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Abstract 

 

In order to achieve the second-order advantage, two-way data per sample are usually 

required, e.g., kinetic spectrophotometric data. In this study, instead of monitoring the 

time evolution of spectra (collecting kinetic-spectrophotometric data) replicate spectra 

are used to build a spectrophotometric data matrix which is rank deficient. Augmentation 

of these data with standard addition data [or standard sample(s)] will break the rank 

deficiency. making the quantification of the analyte of interest possible. These data 

correspond to the kinetics of all sample constituents being identical when employing 

second-order kinetic-spectroscopic measurements. The MCR-ALS algorithm has been 

applied for the resolution and quantitation of the analyte in both simulated and 

experimental data sets. In order to evaluate the rotational ambiguity in the retrieved 

solutions, the algorithm MCR-BANDS has been employed. The reliability of the 

quantitative results significantly depends on the amount of spectral overlap in the spectral 

region of occurrence of the compound of interest and the remaining constituents. The 

ability of the proposed algorithm to quantitate the analyte is illustrated both with 

simulated data systems as well as with binary  experimental mixtures.  

 

Keywords: Second-order advantage; First-order data; Standard addition; MCR-ALS; 

Feasible solutions 

 



Introduction 

 

The problem of the appearance of measurement interferences is common in chemical 

analysis. In most cases, analysts have to deal with natural samples which are far from 

simplicity, such as biological matrices, pharmaceuticals and environmental specimens. 

To cope with these issues, many sophisticated instrumentations which provide 

multidimensional (multi-way) data have been developed. Multi-way data are second-

order (matrices), third-order (three-mode arrays), etc. for a single sample, which can be 

organized in a three- or four-way array , respectively, for a group of samples. One data 

mode refers to the compositional variation of the system and the other ones are related to 

the variation in the collected responses in the instrumental modes. When the number of 

data modes increases, different data-processing and mathematical algorithms are required 

for the convenient study of this body of information [1]. A calibration model obtained 

from multi-way measurements allows one not only to mark new samples containing 

components which do not take part in the calibration data set, but also to quantitate the 

analyte of interest without knowledge of the interfering chemical components that may be 

present in complex chemical matrices [2-7], a property known as the second-order 

advantage [8]. However, univariate calibration, which employs a single data per sample 

or a vector data for a sample set, is not able to detect a sample containing interference 

components. This would be possible with first-order calibration (vector data per sample 

and two-way data for a sample set), which can distinguish such a sample as an outlier, 

because it cannot be adequately modeled with a given calibration data set, a concept 

which is the inherent advantage of the first-order calibration methods [8]. This means that 

first-order calibration may compensate for interferences only if they are included in the 

calibration set. In other words, the standards employed to construct a first-order 

calibration model are themselves real samples. This explains why a large number of 



samples is needed in first-order calibration in comparison with second-order calibration, 

which can be performed using a few standards (in an extreme case, with only a single 

calibration sample). On the other hand, second-order data are provided by advanced 

hyphenated instrumentations such as two-dimensional NMR, capillary electrophoresis or 

chromatographic systems coupled to mass spectroscopy or diode-array detectors, whereas 

first-order instrumental data can be measured using fairly simple equipments employing 

spectroscopic, chromatographic and voltammetric tools.  

Analyte quantitation from first-order multivariate data in the presence of 

unexpected components (second-order advantage) is a very recent subject and to the best 

of our knowledge only a few reports exist in the literature [9-13]. It has been shown that 

the correlation-constrained MCR-ALS version facilitates the analyte quantitation in the 

presence of unexpected interferences using first-order data [9-13]. MCR-ALS with the 

proposed correlation constraint has been applied to resolution and quantification of 

mixtures of metal ions with overlapping voltammetric peaks [9], determination of the 

major components in complex mixtures using first-order spectrophotometric data [10,11], 

quantification of industrial mixtures from the vinyl acetate monomer process using near 

infrared spectroscopic data and a quantitative self modeling curve resolution (SMCR) 

methodology, and  urinary quantification of nicotine in the presence of metabolite 

cotinine and the alkaloid anabasine using surface enhanced Raman spectroscopy  [13]. In 

this latter case, standard addition in combination with the MCR–ALS method has been 

employed to deal with matrix effects and non-calibrated interferences in the 

quantification of nicotine present in human urine.  

