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In quantum optimal control theory the success of an optimization algorithm is highly influenced by how the
figure of merit to be optimized behaves as a function of the control field, i.e., by the control landscape. Constraints
on the control field introduce local minima in the landscape—false traps—which might prevent an efficient
solution of the optimal control problem. Rabitz et al. [Science 303, 1998 (2004)] showed that local minima
occur only rarely for unconstrained optimization. Here, we extend this result to the case of bandwidth-limited
control pulses showing that in this case one can eliminate the false traps arising from the constraint. Based on this
theoretical understanding, we modify the chopped-random-basis (CRAB) optimal control algorithm and show
that this development exploits the advantages of both (unconstrained) gradient algorithms and of truncated basis
methods, allowing one to always follow the gradient of the unconstrained landscape by bandwidth-limited control
functions. We study the effects of additional constraints and show that for reasonable constraints the convergence
properties are still maintained. Finally, we numerically show that this approach saturates the theoretical bound
on the minimal bandwidth of the control needed to optimally drive the system.
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The ability of achieving a desired transformation of a
quantum system lies at the heart of the success of experiments
in cold atoms [1,2], quantum optics [3–5], condensed matter
[6], and in quantum technologies [7]. Together with the fast
development of these fields and the increasing complexity
of the experiments, to develop efficient protocols it is often
necessary to automatize the optimization process if not the
whole development of the experimental sequence [8]. One
possible way to perform such an optimization is by means of
quantum optimal control, an approach that has proven to be
very successful in solving this class of problems [9].

The success of gradient methods to find global solutions
in quantum control problems [10–12] is largely due to the
fact that local minima are very rare in the control landscapes
of a large class of systems [13–21]. However, to face the
new challenges posed by the recent advancements in quantum
science, gradient methods might be not the best option since
to numerically calculate the gradient of the control objective
might be quite inefficient. Moreover in an increasing number
of interesting applications, the control objective does not
allow for an analytical calculation of the gradient [22,23].
The chopped-random-basis (CRAB) optimal control algorithm
operates with an expansion of the control field onto a truncated
basis and a direct optimization of the coefficients of the
expansion by means of gradient-free minimization [24,25].
These characteristics allow for the solution of optimal control
problems involving many-body quantum systems [22,26],
as well as in the presence of long-range interactions [27],
bandwidth-limited control according to experimental con-
straints [28–30], and highly nonlinear functionals where the
gradient cannot be calculated [22,23]. However, the CRAB
optimization does not necessarily fulfill the condition under
which local minima in the optimization occur only rarely as it
is by construction bandwidth limited [13–19].

In this paper we extend the results presented by Rabitz
and coworkers [13] and show that bandwidth-limited optimal

control can be made virtually free of local minima as in the case
of unconstrained control. Moreover, we numerically show that
the global minima one always reaches correspond to an optimal
solution if the bandwidth satisfy the theoretical bound given in
Ref. [31]. In particular, we present an extension of the CRAB
algorithm—the “dressed CRAB” (DCRAB)—that keeps the
benefits of the original algorithm and comes with the additional
property of guaranteed convergence to the global optimum in
the cases where this is guaranteed also for gradient methods.
We test the two versions of the algorithm by optimizing a state
transfer for different instances of a random spin Hamiltonian.
Being M the dimension of the Hilbert space the problem is
defined on, for the standard CRAB algorithm false traps occur
when the heuristic “2M − 1-rule” for the number of required
control coefficients is violated [32]. On the contrary, using
the DCRAB presented hereafter, all false traps are removed
regardless of the number of control coefficients, resulting also
in a faster convergence to the global optimum. We present a
theoretical explanation supporting these findings and showing
that one can construct a set of random basis functions which
follow the instantaneous gradient of the control landscape.
Finally, we examine the behavior of DCRAB in the presence
of additional constraints on the bandwidth and amplitude of
the pulse, and show that the algorithm is well-behaving as
false traps appear only in the presence of strong constraints.
In the following, for simplicity we will focus on state-to-state
transfer of pure states, however, the theoretical arguments are
valid in the general scenario of unitary gate generation and
mixed-states optimal control.

The structure of this paper is as follows: We first review
the standard CRAB algorithm and introduce its extension,
DCRAB [33]. In Sec. II we present the theoretical basis of
DCRAB, while in Sec. III we show that DCRAB follows the
instantaneous gradient of the landscape. Finally, in Sec. IV
we apply both CRAB and DCRAB to control problems with
random spin Hamiltonians and evaluate their performance
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with respect to success probability, computational effort, and
behavior under constraints.

I. FROM CRAB TO DRESSED CRAB

In the following, we consider the optimization of a state-to-
state transfer problem where the figure of merit is the overlap
of the final state after the evolution with the target state,

F (|ψ(T )〉) = |〈ζ |ψ(T )〉|2. (1)

Here |ζ 〉 is the target state and the time evolution is given by
the Schrödinger equation,

i
∂

∂t
|ψ(t)〉 = [H0 + f (t)H1]|ψ(t)〉,
|ψ(0)〉 = |ξ 〉, (2)

with initial state |ξ 〉 and control function f (t) is determined
by the optimization algorithm in order to maximize the figure
of merit.

