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On December 4th, I modified the table 1 in the manuscript and in the attached files. I
reversed the rows and columns to improve the readability of the figure whose quality
was poor.

Response to Reviewers: Brest, December 1, 2017
Dear Editor,

Please find enclosed our revised manuscript entitled “The Voltage-Dependent Anion
Channel (VDAC) of Pacific oysters Crassostrea gigas is up-accumulated during
infection by the ostreid herpes virus-1 (OsHV-1): an indicator of the Warburg effect”
submitted for publication in Marine Biotechnology.

In this paper, we validate a specific antibody to quantify VDAC in oyster whole body or
tissues as an indicator of susceptibility to infection. This study represents a first step
toward the analysis of VDAC functioning and mechanisms during an invertebrate
Warburg effect, that will be addressed in further fundamental research projects.
We carefully addressed all comments made by the two reviewers. In particular, in our
revised manuscript, we add new information concerning the occurrence of the Warburg
effect in the oyster C. gigas. In particular, a highly relevant reference published in 2017
is now provided, which confirms by metabolomics that C. gigas metabolism shifts
toward the Warburg effect when it is infected by OsHV-1 (Young et al., 2017). We hope
these results will help to convince the reviewer of the occurrence of the Warburg effect
in infected oysters as published in Corporeau et al. (2014) and already demonstrated
in shrimp. We hope the manuscript now presents a more convincing case for why
VDAC up-accumulation is an indicator of the Warburg effect in infected oyster. As
recommended, we also improved technical findings, figure legends, and copy editing.
The answers to each point brought up by reviewers are developed below.

Thank you in advance for considering this revised manuscript.

Sincerely,

Lizenn Delisle.

The Voltage Dependent Anion Channel (VDAC) of Pacific oysters Crassostrea gigas is
up-accumulated during infection by the ostreid herpesvirus-1 (OsHV-1): an indicator of
the Warburg effect.

Response to the editor
Based on the advice received, I have decided that your manuscript could be
reconsidered for publication should you be prepared to incorporate major revisions.
When preparing your revised manuscript, you are asked to carefully consider the
reviewer comments which can be found below, and submit a list of responses to the
comments.

In this paper we aim to develop a tool to quantify the VDAC protein in oyster, in whole
body animals or tissues. This development is a first step toward the study of VDAC
functioning and precise mechanisms of invertebrate Warburg effect during oyster
infection and mortalities. As recommended, we improved interpretation and discussion
of the data to respond to major comments, and we submit a list of responses to each
reviewer’s comment (see below).

You are kindly requested to also check the website for possible reviewer
attachment(s). While submitting, please check the filled in author data carefully and
update them if applicable - they need to be complete and correct in order for the
revision to be processed further. You will need to log in to the journal and check the
submission details as described below.

Done.

Response to reviewers

Reviewer #1:
This article developed a specific antibody and quantified the amount of oyster VDAC.
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The authors showed a correlation between oyster susceptibility to OsHV-1 and VDAC
amount, which indicated the feasibility of using VDAC quantification as a tool to
measure the oyster susceptibility to OsHV-1. This is an interesting work, but the
following recommendations need to be considered before the manuscript can be
accepted for publication.

1. The authors found VDAC is up-accumulated in oysters exposed to OsHV-1 in the
field. They considered the up-accumulation as an indicator of the Warburg effect.
However, VDAC is not only involved in Warburg effect, but also a key protein
regulating mitochondrial membrane permeabilization and apoptosis.

Thanks to the reviewer comment, we better describe the generic role of VDAC in
normal physiology as well as in the Warburg effect in cancer cells (see Introduction,
lines 73-74 and 82-85.

2. Therefore, the authors should at least measure the level of glycolysis by measuring
activities of glycolytic enzymes, such as G6PDH, Triose phosphate isomerase and
fructose 1,6-biphosphatase. As little has been done to study the role of oyster VDAC in
Warburg effect, it would be great if the authors could test whether there exists an
interaction between VDAC and glycolytic enzyme hexokinase, an important component
of Warburg effect in cancer cells. Only when oyster VDAC has been demonstrated to
be involved in the Warburg effect could the up-accumulation of it be an indicator of
Warburg effect
To address the comments in our revised manuscript, we have added some information
concerning the occurrence of the Warburg effect in the oyster C. gigas. In particular, a
highly pertinent reference from 2017 is now provided, which confirms by metabolomics
that C. gigas metabolism shifts toward the Warburg effect when oysters are infected by
OsHV-1 (Young et al., 2017). Taken with the observation of this effect in infected
oysters (Corporeau et al., 2014) and shrimp (Chen et al., 2011; Su et al., 2014), we
think these new metabolomics results provide convincing evidence of the occurrence
of the Warburg effect in infected oysters. Below we provide details about improvements
to our manuscript which we hope make a more convincing case that VDAC up-
accumulation is an indicator of the Warburg effect in infected oysters:
i) Given the reviewer major concerns, we have changed slightly the focus of the
manuscript. Instead of trying to demonstrate the Warburg effect in oyster, we rather
rely on the fact that the Warburg effect is a known required mechanism for infection
and mortalities in C. gigas, as ascertained by the recent publication of Young et al.
(2017). We try to be clearer in the revised manuscript that we would like to provide a
biochemical tool to quantify VDAC, rather to describe the precise mechanisms of action
of VDAC and the Warburg effect in oyster (see Introduction, lines 91-94 and 101). This
is the reason we didn’t perform enzymatic assays, biochemical studies, or immuno-
precipitation.
ii) In fact, the study of VDAC functioning and the precise mechanisms of the Warburg
effect in C gigas need further investigation, in samples that will be designed for this
purpose. We are developing fundamental research projects aiming to compare the
precise mechanisms of VDAC action between oyster and other model organisms
(mouse/yeast). These projects will use metabolic measurements and enzymatic
assays to describe the dynamic of the metabolic shift toward the Warburg effect. The
Cg-VDAC antibody developed here will be used to identify VDAC partners by
immunoprecipitation studies. In the work presented here, we wanted to validate the
specific anti-VDAC antibody in oyster whole body animals or tissues, as a first step
toward the study of VDAC functioning and mechanisms of the invertebrate Warburg
effect.

c. Minor comments
Line 63: a comma should be added between "2006)" and "Kaposi's
Done.