In the presence of analyte-background interactions, chemical analysis can be 

further complicated by matrix effects [14]. When the sensitivity of the calibration 

depends on the matrix composition, quantitative predictions using pure standards may be 

expected to be biased. This problem can only be solved by the standard addition method. 



A proper calibration model should reflect the complexity of the matrix composition, 

otherwise poor predictions may result when using calibration curves obtained from pure 

standards [15].  

Kinetic-spectroscopic second-order data have been employed recently for analyte 

quantitation in the presence of uncalibrated interferences, achieving the second-order 

advantage [16]. In some particular kinetic-spectral experiments, the kinetics of all sample 

constituents are identical, so the selectivity in the time direction is zero. In this case, the 

second-order advantage can be achieved, however, by augmenting the data matrices in 

the direction of time, creating selectivity in the augmented direction and using extended 

MCR-ALS with correspondence (also called sample selectivity) restrictions [16].  

In the present study, which was inspired by the Ref. 16, we aimed to avoid the 

time-consuming kinetic experiments and gain the second-order advantage using only 

spectra (first-order data) and its replicates.  

Usually, in order to achieve the secondorder advantage two-way data, e.g., kinetic 

spectrophotometric data are required. In this study, instead of monitoring the spectra 

versus time (collecting kinetic-spectrophotometric data) spectral replicates are used to 

build a replicatedspectrophotometric data matrix. These data are rank deficient. 

Augmentation of these data with standard addition data [or standard sample(s)] will break 

the rank deficiency problem and make the quantification of the analyte of interest 

possible. These data are the same as if the kinetics of all sample constituents were 

identical employing the second-order kinetic-spectroscopic measurements. 

In this work it will be shown that it is not necessary, in principle, to perform 

kinetic experiments, and that by using only spectra (first-order data), creating a data 

matrix (not an augmented data matrix) with the spectra of the calibration samples and the 

test sample containing interferences quantitation of the analyte is possible, achieving the 

second-order advantage. This activity is relevant, because: (1) the second-order 

advantage obtained from first-order data is a very recent subject, with only few published 



works in the entire literature, so researchers are is unaware of this possibility (indeed the 

very expression "second-order advantage with first-order data" appears self-

contradictory), and (2) experimental time and effort may be saved by avoiding the kinetic 

experiments and using only spectra. 

In order to quantitate the analyte of interest using these data, augmentation with 

one or a few external standard test samples or standard addition samples are required. In 

this work we used the standard addition method, which allows to overcome matrix effects 

.  This means that when each sample arrives at the laboratory, the experimentalist has to 

perform several measurements and experimental sample preparation activities. Although 

with external calibration, calibration only needs to be performed once, the standard 

addition method is unavoidable when it is necessary to overcome matrix effects .  

Conventional standard addition in conjunction with the MCR-ALS approach has 

been employed to quantitate the analyte of interest in the presence of unexpected 

interference components. Avoiding tedious procedures of complex sample pretreatments, 

minimizing analyte loss and increasing precision in the results are the advantages 

provided by the standard addition method. Finally, in order to evaluate the extent of 

rotational ambiguity in the retrieved solutions, the algorithm MCR-BANDS has been 

applied. The calibration curves were built, similarly to the traditional standard addition 

method, using the recovered concentration profiles as a function of standard 

concentrations. In order to demonstrate the applicability of the proposed method, several 

simulated examples and a number of synthetic binary mixtures were analyzed using the 

proposed algorithm. 