The CRAB algorithm [24,25] builds on the fact that in most
scenarios the resources available to solve an optimal control
problem—such as time, energy, and bandwidth—are limited:
In particular, as the set of practically accessible wave functions
is usually limited, one can show that also the control bandwidth
of the control field can be upper bounded [31]. This bound has
very important consequences as optimal control problems can
be practically solved by exploring a small subset of the a priori
infinite dimensional search space of functions. That is, one can
expand the control field in a truncated basis,

f (t) =
NC∑
i=1

cifi(t), (3)

and the optimization can then be performed on this subspace
of small dimension, resulting in an optimal set of coefficients
ci,i = 1, . . . ,NC . The optimization can be performed by
standard tools, e.g., by the Nelder-Mead simplex algorithm
that does not rely on gradients [35]. A standard choice for
the basis functions fi(t) are trigonometric functions, often
multiplied by a shape function 1/γ (t) that fixes the pulse
boundary conditions and a guess pulse [24,25].

Due to the restriction of the search basis to NC dimensions
given by the CRAB expansion in Eq. (3), the algorithm might
converge to a nonoptimal fixed point, i.e., the algorithm is
trapped in a local minimum arising due to the constraint—a so-
called false trap. To overcome this problem, and escape from
these false traps, we show in the next section that one can start
from the nonoptimal fixed point a new CRAB optimization
with a new random basis and new coefficients. This is done in
an iterative way so that in the j th superiteration one optimizes
the coefficients c

j

i of

f j (t) = f j−1(t) +
NC∑
i=1

c
j

i f
j

i (t), (4)

where f
j

i (t) are new randomly chosen basis functions, for
example sine or cosine functions with random frequencies
within some interval [0,ωmax]. As a consequence, in each
superiteration the old pulse is dressed with new search
directions. This updating of the search directions can also

be understood as an extension of Powell’s method [34] to an
infinite dimensional search space. In the following sections
we give a theoretical explanation why this is a substantial
improvement of the algorithm by analyzing how it influences
the constrained control landscape and we demonstrate it
numerically by applying it to a model with typical properties.

II. CONTROL LANDSCAPES AND CRAB

In this and in the following section, we review the theory of
control landscapes and how it can enlighten the reasons why
optimal control algorithms converge to the optimal solution or
become trapped [9,13]. We first review a general perturbative
analysis of control landscapes presented in Ref. [17], specif-
ically its gradients and critical points, valid independently
from the particular optimization algorithm employed to find
the optimal driving field; then we specify it to the CRAB
approach we are focusing on here. In particular, we focus on
why CRAB can be trapped whereas DCRAB—like gradient
methods—cannot be trapped, as we will show also in the next
section by means of some numerical examples.

Given a control problem with control f (t), the control
landscape is the functional J (f ) with

J (f ) = F (|ψ(T )〉), (5)

where |ψ(T )〉 is the final state resulting from time evolution of
the initial state |ξ 〉 with the given control f (t) and F is a figure
of merit quantifying the quality of the process [9,13]. In other
words, the control landscape is the functional expressing the
figure of merit of the process as a function of the control field.
In the following we use the state fidelity given by Eq. (1) as a
figure of merit. Notice that the control landscape can be seen
either as a function of the final state |ψ(T )〉 or as a functional
of the control field f (t): In the first case the function has by
definition a single optimal point [|ψ(T )〉 = |ζ 〉, up to a global
phase], while in the latter there might exist different control
pulses leading to the same maximum value, as sketched in
Fig. 1.

Optimization usually leads to so-called critical points of the
landscape, that is, to pulse shapes fulfilling the condition,

δJ = 〈∇F (ψ(T ))|δψ(T )〉 = 0 ∀ δf, (6)

i.e., a vanishing variation of the functional J for a variation
of the control f . Using the chain rule one can show that this
variation consists of two parts: the gradient of the fidelity
as a function of the final state ∇F/δψ(T ), and the variation
of the final state as a result of the variation of the control
δψ(T )/δf . For all common choices of the figure of merit a

FIG. 1. (Color online) Schematic view on the control landscape
J (f ) = F (|ψ(T )〉). While F has a strict global maximum point at |ζ 〉
(left panel), this state can be reached by different control functions
f1 and f2 corresponding to multiple global maximum points in the
landscape J (right panel).
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vanishing gradient ∇F (ψ(T )) = 0 corresponds to the global
maximum, global minimum or a saddle point [9,13,17]; more
specifically if F (|ψ(T )〉) is the state overlap [Eq. (1)] there
are no saddle points since ∇F = 0 corresponds to F = 0
(the global minimum) or F = 1 (the global maximum). Less
intuitive is the role played by the second term, which we
analyze in the following, to understand under which conditions
δJ = 0 implies ∇F (ψ(T )) = 0.

