using Tat-MyoD transduction and the inductive medium of 151 

the cellular line C2C12. To study the effect of our set up on myogenic marker expression in PB-152 

MSCs, we performed an indirect coculture using transwell insert (Fig. 3B). The scheme of 153 

experiment is illustrated in Figure 3A. The effective differentiation was evaluated observing the 154 

localization of Myf5 and Myogenin by immunofluorescence (Fig. 4). Results indicated that to 155 

activate the myogenic pathway in mesenchymal stem cells it was necessary the co-action of MyoD 156 

transduction and the molecular signals present in the medium of C2C12. Figure 4 (A, B) shows 157 

Myf5 and Myogenin expression in PB-MSCs treated for 15 hours with Tat-MyoD in serum free 158 

medium and, subsequently grown for 7 days in coculture with C2C12 myotubes in differentiative 159 

medium. The myogenic differentiation of PB-MSCs was not achieved using, separately, Tat-MyoD 160 
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 7 

(Fig. 4 D, E) or the C2C12 conditioned medium (Fig. 4 G, H). Fig 4C and 4F show the internal 161 

localization of Tat-MyoD complex by means of His-Tag antibody and fig. 4I confirms the absence 162 

of myogenic differentiation with only C2C12 conditioned medium with the use of MyoD antibody. 163 

  164 

4. Discussion 165 

The equine model offers a unique opportunity to explore treatment strategies for musculoskeletal 166 

disorders under conditions similar to the pathophysiology of human patients. Current treatments are 167 

often restricted to the management of symptoms or replacement with inert materials; therefore, 168 

there is a need for alternative biological approaches. MSCs may differentiate into cell types relevant 169 

to amend musculoskeletal diseases (Gupta et al. 2007; Lee et al. 2011; Galli et al. 2014) and are 170 

able to secrete growth factors to promote a repairing environment. However, for cell therapy 171 

purposes is necessary that MSCs are able to participate in the formation of new muscle fibers, a 172 

critical process that has not been fully elucidated so far. In vitro, hASCs (Human adipose-derived 173 

stem cells) treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) stimulates the early 174 

muscle differentiation steps (Eom et al. 2011); more, the expression of MyoD using high efficient 175 

lentiviral transduction induces myogenic differentiation while adipogenic differentiation is inhibited 176 

(Goudenege et al. 2009). Moreover, using MyoD lentiviral vector Sung et al. induced the expression 177 

of MyoD but not of Myogenin, (Sung et al. 2016). However, these methods are not appropriated for 178 

clinical use due to their mutagenic potential. In the last decade, several groups have demonstrated 179 

that the Tat protein transduction domain (PTD) is a great transactivator of gene expression (Dietz 180 

and Bähr 2004; Fittipaldi and Giacca 2005); its short amino acid motif, highly enriched in basic 181 

amino acids, binds to the cell surface and internalize in a variety of different cell types. In the recent 182 

past, various cellular proteins were described to interact with Tat and mediate or control its 183 

transcriptional activity (Kashanchi et al. 1996; Benkirane et al. 1998; Marzio et al. 1998; Col et al. 184 

2001). In the present study, the human MyoD protein was engineered with the Tat sequence in order 185 
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 8 

to evaluate a safe method for the induction of mesenchymal stem cells towards the myogenic 186 

differentiation. This approach was already proposed in cells that naturally follow the myogenic fate, 187 

as mouse myogenic primary cells (Noda et al. 2009) and C2C12 cell line (Hidema et al. 2012) but 188 

to our knowledge was never tried on PB-MSCs. Additionally, experiments from Sung et al. (2013) 189 

underlines the importance of the extracellular environment, as they were able to differentiated 190 

human adipose-derived stem cells into myogenic cells using a fusion with C2C12 cells.  191 

We were successful in inducing myoblasts differentiation in PB-MSCs. Our experiment indicates 192 

that the development of myogenic phenotypes of mesenchymal stem cells by Tat-MyoD construct 193 

depends on time and culture conditions, highlighting the role of in vitro microenvironment in terms 194 

of secreted factors and cell contacts.  195 

Indeed, an important observation raised from our experiments was the necessity to add Tat-MyoD 196 

in a cell culture with serum free medium. It has been demonstrated that short peptides (Green and 197 