Line 69-71: Results in these two references did not link the accumulation of the protein
VDAC with metabolic shift toward the Warburg effect in shrimp. Correct the expression
or add some new references.
As recommended, we corrected the expression (see lines 69-71).
Line 70 & 84: "Han-Ching Wang" should be "Wang", please also modify it at the
Reference section
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Done.

Line 245: "Any" should be "No"
Done

Line 265: "Fig 2C" should be "Fig 2c"
Done

Line 367-368: Results in this reference did not show the role of VDAC in infection
stages. Correct the expression or change the references. Line 369-370: Results in this
reference did not demonstrate the interaction between VDAC and HK during WSSV
infection in shrimp. Correct the expression.
As recommended, we tried to clarify the text (see lines 386-393).

Reviewer #2:
The Voltage-Dependent Anion Channel (VDAC) is a key mitochondrial protein related
to cellular energy metabolism. The manuscript MBTE-D-17-00092 entitled "The
Voltage Dependent Anion Channel (VDAC) of Pacific oysters Crassostrea gigas is up-
accumulated during infection by the ostreid herpesvirus-1 (OsHV-1): an indicator of the
Warburg effect" by Lizenn Delisle and colleagues developed a specific antibody
directed against Crassostrea gigas VDAC. Then they used this tool to quantify the
tissue-specific expression of VDAC, to detect VDAC oligomers, and to follow the
amount of VDAC in oysters deployed in the field. The results suggested that oysters
sensitive to a mortality event in the field presented an accumulation of VDAC. The topic
is interest and the paper is technically sound, but it requires a few controls with
different technical approaches to fully validate the data. Although the manuscript is well
written and the figures are clear. Nevertheless, the figure legends need to be
improved. The description of the figures in the text are incomplete.

1. In Figure 1, Immuno-detection on western-blot with 10 to 30 µg of protein lysates
and using anti-Cg-VDAC as primary antibody. VDAC was detected at 30 kDa (arrow),
45 kDa (line), 60 kDa and 90 kDa (asterisks). But in Figure 2, VDAC was detected at
30 kDa (arrows), 45 kDa (line), 60 kDa, 90 kDa or 120 kDa (asterisks) depending on
the tissue. In Figure 3, VDAC was detected in spots at 30 kDa (arrows), 45 kDa (line)
or 60 kDa (asterisks) depending on the tissue. The author needs to provide a
reasonable explanation.

As recommended, we tried to clarify these points (see lines 254-256; 261-263, 292-
296, 355-371). The bands corresponding to VDAC oligomers detected in gels can vary
between immunoblots for some technical reasons: i) signals can be masked due to
high background level of chemiluminescence, or ii) oligomers can be disrupted due to
the conditions of protein extract denaturation before immunoblots:
i) Figures 1-3 presented in the manuscript show the Image analysis of immunoblots
obtained through G:Box software with the background signal removed (see lines 191-
193). The level of the background signal was higher with whole body samples (Fig.1)
than tissue samples (Fig.2). This could explain why we cannot detect the size of
oligomers at 120 kDa in whole body samples (Fig. 1), which does not necessarily
mean that the oligomer at 120 kDa does not exist. In fact, SDS PAGE immunoblots
were more resolutive in tissue samples (enrichment in specific tissue proteins) than
whole body samples (mix of all proteins from the animal, less specific signal detected).
ii) In Figure 3, two-dimensional electrophoresis was performed on tissue samples. The
2D immunoblots are much more thorough in terms of how proteins are treated than
SDS PAGE immunoblots. The sample denaturation using 2D (urea, thiourea, CHAPS,
DTT, iodoacetamide, mercaptoethanol, heat, SDS) is more complete and efficient than
in monodimensional electrophoresis (mercaptoethanol, heat, SDS). Thus, we can
consider that oligomers at size 90 and 120 kDa detected in SDS PAGE using tissue
protein extracts (Fig. 2) were undetectable in 2D (Fig. 3) because of destructuration,
and that might be due to strong denaturation of tissue protein extracts in 2D.

2. Page 13th and line 281-283. Textual material 'VDAC was detected in a spot at 30
kDa (pI= 8 and 8.3) with a shift at around 32 kDa (pI=7.6) that might be due to heart-
specific post-translational modifications such as phosphorylation.' I suggest the authors
to provide some experimental results confirm the speculative conclusions.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Thanks to the reviewer, we clarified this point and tried to be less conclusive. We
decided to rewrite this paragraph to be less speculative in its conclusions. As published
in Martel et al. 2014, oligomerization and a lot of post-translational modifications are
now described for VDAC in a lot of species and control VDAC functioning. Martel et al.
(2014) describe the many VDAC post-translational modifications that can occur, such
as phosphorylation, acetylation, S-nitrosylation, all of which may influence the
interactome and the activity of VDAC (Martel et al., 2014). In our case, further analysis
should be carried out to verify the identities of the putative post-translational
modifications or oligomerization found at 45, 60, 90 and 120 kDa in western blotting.
Further studies must be designed to investigate the post-translational modifications
and oligomerization of Cg VDAC, and we cannot address this question in our samples.

3. The Figure 4 only represented the relative level of VDAC (30 kDa) in oysters. I think
needs to provide all VDAC, such as 45 kDa, 60 kDa and 90 kDa, even 120 kDa.

In Figure 4, the electrophoretic profile of VDAC in SDS-PAGE using whole body protein
extracts from animals coming from the field presented a major band at 30 kDa, and
other sizes (muscle 45 kDa or oligomers) remained less detectable. We present to the
reviewer one image of blot obtained from whole body proteins of animals from the field.
We can see that VDAC is mainly detected at 30 kDa.
We chose to analyze the link between mortality and relative level of VDAC at 30 kDa
for statistical analysis. Indeed, as shown in Figure 2, the statistical analysis between
relative level of VDAC at 30 kDa and citrate synthase activity was conclusive, meaning
that the analysis of VDAC at 30 kDa can be informative, even if it doesn’t represent all
the VDAC oligomers. We clarified this point in the discussion (see lines 395-399) and
in figure legends (see lines 259; 262-263; 304-305).