Critical points can be classified as singular or regular critical
points, where regular means that for every |δψ(T )〉 in the
Hilbert space of the problem there is a change in the control
δf that generates it, while on the contrary for singular points
this is not the case [9,13,17]. As a direct consequence, for
regular critical points we have

δJ = 〈∇F (ψ(T ))|δψ(T )〉 = 0 ∀ δf

⇒ δJ = 〈∇F (ψ(T ))|δψ(T )〉 = 0 ∀ δψ(T ) (7)

⇒ ∇F (ψ(T )) = 0,

as in this case the gradient of the fidelity is orthogonal to the
whole Hilbert space. This means that a regular point is not
a trap. That is, all traps have to be singular critical points
(although the reverse is not necessarily true). However, at least
for controllable systems, all known traps occur at constant
control fields [15,19], often at f = 0, and numerical evidence
hints to the fact that the singular points at nonconstant control
seem to be no traps [16–18]. That is, it is commonly accepted
that unconstrained control landscapes for all practical purposes
have no traps, although a rigorous proof has been given only
for two specific situations, the Landau-Zener system [20] and
the transmission of a wave package over a potential barrier
[21].

Now we discuss the implications of these results on the
CRAB and DCRAB optimal control success rate. As a starting
point, we recall that the previous statements assume that the
control f is a general function in L2 whereas for CRAB we
are much more restricted by the expansion into the truncated
basis. This means that one might find false traps in the CRAB
control landscape, i.e., encounter points where δJ vanishes for
all variations δf allowed by the truncated basis expansion of
Eq. (3), but not for all variations of the unconstrained control
space:

δJ = 0 ∀ δf =
Nc∑
i=1

fi(t)δci, but

∃ δf : f + δf ∈ L2 , δJ �= 0. (8)

These points are called false traps [32] as they arise only
artificially from the choice of the basis and their influence can
hinder convergence of the algorithm [32,36].

Here, we show how these false traps for CRAB are removed
by the superiterations of DCRAB: From Eqs. (6) and (8)
together with

〈∇F (|ψ(T )〉)| · 〉 = 2Re (〈ψ(T )|ζ 〉〈ζ | · 〉), (9)

it follows that, for a false trap the gradient has to be
〈∇F (ψ(T ))| · 〉 = Re 〈φT | · 〉 for some nonzero vector |φT 〉.

A perturbative treatment yields [17]

|δψ(T )〉 = −iU (T )
∫ T

0
U †(t)H1U (t)|ξ 〉δf (t)dt. (10)

This results in the expression for the overlap of the state update
and the gradient,

δJ = Re 〈φT |δψ(T )〉 =
∫ T

0
k(t)δf (t)dt, (11)

k(t) = −Im 〈φT |U (T )U †(t)H1U (t)|ξ 〉, (12)

where k is a continuous function and k �= 0 since k = 0 would
violate Eq. (8). If we now choose δf (t) = sin(ωrt)δc with a
new random frequency ωr we get∫ T

0
k(t)δf (t)dt �= 0, (13)

almost surely (i.e., the integral vanishes only on a null set of the
probability measure). If we now perturb our control field f by
this new frequency contribution (this is the new superiteration
of DCRAB) we find

δJ = 〈∇F (ψ(T ))|δψ(T )〉 �= 0, (14)

and thus we have removed the false trap. In conclusion, the
recipe to escape from a false trap is simply to add a new
random frequency term to the CRAB expansion once we are
in the false trap. This can be done also without increasing the
total number of coefficients since when one is at the bottom of
a false trap for a given set of basis functions and coefficients
there is no more use in varying the old coefficients, and they
can be kept at their value. We thus use the pulse f leading
to the false trap as a guess pulse for the next superiteration of
DCRAB [as explained in the previous section, see Eq. (4)] that
opens the false trap.

III. INSTANTANEOUS BASIS FUNCTIONS
FOR PULSE UPDATE

In this section we show that by choosing enough new
frequencies in a single superiteration of DCRAB we can
follow approximately the instantaneous gradient of the control
landscape with a bandwidth-limited pulse update. In the
previous section we chose a new basis function so that its
scalar product with

k(t) = −Im 〈φT |U (T )U †(t)H1U (t)|ξ 〉 (15)

would be finite. It is worth noting that this function k(t) is
exactly the update direction used in gradient algorithms with
the time-evolved initial state,

|ψ(t)〉 = U (t)|ξ 〉, (16)

and the adjoint state,

|χ (t)〉 = U (t)U †(T )|∇F (ψ(T ))〉. (17)

Together with H1 = δ(H0+f H1)
δf

= δH
δf

we get the well-known

k(t) = −Im

〈
χ (t)

∣∣∣∣δHδf (t)

∣∣∣∣ψ(t)

〉
. (18)

To follow the gradient of the control landscape only a
limited freedom for the pulse update is needed. Hsieh et al.
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[37] derived for a state-to-state transfer in an M-level system
a set of 2M − 2 functions (for each iteration step) that span
the pulse update k(t). This simply reflects the fact that the
state update generated by the pulse update δf , i.e., |δψ(T )〉,
is an M-dimensional complex vector (2M real coefficients)
with norm 1 and irrelevant global phase (thus 2M − 2 real
coefficients).