 

 

1. Experimental procedure 

 



1.1. Reagents 

 

All experiments were performed with analytical reagent grade chemicals. 

Malachite green (MG), crystal violet (CV), paracetamol (PC), ibuprofen (IB), HCl and 

methanol were obtained from Merck (Darmstadt, Germany) and used without any 

purification. To perform binary mixture analysis, individual standard solutions of MG 

and CV (20 µg mL
-1

) were prepared by dissolving appropriate amounts in distilled water. 

Also, standard solutions of
 
100 µg mL

-1 
each of PC and IB were prepared by dissolving 

the compounds in a 0.1 mol L
-1

 HCl-methanol (1:3) mixture. Different aliquots of the 

standard solutions of MG and CV, and also of PC and IB within the linear calibration 

range were transferred into 10 mL voltammetric flasks and completed to the volume with 

distilled water and a 0.1 mol L
-1

 HCl-methanol (1:3) mixture, respectively.  

 

 

1.2. Apparatus  

 

A model T80
+
 UV-Vis double-beam spectrophotometer with a PG mode (China) 

with 1-cm quartz cells (volume 5 mL) was employed for spectrophotometric 

measurements.  

 

 

2. Theoretical background and algorithm 

 

Multivariate curve resolution techniques are powerful approaches promoted to 

tackle many chemical problems that could not be solved otherwise. The common purpose 

of all multivariate resolution methods is to transform the raw experimental measurements 



into useful information. To do so, neither the number nor the nature of the pure 

components in a studied analytical system need to be known in advance. Any information 

available about the system may be used, but it is not strictly required [17-21]. MCR-ALS 

uses an alternative approach to iteratively find the concentration profiles and instrumental 

responses. In comparison with other multivariate methods such as principle component 

analysis (PCA) and partial least-squares (PLS), MCR-ALS is intended for the 

simultaneous recovery of qualitative information about the analyte and possible unknown 

interferences. Bilinear decomposition of the initial mixture data matrix D into the product 

of concentration profiles (C) and pure spectra (S
T
) according to Beer’s law can be 

expressed as: 

 

D = C  + E =                           (1) 

 

where E is the residual data matrix not explained by the model, which should ideally be 

close to the experimental error, and D
* 

is the noiseless approximation to the data matrix. 

The iterative ALS optimization procedure to find the matrices of concentration profiles 

and pure spectra, which optimally fits the experimental data matrix D, starts with initial 

estimates of either C or S
T
 profiles. During the optimization, several constraints may be 

applied depending on the characteristics of the system under study [17,22-24]. Initial 

estimates can be obtained using chemometric methods such as Evolving Factor Analysis 

[25], SIMPLISMA [26] or orthogonal projection approach (OPA) [27] to select purest 

variables that are most dissimilar to each other. Decomposition of the D matrix is 

accomplished by the iterative optimization of equations (2) and (3) under appropriately 

chosen constraints:  

 

                           (2) 



 

                           (3)  

 

This means that at each iterative cycle, the C and S
T
 matrices that minimize the error are 

found. Calculations continue until convergence is fulfilled.  

It is well known that the main source of uncertainty associated with the solutions 

obtained by MCR methods (like for any other factor analysis-based methods) are the 

ambiguities of the recovered profiles. When ambiguity exists, a band of feasible solutions 

instead of a unique profile will be obtained for a compound. If no restrictions are imposed 

to Eq. (1), an infinite number of possible solutions will fit to the equation from a 

mathematical standpoint; however, they will be completely different from a physical 

standpoint. Ambiguities (intensity and rotational) can be mathematically represented by 

the following equation: 

 

 = = ( ) (T =                       (4) 

 

where T is any non-singular invertible matrix which is responsible for rotation in Eq. (4). 

Imposing appropriate constraints can considerably reduce the number of possible 

solutions or the number of possible T matrices. 