3 Other more, the author needs to provide the reference protein electrophoretogram in
Figure 4d.

We present to the reviewer in attached file, one blot and its corresponding Ponceau
staining, which confirms equal amount of total protein loaded onto gels. As
recommended, we improved figure legends (see lines 279-280; 322-324). We hope our
response can answer the reviewer’s concerns.
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The Voltage Dependent Anion Channel (VDAC) of Pacific 1 

oysters Crassostrea gigas is upaccumulated during infection by 2 

the ostreid herpesvirus-1 (OsHV-1): an indicator of the Warburg 3 

effect.  4 

 5 

Lizenn Delisle1*, Marine Fuhrmann1, Claudie Quéré1, Marianna Pauletto2, Vianney Pichereau3, 6 

Fabrice Pernet1 and Charlotte Corporeau1. 7 

1 Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement 8 

Marin (LEMAR), 29280 Plouzané, France. 9 

2 Department of Comparative Biomedicine and Food Science. University of Padova, Viale 10 

dell’Università 16, 35020 Legnaro, Padova, Italy. 11 

3 Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des 12 

sciences de l’Environnement Marin (LEMAR), 29280 Plouzané, France 13 

* Corresponding author: Lizenn Delisle, Centre Ifremer de Bretagne, CS 10070, 29280 Plouzané, 14 

France. Tél: +33 2 98 22 43 86. Fax: + 33 2 98 22 46 53. E-mail: Lizenn.Delisle@ifremer.fr 15 

Keywords: Voltage dependent anion channel, Warburg effect, Crassostrea gigas, Ostreid herpes 16 

virus. 17 

ABSTRACT 18 

Voltage-Dependent Anion Channel (VDAC) is a key mitochondrial protein. VDAC drives cellular 19 

energy metabolism by controlling the influx and efflux of metabolites and ions through the 20 

mitochondrial membrane, playing a role in its permeabilization. This protein exerts a pivotal role 21 

during the White Spot Syndrome Virus (WSSV) infection in shrimp, through its involvement in a 22 

particular metabolism that plays in favor of the virus, the Warburg effect. The Warburg effect 23 

Manuscript Click here to download Manuscript manuscript DELISLE
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2 
 

corresponds to an atypical metabolic shift toward an aerobic glycolysis that provides energy for 24 

rapid cell division and resistance to apoptosis. In the Pacific oyster Crassostrea gigas, the Warburg 25 

effect occurs during infection by Ostreid herpesvirus (OsHV-1). At present, the role of VDAC in 26 

the Warburg effect, OsHV-1 infection and apoptosis is unknown. Here we developed a specific 27 

antibody directed against C. gigas VDAC. This tool allowed us to quantify the tissue-specific 28 

expression of VDAC, to detect VDAC oligomers, and to follow the amount of VDAC in oysters 29 

deployed in the field. We showed that oysters sensitive to a mortality event in the field presented 30 

an accumulation of VDAC. Finally, we propose to use VDAC quantification as a tool to measure 31 

the oyster susceptibility to OsHV-1 depending on its environment. 32 

INTRODUCTION 33 

Since 2008, massive mortality events of young oysters C. gigas have been reported in France 34 

(Miossec et al. 2009; EFSA 2010; Barbosa Solomieu et al. 2015; Pernet et al. 2016). These 35 

mortality events are associated with the infection of oysters with a newly described genotype 36 

(µVar) of Ostreid herpesvirus 1 (OsHV-1) (Segarra et al. 2010). A causal relationship between 37 

OsHV-1 and oyster mortality has been established (Schikorski et al. 2011; EFSA 2015). OsHV-1 38 

is a double strand DNA virus which belongs to Malacoherpesviridae family (Davison 2005; 39 

Segarra et al. 2010) and is now distributed along the European coastline from Portugal to 40 

Scandinavia, and closely related variants have been detected in Australia, New Zealand and Asia 41 

(EFSA 2015; Barbosa Solomieu et al. 2015; Pernet et al. 2016). Mortalities of juveniles range from 42 

40 to 100%, resulting in huge losses in Pacific oyster production (Pernet et al. 2012; Dégremont 43 

2013).  44 

To date, there is only limited data on how OsHV-1 interacts with its host, and the pathogenesis of 45 

the disease is not completely understood. The first study of this interaction, used global protein 46 
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expression profiling to investigate the oyster cellular response to OsHV-1 infection, was carried 47 

out in 2014 (Corporeau et al. 2014). This study demonstrated that during early stages of infection 48 

(2 days after injection), several biological pathways were modulated and that infected oysters 49 

exhibited an increased glycolysis and accumulation of the protein Voltage-Dependent Anion 50 

Channel (Cg-VDAC) that reflected a “Warburg effect” (Corporeau et al. 2014). Recently, Li et al. 51 

further illustrated the up-regulation of the Cg-VDAC transcript in hemolymph of OsHV-1 infected 52 

oysters (Li et al. 2016). 53 

The Warburg effect was first described by Otto Warburg in 1930s in cancer cells (Warburg 1956), 54 

and partly results from deregulation of cellular energy pathways (Poliseno 2012). Cells 55 

experiencing the Warburg effect show a metabolic shift toward an “aerobic glycolysis”, which 56 

presents several benefits to support the high energy and macromolecular synthesis requirement in 57 

rapidly dividing cells (Pedersen 2007; Vander Heiden et al. 2009; Puyraimond-Zemmour and 58 

Vignot 2013). Several human viruses reprogram the host energy metabolism toward the Warburg 59 

effect to support the biosynthesis of viral building blocks (Mesri et al. 2014): Human 60 

Papillomavirus (HPV) (Guo et al. 2014), Human Cytomegalovirus (HCMV; β-Herpesvirus) 61 

(Munger et al. 2006), Kaposi’s Sarcoma Herpesvirus (KSHV) (Delgado et al. 2010) or Hepatitis C 62 

virus (Diamond et al. 2010). 63 

To date, the Warburg effect has been shown to occur in the shrimp Litopenaeus vannamei as a 64 

metabolic shift that provides cellular energy and building blocks during the replication phase of 65 

the White Spot Syndrome Virus (WSSV) (Chen et al. 2011; Su et al. 2014). The WSSV infection 66 

is a lethal disease that can cause up to 100% mortality in 10 days (Chen et al. 2011; Su et al. 2014). 67 

In Litopenaeus vannamei, the Warburg effect is an essential component of the host-viral 68 

interaction, providing essential energy for successful WSSV viral replication (Wang et al. 2010; 69 