We can generate something very similar by choosing 2M −
1 random frequencies (we do not fix the global phase here)
and corresponding pulse updates δfn(t) = sin(ωnt)δcn (n =
1, . . . 2M − 1) with real coefficients cn. Let us here assume
that L2 pulses can generate |δψ(T )〉 out of the whole tangential
space of the unity sphere of CM (i.e., regularity of the control
landscape at the point of consideration which is the general
case for trap-free landscapes). The state update generated by
each pulse update in a perturbative regime reads [17]

|δψn(T )〉 = −iU (T )
∫ T

0
U †(t)H1U (t)|ξ 〉δfn(t)dt. (19)

We now show that for every vector |δφ〉 out of this
unit sphere there is a set of real coefficients αn so that
|δφ〉 = ∑2M−1

n=1 αn|δψn(T )〉. In order to do so we identify
|δφ〉 and |δψn(T )〉 as elements of a 2M − 1-dimensional
real vector space with scalar product Re 〈v|w〉 and show
that the |δψn(T )〉 are a basis of this space. Let us thus
consider Pn = span{|δψ1(T )〉, . . . ,|δψn(T )〉}. We will show
by induction that Pn has dimension n. For n = 1 this is trivial.
If now Pn has dimension n we have to show that |δψn+1(T )〉
is not orthogonal to P ⊥

n . Let thus be v ∈ P ⊥
n . The overlap of

|δψn+1(T )〉 and |v〉 is

Re 〈v|δψn+1(T )〉 =
∫ T

0
l(t)δfn+1(t)dt,

l(t) = − Im 〈v|U (T )U †(t)H1U (t)|ξ 〉. (20)

The kernel l(t) is continuous and if l �= 0 the overlap is nonzero
almost surely. However, l = 0 ⇔ |v〉 = α|ψ(T )〉 (α ∈ R)
[38] and thus |v〉 is not in the tangential space. This proves
that the |δψn(T )〉 as span the whole 2M − 1-dimensional
real vector space, or in other words the |δψn(T )〉 with real
coefficients span the whole tangential space of the unit sphere
of CM (almost surely).

We can also orthogonalize the state updates in a Gram-
Schmidt way to obtain the orthogonal basis |δψ̃n(T )〉. This
translates into a change of the pulse updates via

δf̃n(t) = δfn(t) −
n−1∑
k=1

〈δψ̃k(T )|δψn(T )〉δf̃ k(t), (21)

with |δψ̃n(T )〉 generated by δf̃n(t). Each direction |δφ〉 is then
a linear superposition of the basis states,

|δφ〉 =
2M−1∑
n=1

αn|δψ̃n(T )〉, (22)

and can thus be generated by a superposition of the corre-
sponding pulses,

|δφ〉 = −i

∫ T

0
U (T )U †(t)H1U (t)|ξ 〉

2M−1∑
n=1

αnδf̃n(t)dt. (23)

In particular this proves that with 2M − 1 random instanta-
neous basis functions [δfn(t) order δf̃n(t) for the “orthogonal”
basis] we can follow the instantaneous gradient of the control
landscape by suitable coefficients. We stress that, unlike in
the case of a standard gradient method, this is done by
bandwidth-limited pulses which can be comfortably adapted
to typical experimental constraints such as bandwidth-limited
control electronics.

This result demonstrates that after a change of the truncated
basis in the function space the search in the state space is
quasilocal. We can use this in the numerical part by initializing
a small simplex after the basis change to ensure local search.
The orthogonalization procedure could also help to find a
better basis for the CRAB (re)start at the cost of M(M − 1)/2
additional function evaluations.

IV. NUMERICAL EXPERIMENT

In this section we show that the DCRAB algorithm is
indeed capable of escaping from false traps in random optimal
control problems of increasing complexity. We consider a spin
Hamiltonian,

H =
N∑

i=1

αiσ
x
i + βiσ

z
i + f (t)

N−1∑
i=1

σ z
i σ z

i+1, (24)

with random coefficients αi , βi ∈ [0,1] and a control field
f (t) tuning the interaction. The random coefficients lift the
symmetry of the system and make it controllable [39].