Since several different degrees of overlap will be applied to the simulated sytems 

in this paper, to calculate the degree of spectral overlap between the compound of interest 

and interference the following expression was used: 

 =                       (5)  

where  and are the spectra related to the analyte and interference, respectively.  



In order to evaluate the accuracy of the proposed method, the prediction error of 

analyte concentrations in the mixtures was calculated as the relative standard error 

(R.S.E.) of the prediction concentrations: 

R.S.E. (%) =                           (6) 

 

where N is the number of samples,  the real concentration of the component in the jth 

mixture and is the estimated concentration.  

Relative error of prediction (REP) for quantitative measurements in analyte 

concentrations was calculated according the following equation: 

 

                                (7) 

where is considered the known concentration value for analyte and  is the 

prediction concentration. 

 

2.1. Algorithm of the proposed method 

 

A graphical description of the proposed algorithm is presented in Fig. 1, and 

further expanded below. 

 

i) Construction of a data matrix 

 

Absorbance for a series of samples prepared according to the standard addition 

method was measured within a given wavelength range and a data vector (spectrum) was 



obtained (first-order data). Each of these vectors provides the spectrum of a mixed 

sample. Then, the row data vector for every standard added sample was arranged 

repeatedly below each other (arbitrarily, 5 replications per any sample) and a two-way 

data matrix was created. This kind of data arrangement may be considered as a second-

order kinetic-spectroscopic data matrix where the kinetic mode (row direction) represents 

an invariant reaction rate during the time. A particular case occurs when the kinetics of 

all sample constituents are identical, and as a consequence there is no selectivity in the 

time mode.  

 

ii) Column-wise augmentation of the standard addition data matrices 

 

By successive standard addition of an analyte, the concentrations of the remaining 

components (interferences) remain constant and introduce linear dependency between 

interference concentrations in the samples. This theoretically leads to rank deficiency. A 

data matrix is rank-deficient when the number of significant contributions to the data 

variance (mathematical rank) is lower than the real number of chemical components 

existed in the system (chemical rank). It is possible to break the linear dependency by 

augmenting the data matrices in the rank deficient direction. This was carried out by 

organizing the individual data matrices corresponding to each standard added sample 

under the data vector for an unknown sample (column-wise augmentation). Then, the 

number of components was simply estimated by singular value decomposition of 

augmented matrices, which implies the presence of two components including the analyte 

of interest and the interference(s). 

 

iii) MCR-ALS analysis 

 



The iterative ALS optimization starts with the initial estimates of either C or S
T
. In 

general, the use of chemically meaningful estimates is an essential factor that can help 

not only to rapid convergence of the results but also to decrease the ambiguity of the 

solutions. In our work, to provide a suitable initial estimate, pure components spectra 

were employed. The purest spectrum of the analyte was obtained using pure standard. In 

order to obtain the purest spectrum of the interferences, the pure analyte spectrum was 

subtracted from that of the mixed sample (the first column of the standard added data 

matrix). If the contributions of the analyte of interest, considered being present in the real 

sample, completely removed from the total signal for the mixture, the remaining will be 

mainly corresponded to the interference(s). It is noteworthy to mention that, when an 

initial estimation from SIMPLISMA was used to initialize the MCR-ALS algorithm, 

provided the analyte was present in the primary real sample, incorrect results for the 

analyte concentration (zero concentration) were obtained. This may be explained by the 

fact that SIMPLISMA works selecting in a sequential way the variables that have less 

information in common with the previously selected ones [26,28]. MCR-ALS was 

implemented on the augmented data matrix comprising an unknown sample and those of 

the standard addition: 

 

 =                       (8) 

 

where the augmented data matrix ( ) is of size I × J (I is the number of standard 

added samples repeated X times next to each other and J is the number of wavelengths), 

the columns indicate the concentration variations in the standard added samples and the 

rows involve the pure component absorption spectra. Bilinear decomposition of the data 

matrix  into the matrix of concentration profiles  (size I × N) and pure spectra 

 (size N × J), where N represents the number of components, achieved according to the 