Su et al. 2014). 70 
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The Voltage-Dependent Anion Channel (VDAC) is a mitochondrial protein that plays a pivotal 71 

role in normal cells, but is also involved in the Warburg effect, occurring with cancer and viral 72 

infection in mammals. In normal cells, VDAC is a major membrane protein located in the 73 

mitochondrial outer membrane that controls metabolism and apoptosis, and it is considered as a 74 

multiple stress sensor, being an apoptotic checkpoint during stress and pathological conditions 75 

(Lemasters and Holmuhamedov 2006; Martel et al. 2014; Brahimi-Horn et al. 2015). The VDAC 76 

pore mediates the transport of metabolites such as ADP, ATP and NADH, ions and even larger 77 

molecules up to 4-6 kDa (Rostovtseva et al. 2002; Naghdi and Hajnóczky 2016). This channel is a 78 

key protein that drives cellular energy metabolism by controlling the influx and efflux of 79 

metabolites and ions, and participates in mitochondrial membrane permeabilization (Martel et al. 80 

2014). VDAC acts as a platform for many proteins supporting glycolysis and prevents apoptosis 81 

by interacting with hexokinase, or members of the Bcl-2 family, respectively. VDAC is thus 82 

involved in the metabolic reprogramming of cancer cells toward the Warburg effect (Mazure 2017). 83 

In shrimp, when the expression of VDAC is silenced by RNA interference (RNAi) before WSSV 84 

infection, the mortality decreases by 50 %, the detection of WSSV DNA drop markedly, and the 85 

Warburg effect does not occur (Wang et al. 2010; Chen et al. 2011). The accumulation of VDAC 86 

during infection has also been reported in some other species including the flounder Paralichtys 87 

olivaceus infected with the Scophtalmus maximus rhabdovirus (Lü et al. 2007), and during Grass 88 

carp hemorrhagic disease in the grass carp Ctenopharyngodon idella (Shen et al. 2014). In 89 

Crassostrea gigas infected by OsHV-1, both the mRNA (Renault et al. 2011; Li et al. 2016) and 90 

the protein VDAC (Corporeau et al. 2014; Young et al. 2017) were up-accumulated during the 91 

infection processes linked with the metabolic shift toward the Warburg effect (Young et al. 2017). 92 

In this context, characterizing the Cg-VDAC protein and quantifying its accumulation becomes a 93 

key component for following OsHV-1 infection processes in oyster. VDAC was recently described 94 
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5 
 

in oyster (Li et al. 2016). Like other invertebrates, oysters have only one type of VDAC. Cg-VDAC 95 

clustered into the group of VDAC 2, strongly conserved gene from cnidarians to mammals. This 96 

study showed that VDAC transcripts were expressed during all oyster developmental stages and in 97 

all tissues at adult stage.  98 

As a first step toward the study of VDAC functioning in infection processes of C. gigas, the 99 

objectives of the present study are: (1) producing and validating a specific antibody directed against 100 

C. gigas VDAC, (2) analyzing VDAC tissue-specific expression and electrophoretic profiles, and 101 

finally (3) assessing the VDAC amount in oysters exposed to OsHV-1 in the field.  102 

 103 

MATERIALS AND METHODS 104 

Experimental design 105 

 106 

Ethics Statement 107 

The Pacific oyster, C. gigas, used in this study is a marine-cultured animal and cultured in the 108 

Ifremer facilities in Argenton (Brittany, France; 48°34’30’’N, 4°36’18’’ W). All of the experiments 109 

were conducted according to local and national regulations. Permission for deploying oysters 110 

outside of farming areas was issued by the French Ministry of Ecology and Sustainable 111 

Development, dept. of maritime affairs, in February 2013. For locations within farming areas, the 112 

owner of the farm gave permission to conduct the study on this site. The present field studies did 113 

not involve endangered or protected species. 114 

Expt. 1. Validation of a specific antibody directed against C. gigas VDAC and tissue-specific 115 

analysis of VDAC 116 
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Specific-pathogen-free (SPF) oysters were produced according (Petton et al. 2015). Spawning 117 

occurred on 18 August 2014 (cohort NSI 01/15) in Ifremer facilities in Argenton (Brittany, France; 118 

48°34’30’’N, 4°36’18’’ W). The fecundation rates were up to 90%. The embryos developed in 119 

150L tanks at 21°C for 48h, and D-larvae were transferred to flow-through rearing systems at 25°C. 120 

After 15 days, competent larvae were collected and allowed to settle in downwellers. On 6 October 121 

2014, oysters were transferred to Ifremer facilities in Bouin (46°57' N - 2°02’ O). Before being 122 

transferred to Ifremer facilities in Argenton, oysters were deployed in farming area located in the 123 

Bay of Brest at Pointe du Chateau (48° 20’ 06.19” N, 4° 19’ 06.37” W) for 11 months since 5 Mars 124 

2015 (Petton et al. 2013). Oysters were sampled on 15 February 2016. The fleshes of 16 oysters 125 

were pooled, flash-frozen, crushed and stored in liquid nitrogen for further validation of the 126 

antibody. The mantle, gills, digestive gland, labial palp, striated and smooth adductor muscle, heart 127 

and visceral ganglia were carefully dissected from 50 oysters on ice, immediately flash-frozen in 128 

liquid nitrogen, pooled together by tissues, crushed and stored in liquid nitrogen. 129 

Expt 2. Quantification of the protein VDAC in oysters exposed to OsHV-1 in the field. 130 

Specific-pathogen-free (SPF) oysters were produced according to Petton et al (Petton et al. 2015). 131 

Animals were reared under controlled conditions until the age of 8 months (mean individual wet 132 

mass = 0.51 g). The oysters were screened for the herpesvirus by qPCR at the different stages of 133 

production, and it was undetected in all cases. These SPF oysters (also called “sentinel oysters”) 134 

were deployed at 46 sites located along an inshore-offshore gradient in the Mor-Braz area, South 135 

Brittany (France). This deployment took place before the start of a disease induced mortality event 136 

on 8 April 2013 that lasted for 171 days until 26 September 2013 (Pernet et al. in prep). At each 137 

site, 16 small mesh bags containing 85 individual oysters were grouped in one big mesh bag. These 138 

bags were attached to iron tables for the sites situated in the intertidal farming area or immersed 139 
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vertically at 2 meters depth and attached to a mooring point for the sites in the offshore area. The 140 

oysters were sampled 15 times at each site at low tide slack water ± 2 hours. Upon arrival in the 141 

laboratory, live and dead oysters were counted to evaluate survival. Individual shell length and wet 142 

mass were measured on a sub-sample of 25 live oysters per bag. The soft tissues of these oysters 143 

were removed from the shells, pooled together, dipped into liquid nitrogen and stored at -80°C 144 

until laboratory analyses. Western blot analyses were conducted on samples collected at two 145 

inshore sites located within the oyster farming area where mortality occurred the earliest between 146 