Loewenstein 1988) rich in arginine (Suzuki et al. 2002) are rapidly internalized by cells, in a 198 

receptor-independent manner and without energy consumption. This does not happen for Tat basic 199 

domain when fused to protein cargos (Fittipaldi and Giacca 2005). It was suggested that the process 200 

of Tat internalization occurs through adsorptive endocytosis. Several investigators (Hakansson et al. 201 

2001; Mann and Frankel 1991) state that Tat sequence binds homologue of heparin sulfate (HS) 202 

glycosaminoglycan (GAG), a major constituent of extracellular matrix, suggesting that the bound 203 

HS/Tat might be involved in the internalization process. In accordance with this hypothesis, our 204 

study suggests that the presence of heparin in serum competes with the bound of HS/Tat, decreasing 205 

the uptake progression. To stimulate myogenic differentiation, Tat-MyoD has to be localized in the 206 

nucleus. Our results demonstrated that after 2 and 6 hours the construct remained in the cytoplasm, 207 

probably in vesicle as hypothesized by (Noda et al. 2009). Only after 15 hrs of incubation, Tat-208 

MyoD was localized in the nucleus where it persisted after 24 and 48 hrs. However, the activation 209 

of myogenic pathway by nuclear MyoD was not sufficient to induce cellular differentiation.. 210 
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Likewise PB-MSCs cocultured with C2C12 grown in cell insert (prevent the cell direct contact but 211 

permits the interaction of culture medium) was not enough to induce the myogenic commitment. 212 

To our knowledge, this is the first study that shows a myogenic differentiation in equine adult stem 213 

cells using the TAT-mediated protein transduction system; the advantage of our method consists in 214 

obtaining committed myogenic cells derived from an abundant cell source, as PB-MSCs, without 215 

the need of fusion with other cells. It is important to state that our model might easily be reproduced 216 

also in human mesenchymal stem cells too (Martinello et al, unpublished results) although further 217 

studies will be necessary to develop this methodology for clinical purposes.  218 
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 361 

 362 

Figure Legends 363 

 364 

Fig. 1. Purification of Tat-MyoD by Ni-NTA column. Lane 1, BL21 cell and Sumo-hyrudin. Lane 365 

2, BL21 and pTat-MyoD before induction. Lane 3, BL21 and pTat-MyoD after induction with 0.5 366 

mM IPTG. Lane 4, Purified Tat-MyoD after Ni-NTA column. 367 

 368 

Fig. 2. Immunofluorescence analysis of PB-MSCs treated with Tat-MyoD for 2, 6, 15, 24 and 48 369 

hours using the anti-His Tag antibody (red) and DAPI (blue). From 15 hours of incubation anti-His 370 

Tag and DAPI colocalized. Bottom right image shows PB-MSCs after 48 hours of Tat-MyoD 371 

incubation (PC = Phase contrast). Scale bars: 58µm 372 

 373 

Fig. 3. (A) Scheme of coculture between PB-MSCs treated with Tat-MyoD and C2C12, GM 374 

indicates growth medium and DM differentiation medium. (B) Scheme of transwell insert used for 375 

the coculture. 376 

 377 

Fig. 4. Myogenic differentiation of PB-MSCs. Immunofluorescence of PB-MSCs after the Tat-378 

MyoD treatment and the contemporary coculture with differentiated C2C12 (A, B, C). 379 

Immunofluorescence of PB-MSCs after 7 days of Tat-MyoD treatment (D, E, F) and after 7 days of 380 

coculture with differentiated C2C12 (G, H, I). The images show the merge between nuclear DAPI 381 
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staining (blue) and anti-Myf5 (A, D, G), anti-Myogenin (B, E, H), anti-His Tag (C, F), and anti 382 

MyoD (I) antibodies (red staining). Scale bars: 58 µm.  383 
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