MCR-ALS approach. It was assumed that the column vector space (sample) would be 

unshared, but the row space (spectra) would be common. According to the nature and 

structure of the data, non-negativity for both concentration and spectral profiles and 

equality for the analyte spectrum were imposed as suitable constraints. The latter 

constraint was chosen since one typically has prior information about the pure component 

signals of the components of interest while that of the interferences display intrinsic 

variability in unknown samples. The number of iterative cycles was set in a way that 

convergence was fulfilled in each case. 

 

iv) Evaluation of rotational ambiguity  

 

After the MCR-ALS decomposition, the extent of rotational ambiguity remaining 

in the retrieved profiles was investigated. Concentration and spectral profiles as the initial 

input values were submitted to the MCR-BANDS program. During the optimization, the 

constraints implemented in the previous MCR-ALS procedure were selected. 

Optimization was carried out and maximum and minimum band boundaries of 

concentration and spectral profiles were obtained. The differences between the maximum 

and minimum component relative contribution optimization function ( ) were 

calculated as a criterion of the rotational ambiguity for the analyte concentration profiles 

[29,30]. 

 

v) Quantitative analysis 

 

The calibration curves were built, similarly to the conventional standard addition 

method. The relative concentration values in matrix C to each addition were plotted 

versus the standard concentration. Extrapolation of the calibration curve, i.e., the 



intercept of the calibration line with the abscissa, gave the concentration of analyte in the 

sample. 

 

Figure 1 

 

3. Data and modeling 

 

3.1. Simulated data 

 

In order to evaluate the performance of the proposed algorithm, it was employed to 

analyze simulated data systems. Four data sets with different degrees of spectral overlap 

were prepared. The spectrum for the analyte was intentionally constructed so that the 

degrees of spectral overlap gradually increased from data set 1 to data set 4, as presented 

in Fig. 2 (A-D). Spectral overlap for the simulated data sets 1, 2, 3 and 4 were calculated 

0.23, 0.61, 0.87 and 0.76, respectively, using Eq. (5). For every sample, several 

successive additions of the analyte were done, while concentrations of the other two 

components (interferences) were kept constant in all the samples according to the 

standard addition model. The data sets were generated from noiseless UV-vis spectral 

and concentration profiles. To built up a data matrix, the spectrum (row vcector) 

corresponding to each standard added sample was repeated five times (this number is 

optional) below each other. Simulated spectral profiles, concentration profiles and the 

constructed data matrix are shown in Fig. 3 (A), (B) and (C), respectively. Each sample 

contained two chemical components, and one was considered the analyte of interest. The 

constructed data matrix was used for subsequent calculations.  

 

Figure 2 



Figure 3 

 

3.2. Binary synthetic mixture analysis 

 

To demonstrate the analytical applicability of the proposed method, binary 

mixtures of MG and CV, which were assumed alternatively as the analyte and the 

unknown interference, and also of PC in the presence of IB as an interference were 

created. The absorption spectra of the mixture samples were recorded within the 

wavelength range of 350-700 nm for MG and CV, and 200-310 nm for PC and IB with 

the increment of 1 nm against the appropriate solvent blank. The data wer processed as 

the simulated data sets, with the spectrum corresponding to each standard added sample 

repeated five times below each other.  

 

4.3. Software 

 

All simulations and initial estimates prior to MCR-ALS algorithm were carried out 

using MATLAB (version 7.10.0 R2010a) computer environment. Data processing was 

done in Microsoft Excel for Windows. MCR-ALS was performed with the graphical 

user-friendly interface provided by R. Tauler [31]. Calculations related to rotational 

ambiguities were implemented using MCR-BANDS graphical user interface [29]. 

Programs were freely downloaded from the MCR-ALS webpage [32]. 