7 and 14 June (sites 37 and 39, Fig 1), at two offshore sites where mortality occurred later, from 6 147 

to 14 July (sites 33 and 38) and at two sites where no mortality occurred (sites 32 and 36). Analyses 148 

were conducted on samples collected before (30 April and 27 May), at the onset (7 and 14 June) 149 

and during the earliest mortality event (20 June).  150 

Total protein extraction 151 

Total protein extraction was performed using 1 g of oyster powder (flesh or tissues) that was 152 

homogenized with a Polytron® PT 2500 E (Kinemetica). Proteins were solubilized during 40 min 153 

at 4°C by adding 5 mL of lysis buffer (Guévélou et al. 2013b) (150 mM NaCl, 10 mM Tris pH 7.4, 154 

1 mM EDTA, 1 mM EGTA, 1% Triton X-100, and 0.5% Igepal; pH 7.4 at 4°C) containing 155 

phosphatase and protease inhibitors (1% of Phosphatase inhibitor cocktail II [Sigma-Aldrich], 2% 156 

of NaPPi 250 mM, and 1 tablet of complete EDTA free protease inhibitor cocktail [Roche] in 25 157 

mL of lysis buffer). Solubilized proteins were extracted by centrifugation at 4,000 g for 1 h at 4°C 158 

to eliminate lipids and cellular debris. The phase containing proteins was then collected and 159 

centrifuged at 10,000 g for 45 min at 4°C. Total protein content in each lysate was analyzed using 160 

the DC protein assay (Bio-Rad), in 96-well microplates (Nunc™) using a microplate reader (Bio-161 
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Tek®SynergyTM HT). Concentration was obtained using Gen5 version 2.03 software (Bio-Tek). 162 

The resulting lysates were divided in aliquots and stored at -80°C for further analysis. 163 

Antibody 164 

The Crassostrea gigas VDAC protein BAF63641.1 is a 280 amino acids protein with a predicted 165 

size of 30.33 kDa and a pI at 8.25 (http://web.expasy.org/compute_pi). A polyclonal anti-Cg -166 

VDAC antibody was produced in rabbit by Eurogentec (France) using the protocol describe in 167 

(Fabioux et al. 2009), against one peptide (104-QTGTKSGKIKTSYKM-118) located in the middle 168 

of the C. gigas VDAC protein sequence, in a turn and β structure.  169 

The antibody was purified and analyzed by indirect Elisa against the purified peptide to compare 170 

with pre-immune serum, large bleed and final bleed (Eurogentec, France). Purified anti-CgVDAC 171 

antibody was provided in PBS-BSA 0.1% with thimerosal (0.01 %) as preservative and was diluted 172 

vol/vol in glycerol for preservation in aliquots at -20 °C. 173 

Immunodetection on Western-blot 174 

Immunodetection on western-blot was done after mono-dimensional electrophoresis of total 175 

protein lysates: 10 µg, 20 µg or 30 µg. Protein lysates were heated in Laemmli buffer for 10 minutes 176 

at 100°C and loaded onto 4-15% SDS-Page (Criterion® TGX™ Precast Gels Bio-Rad, Hercules, 177 

CA, USA) in parallel with broad range SDS-Polyacrylamide gel electrophoresis (PAGE) molecular 178 

weight markers (Precision Plus Protein™Dual Color Standard, Bio-Rad, Hercules, CA, USA). 179 

SDS-PAGE run at 200 V constant voltage, 40 mA, for 10 minutes then 200 V constant voltage, 80 180 

mA, for 40 minutes. Proteins were then transferred onto a PVDF membrane (Trans-181 

Blot®Turbo™Midi PVDF Transfer Packs, Bio-Rad, Hercules, CA, USA) using the Trans-182 

Blot®Turbo™Transfer System (Bio-Rad, Hercules, CA, USA). For the immunodetection, we used 183 
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the anti Cg-VDAC (Eurogentec; dilution 1:5,000 in PBS-BSA 3%- Tween 1‰), or the preimmune 184 

serum as the primary antibody, overnight at 4°C. Blots were revealed using a secondary horseradish 185 

peroxidase-linked goat anti-rabbit antibody (dilution 1:2500 in PBS-BSA 3%- Tween 1‰) and a 186 

horseradish peroxidase detection kit (GE-Healthcare). The relative amount of protein detected was 187 

quantified using Gel Imaging for fluorescence and chemiluminescence G:Box Chemi XX6 188 

(Syngene, Gene tools software- Syngene) with the background signal removed. The value obtained 189 

was expressed in OD/mm2 and represents the band intensity. To ensure that identical amounts of 190 

total protein samples were loaded into gels, membranes were stained 5 minutes with Ponceau S 191 

(0.2% with TCA 0.3%, 5-sulfosalicylic acid 3%), then rinsed in distilled water under gentle shaking 192 

until the background signal had been removed. 193 

Two-dimensional electrophoresis (2-DE) and immunodetection 194 

Anti-Cg-VDAC was used for immunodetection on two-dimensional electrophoresis (2-DE) 195 

followed by western-blot using mantle, gills, smooth adductor muscle or heart protein lysates. For 196 

2-DE, 500 µg of tissue protein lysates were precipitated and desalted by adding 4 volumes of TCA 197 

20% during 2 h at 4°C, followed by centrifugation at 12.000 g for 15 min at 4°C. Pellets were 198 

washed 20 times with 80% acetone in 0.05M Tris-HCl, pH 8. Proteins were resuspended in 199 

DeStreak rehydration solution (GE Healthcare). Protein concentrations were determined using a 200 

modified Bradford assay (Ramagli 1999) and all samples were adjusted to 200 µg in 125 µl of 201 