We investigate the control resources needed to drive the
system from a random initial state |ξ 〉 to a random target state
|ζ 〉 within a fixed time interval [0,T ]. We measure the fidelity
of this state-to-state transfer by Eq. (1). We investigate different
system sizes and different operation time intervals, analyze the
occurrence of false traps in the landscape by several trials of
optimization of the fidelity F for different random instances
of |ξ 〉 and |ζ 〉 (uniformly distributed over the unit sphere),
and measure the success of an optimization by a certain
threshold η = 10−3 for the residual error ε = 1 − F . We count
an optimization trial as a success if ε < η after convergence
of the optimization or after a certain maximum number of
function evaluations. The success rate of the optimization
depends on the presence or absence of false traps in the
landscape. To detect them we optimize 10 different sets of
random instances of the Hamiltonian and of the initial and goal
state; for each instance we use 10 different random starting
points and random sets of frequencies to perform the CRAB
optimization. The frequencies of the basis functions (both for
CRAB and DCRAB) are chosen randomly out of an interval
[0,ωmax]: We choose T ωmax/(2π ) = 8,20,40 for N = 2,3,4,
respectively.

Figure 2 reports the success probability pC for the standard
CRAB optimization as a function of the number NC of
coefficients of the truncated basis expansion in Eq. (3): As
can be clearly seen, for NC large enough no false traps are
present, resulting in a success probability of one. Here, by
large enough we mean the empirical “NC = 2 × 2N − 2” rule
for unconstrained optimization, where the number of real
coefficients equals the number of independent real entries
in the state vector [32]. The correspondent analysis for the
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FIG. 2. (Color online) Success probability pC as a function of
the number NC of basis functions in the CRAB expansion. As we
increase the size of the function space false traps are removed. The
symbols are the mean values over 10 different random pairs of final
and initial states |ξ〉 and |ζ 〉 with 10 different starting points and
frequencies each. The error bars show the standard deviation over
the different final and initial states. The total time was set to T =
6π,10π,16π and the allowed bandwidth to T ωmax/(2π ) = 8,20,40
for N = 2,3,4 qubits, respectively. An optimization was counted as
success when the residual error ε was smaller than η = 10−3. The
black lines indicate the empirical “2 × 2N − 2” rule for the required
number of coefficients NC .

DCRAB approach is reported in Fig. 3: The success probability
pd is always one regardless of NC , false traps are avoided, and
the fidelity always exceeds the threshold.

Despite the striking difference in terms of success proba-
bility, an important benchmark for any optimization method
is given by the computational effort required to arrive at the
optimal solution. Here we focus on the number of function
evaluation needed to achieve the global optimum as this is
practically the only difference between the two methods: Fig. 4
shows the number of function evaluations nf required by the
two methods to exceed the threshold F = 1 − η as a function
of the coefficients NC in the CRAB expansion (in the case of
DCRAB the coefficients of a single superiteration). All points

0

1

0 5 10 15 25

2 qubits

0

1
4 qubits

0

1
3 qubits

NC

pd

pd

pd

FIG. 3. (Color online) Success probability pd as a function of
the number NC of basis functions in a single call of CRAB within
the DCRAB superiterations. Independently of NC no false traps are
encountered and pd = 1. The total time, allowed bandwidth and error
threshold are as in Fig. 2.

104

105

106

0 10 20 30 40 50 60 80NC

nf

FIG. 4. (Color online) Number of function evaluations nf for
DCRAB (red) and original CRAB (black) as a function of the number
NC of basis functions involved in a single call of the respective
algorithm. The error bars show the logarithmic standard deviation.
Optimization was stopped when the error ε crossed the threshold
η = 10−3. The total time was T = 16π , the allowed bandwidth
T ωmax/(2π ) = 40 and the system size N = 4 qubits. Similar results
are obtained for other choices of the parameters.

consist of the average number of function evaluations of the
successful runs divided by the respective success probability,
that is the number of function evaluations that on average one
has to do to solve the optimal control problem using one of
the two methods. Note that the minimal effort does not follow
the “2 × 2N − 2” rule of Fig. 2 for guaranteed convergence.
For CRAB the computational effort heavily depends on NC ,
which can be problematic as the best choice of NC is not
known in advance. For DCRAB instead there is only a minor
dependence on NC in the order of magnitude of the error bars.
Furthermore, Fig. 4 shows that even with the best choice of
NC CRAB cannot beat the performance of DCRAB.

Constrained optimization

Finally, we study how the convergence properties change
in the presence of additional constraints—like limited fluence
and bandwidth typically present in experimental setups—that
violate the hypothesis of the analysis of control landscapes
presented up to now. Indeed, in this scenario, false traps might
be present which might change performance and convergence
speed of the algorithms. We consider separately two different
kinds of constraints: bandwidth-limited control and limited
pulse height.