 

 

4. Results and discussion 

 

4.1. Simulated data  

 



As illustrated in the previous section, four data sets with different degrees of 

spectral overlap were simulated and analyzed. For data set 1, eight successive additions 

of the analyte were made and a data matrix of size 40 (5 replications per any sample × 8 

standard addition mode) × 201 (number of wavelengths) was obtained. MCR-ALS 

decomposition of the data matrix was done using the initial estimate explained in the 

third step of the proposed algorithm. A set of solutions C (40 × 2) and S
T
 (2 × 201) were 

obtained and used as initial inputs for the MCR-BANDS program. In both procedures, 

non-negativity constraints for concentration and spectral profiles, and equality constraint 

for the analyte spectrum were imposed. In each case, one of the standard added data 

matrices was removed (five out of fifty) and the new data matrix was analyzed. 

Quantitative analysis was performed for every sample as illustrated in the fifth step of the 

proposed algorithm. In Table 1 (upper part), the obtained results for data set 1 are given.  

 

Table 1 

 

MCR-BANDS results for three samples with the simulated concentrations of 0, 0.3 

and 0.6 (in arbitrary units) for the analyte and constant concentration of 1 for both 

interferences are shown in Fig. 4. Maximum and minimum band boundaries for the 

analyte concentration profiles imply the range of feasible solutions (  and ) 

where the maximum band boundaries (continuous blue line) coincide with the red dotted 

line of the initial profiles. As can be seen from Fig.4, with increasing the analyte 

concentration, the range of feasible concentration profiles also increases, while the lower 

concentration level (minimum band boundary) remains invariant and equals to zero 

concentration. Therefore, the upper level (maximum band boundary) defines the analyte 

concentration. Extrapolation of the standard addition calibration curve for the upper 

boundary determines the analyte concentration in each sample. Excellent recoveries were 

obtained which indicate that the results are accurate. 



 

Figure 4 

 

Likewise, other three data sets were built up and analyzed with MCR-ALS and 

MCR-BANDS programs. Table 1 (lower part) and Table 2 collect the results for all data 

sets 2, 3 and 4, respectively. In each case, relative standard error (R.S.E.), quantitation 

error and also the differences between the maximum and minimum optimization function 

values are calculated. As was the case for data set 1, the lower concentration level was 

invariant and equal to zero concentration and, then, extrapolation of the standard addition 

calibration curve for the upper level ascertained the analyte concentrations in samples.  

 

Table 2 

 

From the obtained results for the analyte quantitation in four simulated data 

systems it can be concluded that with increasing the degrees of spectral overlap between 

the analyte and interferences, the value of relative error in the predicted concentrations 

for the upper boundary increases, whereas for the lower one it is always -100%. For data 

set 1, the proposed method yields excellent recoveries. This may be due to the fact that 

the degree of spectral overlap between the analyte and interferences is small (0.23 as 

calculated from the Eq. 5). In the case of data sets 2 and 3, with degrees of overlap 0.61 

and 0.87, respectively, satisfactory quantitation results are also obtained. However, 

analysis of data set 4 led to apparently worse recoveries. In fact, the the latter data set 

provides the opportunity to test an extreme spectral overlap effect, where the spectrum 

for the compound of interest is completely embedded in the sample background and there 

is no selective region for it. This may be ascribed to the fact that the analyte spectrum 

becomes mixed up with those of the interferences and the analyte contribution is not 



totally removed from the rest of the mixture. As a consequence, the proposed method 

overestimates the concentration of the analyte.  

 

 

4.2. Experimental example 

 

In order to illustrate the proposed algorithm with experimental examples, 

quantitation of MG and CV, which were assumed alternately as an analyte and unknown 

interference, and also PC in the presence of IB as interference in binary mixtures were 

performed. 