DeStreak rehydration solution (GE Healthcare) containing 1% IPG buffer, then samples were 202 

placed at room temperature for 1 hour before isoelectric focusing (IEF). The first dimension was 203 

conducted on Bio-Rad protean IEF Cell System ™, (Bio-Rad, Hercules, CA, USA). Samples were 204 

loaded onto each strip (Immobiline DryStrip pH 4-7, 7 cm, GE Healthcare) and passive rehydration 205 

was allowed at room temperature overnight using mineral oil to prevent sample evaporation. The 206 
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IEF was carried out at 20°C in four steps: a calibration step at 250 V constant voltage for 10 min, 207 

an active hydration step at 250V for 30 min, a continuous increase in voltage up to 3500 V over 2 208 

h, then kept at 3500 V for 2 h. Finally, 50 V were maintained for 1 h. Before the second dimension, 209 

IPG strips were equilibrated for 15 min in a solution containing 6 M urea, 2% SDS, 30% glycerol, 210 

and 1% DTT in 0.05 M Tris-HCL, pH 8.8. The strips were then further equilibrated for 15 min in 211 

a similar buffer in which DTT was replaced with 2.5% iodoacetamide to alkylate the proteins. For 212 

the second dimension, 10% acrylamide gels were used and run on Mini protean tetra cell system 213 

(Bio-Rad, Hercules, CA, USA). The gels were loaded with broad range SDS-PAGE molecular 214 

weight markers (Precision Plus Protein™Dual Color Standard, Bio-Rad, Hercules, CA, USA). 215 

Migration was carried out at 200 V constant voltage, 40 mA, 10 min, and 200 V constant voltage, 216 

80 mA, 1 h. After 2-DE, immunodetection on western-blot was performed using anti-Cg-VDAC 217 

as described above. 218 

Citrate synthase activity 219 

Citrate synthase (CS; EC 2.3.3.1) activity was measured in oyster tissues using 20 µl of total protein 220 

lysate obtained as describe before. CS assay buffer contains 100 mM Tris/HCl at pH 8, 0.1 mM 221 

5,5’-dithio-bis-[2-nitrobenzoic] acid (DNTB), 0.2 mM acetyl-coenzyme A, and 0.5 mM 222 

oxaloacetate. CS activity is measured by following the increase in TNB absorbance for 10 min at 223 

412 nm using a Synergy HT microplate reader (BioTek). Enzyme activity was related to the total 224 

protein concentration of each sample.  225 

Statistical analysis 226 

Statistical analyses were performed using R software (http://www.R-project.org.). For all tests, the 227 

differences were accepted as statistically significant at the 95% of confidence level (p< 0.05). 228 
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Linear regressions were used to investigate the relation between VDAC relative protein level (30 229 

kDa) and the activity of citrate synthase among tissues (Expt 1). Analyses of Variance (ANOVA) 230 

followed by Tukey's post hoc test were conducted to investigate the effect of tissues (Expt 1) and 231 

time and sites (Expt 2) on VDAC relative protein levels. 232 

VDAC amino acid sequence comparison 233 

In order to evaluate the amino acid sequence conservation of the VDAC epitope across bivalves, 234 

we searched the VDAC transcript through several transcriptome assemblies. Contigs putatively 235 

encoding VDAC were identified through BlastX similarity searches against the non-redundant 236 

protein sequences database (nr). Coding sequences were predicted by similarity to C. gigas VDAC 237 

transcript (AB262088.1) and amino acid sequences were obtained by means of ExPASy translate 238 

tool (http://web.expasy.org/tools/translate/). The predicted amino acid sequences are aligned to C. 239 

gigas VDAC protein (BAF63641.1) by using BlastP. 240 

RESULTS 241 

Validation of anti-Cg-VDAC 242 

As demonstrated by immuno-detection on western-blot, the purified synthetic polyclonal anti-Cg-243 

VDAC (Eurogentec) strongly and rapidly recognized a band with an apparent molecular weight of 244 

30 kDa in oyster flesh (Fig 1a), which corresponds to the predicted size for VDAC protein in C. 245 

gigas (GI:148717311). No signal was revealed when primary antibody was replaced by pre-246 

immune serum (Fig 1b). As a result, we validated anti-Cg-VDAC as a specific tool to quantify the 247 

amount of VDAC in C. gigas. Anti-Cg-VDAC also detected a signal at around 45, 60 and 90 kDa 248 

(Fig 1a). These signal likely corresponded to the size of multimeric forms of VDAC, i.e. dimers 249 
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(60 kDa) and trimers (90 kDa). The existence of monomers to tetramers and higher oligomers of 250 

VDAC has already been characterized in many other species (Hoogenboom et al. 2007). 251 

 252 

 Fig 1: Validation of anti-Cg-VDAC antibody. 253 

Immuno-detection on western-blot with 10 to 30 µg of protein lysates from whole-body protein 254 

extracts using (a) anti-Cg-VDAC as primary antibody (dilution 1:5000) or (b) by pre-immune 255 

serum. VDAC was detected at 30 kDa (arrow), 45 kDa (line), 60 kDa and 90 kDa (asterisks). The 256 

bands detected at 60 and 90 kDa in SDS PAGE immunoblots correspond to the size of VDAC 257 

oligomers. 258 

 259 

Tissue-specific relative abundance of VDAC 260 

The 30 kDa VDAC was constitutively expressed in the eight tissues tested (Fig 2) in accordance 261 

with the Cg VDAC mRNA expression pattern (Li et al. 2016). Oligomers at 60 kDa, 90 and 120 262 

kDa were also detected at low levels, depending on the tissue (Fig 2a). The 30 kDa VDAC was 263 

less abundant in striated and smooth adductor muscle than in other tissues (Fig 2b). Also the 264 

electrophoretic profile of VDAC was specific to muscle since VDAC was mainly detected at 45 265 

kDa rather than at 30 kDa in other tissues. This could be due to muscle-specific post-translational 266 

modifications of VDAC such as glycosylation. The relative levels of VDAC among tissues were 267 

correlated with their citrate synthase activities (p < 0.001, Fig  2c). 268 

Fig 2: Tissue-specific amount of VDAC and citrate synthase activity. 269 

(a) Immuno-detection on western-blot using anti-Cg VDAC with 10 µg of tissues protein lysates 270 

and (b) relative quantification of VDAC at 30 kDa. Tissues analyzed were: mantle, gills, digestive 271 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 
 

gland, labial palp, striated adductor muscle, smooth adductor muscle, heart and visceral ganglia. 272 