In the first case, we observe that Eq. (13) still holds even
if the new random frequency ωr is chosen only within the
limited bandwidth interval [0,ωmax]. We can then study the
performance of the optimization as a function of ωmax, as done
in the unconstrained case and compare the CRAB and DCRAB
approaches. The results are reported in Fig. 5 where we show
the optimal infidelity 1 − F reached from 10 independent
runs as a function of ωmax. The optimal control problem is to
perform the state transfer from |ξ 〉 = |0000〉 to |ζ 〉 = |1111〉
given the Hamiltonian of Eq. (24) for CRAB (gray diamonds)
and DCRAB (green dots). One can see that for ωmax � 16 ×
2π/T DCRAB succeeds with probability one, as all instances
reached the optimal fidelity. Notice that this is less than half
the bandwidth of the previous results reported in Figs. 3
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5 10 40ωmaxT/2π

ε

FIG. 5. (Color online) Infidelity ε = 1 − F as a function of the
limited bandwidth ωmax for |ξ〉 = |0000〉 and |ζ 〉 = |1111〉 in the
system of N = 4 qubits and total time T = 16π with fixed random
coefficients αi , βi in the Hamiltonian [Eq. (24)]. The gray diamonds
show the infidelity ε for CRAB (NC = 40), while the green circles
show it for DCRAB (NC = max{2ωmaxT/2π,40}). The black dashed
line indicates the error threshold of η = 10−3. The error bars report
the logarithmic standard deviation.

and 4. In addition, in a small intermediate regime around
ωmax = 14 × 2π/T , some optimizations succeed while others
fail indicating the presence of false traps (note that the graph
shows just the mean value of the infidelity ε and the standard
deviation), while for ωmax � 10 × 2π/T the final state cannot
be reached anymore, indicating that the bandwidth is too
small to achieve the desired result. In the case of CRAB,
the three regimes are shifted toward larger frequencies. The
lower bound observed in both cases is in agreement with an
information theoretical argument given in Ref. [31]: to achieve
full control over the system the inequality ωmaxT � D has to
be fulfilled, where D = 32 is the dimension of the state space.
This inequality basically says that the control has to contain
enough information to distinguish the target state from the
other reachable states and it yields ωmax � 5 × 2π/T , the
value of the bandwidth where the infidelity in Fig. 5 starts
to drop indicating that control over the system starts to be
effective.

We then perform a similar analysis for pulse height limited
control with DCRAB, where we study two scenarios to include
such a constraint. We first introduce a smooth constraint as
usually done, that is, a penalty on the pulse height so that the
control objective becomes

J = F − λ max
t

|f (t)|. (25)

As a second alternative, we limit the pulse height by a hard
wall constraint, by using the update formula,

f̃ j (t) = f j−1(t) +
NC∑
i=1

c
j

i f
j

i (t), (26)

f j (t) =
{
f̃ j (t) if |f̃ j (t)| < fmax

sgn[f j (t)]fmax otherwise.
(27)

The results of these two procedures are reported in Fig. 6
where we plot the infidelity 1 − F as a function of the maximal
pulse height fmax: Clearly the optimization works better with
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FIG. 6. (Color online) Infidelity ε = 1 − F as a function of the
limited pulse height fmax for the transfer from |ξ〉 = |00〉 to |ζ 〉 = |11〉
in the two-qubit system with constrained DCRAB. The black line
indicates the error threshold of η = 10−3. The orange triangles are
obtained with Lagrange multipliers [see Eq. (25)], while the brown
circles are obtained with a cutoff at fmax [see Eq. (26)]. The error bars
indicate the standard deviation over 10 different starting points of the
optimization. The orange triangles have also error bars in fmax since
the Lagrange multiplier is not a hard wall and instead we plot the
maximum absolute value the optimal pulse takes in each realization.

the hard boundaries than with the Lagrange multiplier, as the
fidelity threshold 1 − η can be exceeded for about three times
weaker pulses. This difference can be understood by the fact
that the hard wall introduces pulses of higher bandwidth.
Compared to the unconstrained system we can decrease the
maximal value of the pulse by a factor of 15, while keeping
100% success probability. For even smaller cutoff fmax the
small error bars indicate that optimization failure is most
probably more due to a loss of controllability than due to
false traps.

V. CONCLUSIONS

We have generalized the results presented in [13] to the
case of bandwidth-limited control pulses, under the condition
that the bandwidth satisfy the theoretical bound introduced in
Ref. [31].

Thanks to this theoretical result, we have modified the
CRAB optimization algorithm to efficiently combine the
advantages of gradient methods with those of truncated basis
methods. We showed that it is possible to exploit both the
guaranteed convergence to the global optimum that gradient
algorithms exhibit in the frequent case in which the kinematic
(F (|ψ(T )〉)) and the dynamical (J (f )) landscapes are equiva-
lent and the numerical gradient-free truncated basis approach.
Moreover, we showed for two typical constraints, namely the
limited fluence and the limited bandwidth constraints below
the theoretical bound, that some of the convergence properties
survive, if the constraints are carefully implemented in the
optimization procedure.

We expect that the presented results will allow one to tackle
in the near future both theoretically and experimentally even
more complex many-body problems as done so far, as well as
a broader variety of control objectives and constraints.
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J.-F. Schaff, T. Schumm, T. Calarco, and J. Schmiedmayer, Nat.
Commun. 5, 4009 (2014).