 

 

4.2.1. Malachite green and crystal violet determination  

 

Beer’s law was obeyed in the concentration range 0.2 – 1.5 µg mL
-1

 for MG and 

CV using standard solution. As Fig. 5 shows, the absorption spectra of MG and CV 

overlapped in the wavelength region of 450-650 nm. The degree of spectral overlap was 

calculated 0.53. Quantitation analysis of this binary system was carried out through nine 

successive additions of the analyte, while the concentration of CV and MG, assumed as 

interference components, respectively, were fixed at 1 µg mL
-1

in all samples. A two-way 

data matrix of size 45 × 351 (5 replications per any sample × 9 standard addition mode 

and 351 wavelengths)  was constructed. The number of components, estimated using 

singular value decomposition, was two, as expected. Initial estimation obtained from 

subtraction of the pure analyte spectrum from the first column of the standard added data 

matrix was used. Under the enforcement of non-negativity constraints for concentration 

and spectral profiles and equality constraint for analyte spectrum, MCR-ALS 

decomposition was implemented. MCR-BANDS retrieved profiles for the determination 



of MG which are shown in Figure 6. As for the simulated data,  one of the standard added 

data matrices was left out in each case, and the new data matrix was analyzed. It should 

be noted that the lower concentration level was zero and the upper level determined the 

analyte concentration in samples. Extrapolation of the standard addition calibration curve 

for the upper level specified the analyte concentration in each sample. Table 3 gives the 

recovery and relative standard error of prediction for the determination of MG and CV. 

Comparing the prediction performance of the proposed method for both examples 

indicates that good recoveries are obtained for MG, which is in excellent agreement with 

the actual content. This could have been expected, because the extent of the selective 

spectral region for MG is wider compared to that of the CV. 

 

Figure 5 

Figure 6 

Table 3 

 

 

4.2.2. Paracetamol determination  

 

Beer’s law was obeyed in the concentration range of 0.6-11 µg mL
-1

 for PC in 0.1 

mol L
-1

 HCl-methanol (1:3) mixture. As Fig. 7 shows, the absorption spectra of PC and 

IB overlapped in the wavelength region of 200-240 nm. In this case, the degree of 

spectral overlap is 0.61. Quantitation analysis of PC was done by five successive addition 

of the analyte, while the concentration of IB, as interference, was fixed at 5 µg mL
-1

in all 

samples. A two-way data matrix of size 35 × 111 (5 replications per any sample × 7 

standard addition mode and 111 wavelengths) was constructed. The data matrix was 

analyzed as before, and good quantification results were obtained, which are presented in 



Table 4. It should be noted that the differences observed in standard error of prediction 

values for both experimental systems were explained by the lower degree of spectral 

overlap between MG and CV compared to PC and IB. 

 

Figure 7 

Table 4 

 

5. Conclusion 

The main objective of this study was to investigate the possibility of achieving the 

second-order advantage from first-order spectrophotometric data when the kinetics of all 

sample constituents are identical. Standard addition in combination with the MCR–ALS 

method was applied as an alternative to circumvent the matrix effect and quantitation of 

the analyte in the presence of unknown interference components. It has been 

demonstrated that using second-order instrumental data in such particular cases does not 

offer any further advantage. Despite a band boundary of feasible solutions for analyte 

concentration profiles recovered from MCR-ALS, the maximum band boundary 

determines the analyte concentrations, provided the minimum one is always invariant and 

equals to zero concentration. It may be noted that successful analyte quantitation in the 

presence of interference components (second-order advantage) based on the proposed 

method, depends significantly on the degree of selectivity in the columns of the standard 

added data matrix. The degree of selectivity, in turn, depends on the amount of overlap in 

the region of occurrence for the compound of interest with the rest of constituents. With 

increasing degrees of spectral overlap between the analyte and interferences, the 

uncertainty for the maximum band boundary also increases. This study showed that the 



proposed algorithm succeeded in the analyte quantitation in interfering systems, where 

there is at least a minimum selective spectral region for the analyte. 
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