VDAC was detected at 30 kDa (arrows), 45 kDa (line), 60 kDa, 90 kDa or 120 kDa (asterisks) 273 

depending on the tissue. The bands detected at 60, 90 and 120 kDa in SDS PAGE immunoblots 274 

corresponds to the size of VDAC oligomers. (c) Linear regression model using citrate synthase 275 

activity (mU/mg protein) as the explanatory variable and VDAC (30 kDa) relative protein level as 276 

the response variable in eight tissues (y = 0.086x + 1.178,  r2 = 0.8789, p < 0.005). 277 

 278 

 279 

2-DE profile of VDAC 280 

The immunodetection on western-blot after 2-DE was performed in order to compare the 2-DE 281 

electrophoretic profiles of VDAC in four tissues: mantle, gills, smooth adductor muscle and heart 282 

(Fig 3). VDAC was detected in one specific train of spots at 30 kDa in the mantle (pI 6.2 to 9.6) 283 

and in the gills (pI 7.5 to pI 9.2). In the smooth muscle, the 2-DE profile revealed that VDAC was 284 

mainly detected at 45 kDa in a train of spot from pI 6.8 to 7.5 as observed in the monodimensional 285 

electrophoresis. In the heart, VDAC was detected in a spot at 30 kDa (pI= 8 and 8.3) with a shift 286 

at around 32 kDa (pI=7.6) that might be due to heart-specific post-translational modifications. In 287 

vertebrates, VDAC modifications refer mainly to acetylation, phosphorylation and S-nitrosylation. 288 

(Martel et al., 2014). In mammals and plants, VDAC has been found to be phosphorylated (Martel 289 

et al., 2014). According to what is known about the structure of VDAC, the horizontal trains on 290 

gels could correspond to different phosphorylation states of the protein, and the vertical shifts could 291 

be due to glycosylation. In the four tested tissues, the spots detected at 60 kDa or 90 kDa might 292 

indicate that some multimerization of VDAC remains visible even after protein denaturation 293 

followed by IEF. 294 
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Fig 3: Tissue-specific 2-DE profile of VDAC. 295 

Immuno-detection on western-blot using anti-Cg VDAC after 2-DE with 500 µg of (a) mantle, (b) 296 

gills, (c) smooth adductor muscle and (d) heart protein lysates. VDAC was detected in spots at 30 297 

kDa (arrows), 45 kDa (line) and 60 kDa (asterisks) depending on the tissue. The spots detected at 298 

60 kDa in 2-DE immunoblots correspond to the size of VDAC dimers. 299 

 300 

VDAC amount in oysters during a field experiment  301 

The relative amounts of VDAC were followed in oysters deployed at 6 locations in the field for 302 

two months when OsHV-1 outbreaks (Fig 4). The sites 37 and 39 correspond to inshore sites 303 

located within the oyster farming area where OsHV-1 induced mortality occurred the earliest 304 

between 7 and 14 June (Fig 4a). The sites 33 and 38 were located offshore and OsHV-1 induced 305 

mortality occurred later, between 6 to 14 July (Fig 4a). Finally, the sites 32 and 36 were also located 306 

offshore, and there was no abnormal mortality (Fig 4a). The levels of VDAC at 30 kDa in oysters 307 

varied as a function of sites and time, the interaction of site and time being not significant 308 

(p=0.081). Overall, the level of VDAC at 30 kDa increased with precocity of the mortality event 309 

(Fig 4b, 4c, 4d). On 30 April, the levels of VDAC at 30 kDa were similar irrespective of locations 310 

(Fig 4d). Then, the level of VDAC at 30 kDa increased between 30 April and 27 May and reached 311 

a plateau until 14 June, at the onset of the mortality period (Fig 4c). 312 

 313 

Fig 4: VDAC amount in oysters in the field. 314 

(a) Map of 6 sampling sites, located along an inshore-offshore gradient in the Mor-Braz area, South 315 

Brittany (France). Sites 37 and 39 correspond to sites where mortalities occurred “early” (in red), 316 

sites 38 and 33 correspond to sites where mortalities occurred “late” (in yellow), and in sites 36 317 
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and 32 “no mortality” (blue) were recorded. (b) Effect of mortality level on the relative level of 318 

VDAC (30 kDa) in oysters in early mortality site (red), in late mortality site (yellow), and in site 319 

without mortality (blue). (c) Effect of time on the relative level of VDAC (30 kDa) in oysters from 320 

30th April 2013 to 20th June 2013. (d) Representative blocs of western blot obtained the 30th April 321 

2013 and 20th June 2013 in each site using anti-Cg VDAC antibody.  322 

 323 

VDAC in other marine species 324 

We identified a contig encoding VDAC in the transcriptomes of six bivalve species: Crassostrea 325 

rhizophorae, Pecten maximus, Ruditapes philippinarum, Ruditapes decussatus, Mytilus 326 

galloprovincialis and Mytilus edulis. As compared to C. gigas, the entire VDAC amino-acid 327 

sequence of the six marine species listed above showed a percentage of identity ranging from 64 328 

to 97 % (Table 1). In these species, we investigated the conservation of the epitope employed for 329 

the anti-Cg VDAC antibody synthesis, which consisted of 15 amino acids. With 10 to 14 conserved 330 

amino acids in the epitope, we could assume that anti-Cg VDAC antibody might be able to detect 331 

VDAC in these bivalve species (Table 1). The best record of epitope conservation was found for 332 

C. rhizophorae with 14 conserved amino acids. 333 

Table 1: VDAC in C. gigas and other marine species. 334 

 

 

% identity 

Cg VDAC 
Epitope 

Epitope identity 

(number aa) 

Cg VDAC 

Crassostrea gigas 
- QTGTKSGKIKTSYKM - 

Cr VDAC 

 Crassostrea rhizophorae 
97 % QTGTKSGKIKSSYKM 14/15 
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Mg VDAC    

 Mytilus galloprovincialis 
67 % QTGKKQGTIKTGYKQ 10/15 

Me VDAC     

Mytilus edulis 
67 % QTGKKQGTIKTGYKQ 10/15 

Pm VDAC       

Pecten maximus 
65 % QTGKKNGQIKTAYKM 11/15 

Rp VDAC 

 Ruditapes philippinarum 
64 % QTGKKSGKVKTGYKQ 11/15 

Rd VDAC          

Ruditapes decussatus 
64 % QTGKKSGKVKTGFKQ 10/15 

Comparison of VDAC amino acid sequence between C. gigas and others marine mollusks (in 335 

percentage of identity). The conserved amino acids from the epitope of anti-Cg VDAC are bolt and 336 

underlined. Epitope identity is expressed as the number of amino acids conserved with C. gigas 337 

epitope. 338 

 339 

DISCUSSION 340 

 341 

Owing to the purified anti-Cg VDAC antibody developed in our study, we showed that VDAC was 342 

constitutively expressed in all the tissues analyzed. This result agrees with the repartition of Cg 343 