[31] S. Lloyd and S. Montangero, Phys. Rev. Lett. 113, 010502
(2014).

[32] K. W. Moore and H. Rabitz, J. Chem. Phys. 137, 134113
(2012).

[33] This terminology is inspired by the dish “dressed crab” where
the crab meat is presented in the crab’s cleaned shell to enjoy
the meat without any effort.

[34] M. J. D. Powell, Comput. J. 7, 155 (1964).
[35] J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).
[36] G. Riviello, K. Moore Tibbetts, C. Brif, R. Long, R.-B. Wu,

T.-S. Ho, and H. Rabitz, Phys. Rev. A 91, 043401 (2015).
[37] M. Hsieh, T. S. Ho, and H. Rabitz, Chem. Phys. 352, 77

(2008).
[38] To see this assume |v〉 �= α|ψ(T )〉. Then by the reg-

ularity of the point there is a pulse update δf so
that the fidelity F̃ = Re 〈v|ψ(T )〉 is improved by δf as
δJ = −Im

∫ T

0 〈v|U (T )U †(t)H1U (t)|ξ〉δfn+1(t)dt �= 0, i.e., 0 �=∫ T

0 l(t)δfn+1(t)dt and thus l �= 0. If instead |v〉 = α|ψ(T )〉
we have l(t) = −Im 〈v|U (T )U †(t)H1U (t)|ξ〉, i.e., l(t) =
−Im 〈ξ |U †(t)H1U (t)|ξ〉 = 0.

[39] C. Altafini, J. Math. Phys. 43, 2051 (2002).