VDAC transcripts in oysters (Li et al, 2016). The protein VDAC (30 kDa) was particularly 344 

accumulated in the heart, the labial palp, the ganglia, and the gills. The amount of VDAC was 345 

correlated with a high activity of citrate synthase in these tissues, a proxy of mitochondria number 346 

in tissues (Moran and Manahan 2004; Holmborn et al. 2009). 347 

Analyses of Cg VDAC electrophoretic profile using both the western blot and the 2-DE western-348 

blot might reveal the existence of dimers and trimers and their tissue-specific regulations. The 349 

detection of bands corresponding to VDAC oligomers can vary between immunoblots, due to either 350 
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a low level of band detection in a complex protein sample, or to the protocol of denaturation of 351 

protein extracts before analysis. VDAC oligomerization is well documented and VDAC is present 352 

as a dimer in rat liver (Lindén and Gellerfors 1983), as both dimers and trimmers in yeast (Krause 353 

et al. 1986), and higher oligomers in plants (Hoogenboom et al., 2007). In striated and smooth 354 

muscles, VDAC was mainly detected at 45 kDa rather than at 30 kDa. In fact, specific post-355 

translational modifications of VDAC might occur depending on the tissue, and this was confirmed 356 

by 2D immunoblots. Tissue specific regulation of VDAC likely reflects post-translational 357 

modifications, as previously reported in rats (Martel et al. 2014). These authors show that various 358 

VDAC post-translational modifications can occur, such as phosphorylation, acetylation, S-359 

nitrosylation, and they influence the interactome and the activity of VDAC (Martel et al. 2014). In 360 

our case, further analysis should be carried out to verify the identities of the putative post-361 

translational modifications and oligomerization found at 32, 45, 60, 90 and 120 kDa in western 362 

blotting. The anti-Cg VDAC antibody developed here might help to study the functioning of 363 

VDAC in oyster in further studies designed to investigate the post-translational modifications and 364 

oligomerization of Cg VDAC. 365 

In C. gigas, the role of VDAC remains unclear. A recent study strongly supported the well 366 

conserved role of VDAC in the control of apoptosis during UV exposure and the direct interaction 367 

between VDAC and the pro-apoptotic protein Bak (Li et al. 2016). However, VDAC could be 368 

involved in the early stage of viral infection in invertebrates. This was already proposed in C. 369 

gigas/OsHV-1 (Corporeau et al. 2014; Young et al. 2017) and demonstrated in shrimps/WSSV. 370 

For instance, VDAC is accumulated during WSSV infection in L. vannamei, and it facilitates the 371 

infection process (Wang et al. 2007, 2010; Leu et al. 2013). Indeed, when the expression of VDAC 372 

is silenced, the infection process is delayed (Chen et al. 2011).  373 
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For the first time, our study shows that VDAC is up-accumulated in oysters exposed to OsHV-1 in 374 

the field. This result agrees with the accumulation of transcripts of Cg VDAC in the hemolymph 375 

of oysters infected with OsHV-1 (Renault et al. 2011) six hours after the viral injection (Li et al. 376 

2016). 377 

In marine invertebrates, knowledge on proteins playing a role in viral infection is still limited (Li 378 

et al. 2016) and studies have mainly explored the host or viral transcriptomes (Jouaux et al. 2013; 379 

Segarra et al. 2014). In shrimp, the Warburg effect is induced by viral mechanisms that alter the 380 

host metabolome through the PI3K-Akt-mTOR signaling pathways for production of energy and 381 

metabolic precursors for viral biogenesis (Su et al. 2014). In shrimp infected by WWSV, VDAC is 382 

up-regulated, and silencing of VDAC reduces WSSV-induced mortalities and virion copy number 383 

(Chen et al., 2011). As a key component of the Warburg effect, it now seems important to develop 384 

tools to study VDAC in C. gigas at the proteomic level, and to further evaluate its ability to bind 385 

partners, like hexokinase, depending on the infection status and the oyster environment. 386 

For the first time, we proved the validity of the anti-Cg VDAC antibody as a tool to follow the 387 

amount of VDAC in oyster deployed in the field. We showed that the relative amount of VDAC at 388 

30 kDa, as a monomer, can be informative even if it does not represent all the VDAC oligomers. 389 

We demonstrated a higher accumulation of VDAC at 30 kDa in tissues exhibiting a higher citrate 390 

synthase activity, and in oysters from sites suffering from higher levels of mortality compared to 391 

control animals. These results likely indicate that (1) increasing amount of VDAC is related to the 392 

susceptibility of oysters to OsHV-1, and (2) disease-susceptibility of oyster and the amount of 393 

VDAC in oyster tissues are influenced by the local environment. The high amount of VDAC might 394 

reflect the ability of the oyster in the field to shift toward the Warburg effect and to replicate the 395 

virus, thus leading to death. Ongoing studies are investigating the role of environmental factors on 396 
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the interaction between VDAC, C. gigas metabolism and OsHV-1 replication. The antibody anti-397 

Cg VDAC is a new tool to measure the impact of environmental factors on oyster metabolism.  398 
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% identity 

Cg VDAC 
Epitope 

Epitope identity 

(number aa) 

Cg VDAC 

Crassostrea gigas 
- QTGTKSGKIKTSYKM - 

Cr VDAC 

 Crassostrea rhizophorae 
97 % QTGTKSGKIKSSYKM 14/15 

Mg VDAC    

 Mytilus galloprovincialis 
67 % QTGKKQGTIKTGYKQ 10/15 

Me VDAC     

Mytilus edulis 
67 % QTGKKQGTIKTGYKQ 10/15 

Pm VDAC       

Pecten maximus 
65 % QTGKKNGQIKTAYKM 11/15 

Rp VDAC 

 Ruditapes philippinarum 
64 % QTGKKSGKVKTGYKQ 11/15 

Rd VDAC          

Ruditapes decussatus 
64 % QTGKKSGKVKTGFKQ 10/15 
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