062343-7

http://arxiv.org/abs/arXiv:1405.6918
http://dx.doi.org/10.1038/nature07126
http://dx.doi.org/10.1038/nature07126
http://dx.doi.org/10.1038/nature07126
http://dx.doi.org/10.1038/nature07126
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1088/1367-2630/16/4/045007
http://dx.doi.org/10.1088/1367-2630/16/4/045007
http://dx.doi.org/10.1088/1367-2630/16/4/045007
http://dx.doi.org/10.1088/1367-2630/16/4/045007
http://dx.doi.org/10.1103/PhysRevA.85.042331
http://dx.doi.org/10.1103/PhysRevA.85.042331
http://dx.doi.org/10.1103/PhysRevA.85.042331
http://dx.doi.org/10.1103/PhysRevA.85.042331
http://dx.doi.org/10.1126/science.1217901
http://dx.doi.org/10.1126/science.1217901
http://dx.doi.org/10.1126/science.1217901
http://dx.doi.org/10.1126/science.1217901
http://dx.doi.org/10.1038/nphoton.2009.260
http://dx.doi.org/10.1038/nphoton.2009.260
http://dx.doi.org/10.1038/nphoton.2009.260
http://dx.doi.org/10.1038/nphoton.2009.260
http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1002/andp.201200261
http://dx.doi.org/10.1002/andp.201200261
http://dx.doi.org/10.1002/andp.201200261
http://dx.doi.org/10.1002/andp.201200261
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nphys2251
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/srep03898
http://dx.doi.org/10.1038/srep03898
http://dx.doi.org/10.1038/srep03898
http://dx.doi.org/10.1038/srep03898
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1073/pnas.1419326112
http://dx.doi.org/10.1073/pnas.1419326112
http://dx.doi.org/10.1073/pnas.1419326112
http://dx.doi.org/10.1073/pnas.1419326112
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1126/science.1093649
http://dx.doi.org/10.1126/science.1093649
http://dx.doi.org/10.1126/science.1093649
http://dx.doi.org/10.1126/science.1093649
http://dx.doi.org/10.1016/j.jphotochem.2006.03.038
http://dx.doi.org/10.1016/j.jphotochem.2006.03.038
http://dx.doi.org/10.1016/j.jphotochem.2006.03.038
http://dx.doi.org/10.1016/j.jphotochem.2006.03.038
http://dx.doi.org/10.1142/S0219025713500215
http://dx.doi.org/10.1142/S0219025713500215
http://dx.doi.org/10.1142/S0219025713500215
http://dx.doi.org/10.1142/S0219025713500215
http://dx.doi.org/10.1103/PhysRevA.83.012326
http://dx.doi.org/10.1103/PhysRevA.83.012326
http://dx.doi.org/10.1103/PhysRevA.83.012326
http://dx.doi.org/10.1103/PhysRevA.83.012326
http://dx.doi.org/10.1103/PhysRevA.86.013405
http://dx.doi.org/10.1103/PhysRevA.86.013405
http://dx.doi.org/10.1103/PhysRevA.86.013405
http://dx.doi.org/10.1103/PhysRevA.86.013405
http://dx.doi.org/10.1103/PhysRevA.90.013404
http://dx.doi.org/10.1103/PhysRevA.90.013404
http://dx.doi.org/10.1103/PhysRevA.90.013404
http://dx.doi.org/10.1103/PhysRevA.90.013404
http://dx.doi.org/10.1103/PhysRevLett.106.120402
http://dx.doi.org/10.1103/PhysRevLett.106.120402
http://dx.doi.org/10.1103/PhysRevLett.106.120402
http://dx.doi.org/10.1103/PhysRevLett.106.120402
http://dx.doi.org/10.1103/PhysRevLett.108.198901
http://dx.doi.org/10.1103/PhysRevLett.108.198901
http://dx.doi.org/10.1103/PhysRevLett.108.198901
http://dx.doi.org/10.1103/PhysRevLett.108.198901
http://dx.doi.org/10.1103/PhysRevLett.108.198902
http://dx.doi.org/10.1103/PhysRevLett.108.198902
http://dx.doi.org/10.1103/PhysRevLett.108.198902
http://dx.doi.org/10.1103/PhysRevLett.108.198902
http://dx.doi.org/10.1103/PhysRevA.86.052117
http://dx.doi.org/10.1103/PhysRevA.86.052117
http://dx.doi.org/10.1103/PhysRevA.86.052117
http://dx.doi.org/10.1103/PhysRevA.86.052117
http://dx.doi.org/10.1139/cjc-2013-0301
http://dx.doi.org/10.1139/cjc-2013-0301
http://dx.doi.org/10.1139/cjc-2013-0301
http://dx.doi.org/10.1139/cjc-2013-0301
http://dx.doi.org/10.1088/1367-2630/14/9/093041
http://dx.doi.org/10.1088/1367-2630/14/9/093041
http://dx.doi.org/10.1088/1367-2630/14/9/093041
http://dx.doi.org/10.1088/1367-2630/14/9/093041
http://dx.doi.org/10.1103/PhysRevA.91.062306
http://dx.doi.org/10.1103/PhysRevA.91.062306
http://dx.doi.org/10.1103/PhysRevA.91.062306
http://dx.doi.org/10.1103/PhysRevA.91.062306
http://dx.doi.org/10.1103/PhysRevA.91.062307
http://dx.doi.org/10.1103/PhysRevA.91.062307
http://dx.doi.org/10.1103/PhysRevA.91.062307
http://dx.doi.org/10.1103/PhysRevA.91.062307
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1103/PhysRevA.89.042322
http://dx.doi.org/10.1103/PhysRevA.89.042322
http://dx.doi.org/10.1103/PhysRevA.89.042322
http://dx.doi.org/10.1103/PhysRevA.89.042322
http://dx.doi.org/10.1103/PhysRevA.87.053412
http://dx.doi.org/10.1103/PhysRevA.87.053412
http://dx.doi.org/10.1103/PhysRevA.87.053412
http://dx.doi.org/10.1103/PhysRevA.87.053412
http://dx.doi.org/10.1088/1367-2630/16/9/093022
http://dx.doi.org/10.1088/1367-2630/16/9/093022
http://dx.doi.org/10.1088/1367-2630/16/9/093022
http://dx.doi.org/10.1088/1367-2630/16/9/093022
http://dx.doi.org/10.1103/PhysRevA.88.021601
http://dx.doi.org/10.1103/PhysRevA.88.021601
http://dx.doi.org/10.1103/PhysRevA.88.021601
http://dx.doi.org/10.1103/PhysRevA.88.021601
http://dx.doi.org/10.1038/ncomms5009
http://dx.doi.org/10.1038/ncomms5009
http://dx.doi.org/10.1038/ncomms5009
http://dx.doi.org/10.1038/ncomms5009
http://dx.doi.org/10.1103/PhysRevLett.113.010502
http://dx.doi.org/10.1103/PhysRevLett.113.010502
http://dx.doi.org/10.1103/PhysRevLett.113.010502
http://dx.doi.org/10.1103/PhysRevLett.113.010502
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1063/1.4757133
http://dx.doi.org/10.1093/comjnl/7.2.155
http://dx.doi.org/10.1093/comjnl/7.2.155
http://dx.doi.org/10.1093/comjnl/7.2.155
http://dx.doi.org/10.1093/comjnl/7.2.155
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1103/PhysRevA.91.043401
http://dx.doi.org/10.1103/PhysRevA.91.043401
http://dx.doi.org/10.1103/PhysRevA.91.043401
http://dx.doi.org/10.1103/PhysRevA.91.043401
http://dx.doi.org/10.1016/j.chemphys.2008.05.013
http://dx.doi.org/10.1016/j.chemphys.2008.05.013
http://dx.doi.org/10.1016/j.chemphys.2008.05.013
http://dx.doi.org/10.1016/j.chemphys.2008.05.013
http://dx.doi.org/10.1063/1.1467611
http://dx.doi.org/10.1063/1.1467611
http://dx.doi.org/10.1063/1.1467611
http://dx.doi.org/10.1063/1.1467611



