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ABSTRACT 22 

Second-order data were measured using high-performance liquid-chromatography 23 

with diode array detection (HPLC-DAD) for a number of wine samples, which were directly 24 

injected in the HPLC-DAD system without sample pre-treatment. The data were arranged in 25 

data matrices whose modes were elution time and UV-visible absorption wavelength, and 26 

processed by extended multivariate curve resolution coupled to alternating least-squares 27 

(MCR-ALS). The individual data matrices were organized in a row-wise augmented data 28 

matrix sharing the time subspace, due to the high spectral similarity among several sample 29 

components. This required previous time alignment of the chromatograms using a suitable 30 

synchronization algorithm, in order to produce a bilinear augmented data matrix to be 31 

processed by MCR-ALS. The latter algorithm led to resolved component chromatograms and 32 

spectra, from which component scores could be estimated, which are proportional to the 33 

relative component concentrations in each studied sample. The matrix of sample scores were 34 

then submitted to principal component analysis, which was applied for data exploration 35 

according to grape varietal and geographical origin. The results showed that the present data 36 

generation and analysis is useful for the discrimination of all samples of the Malbec varietal 37 

from the remaining ones, but achieved partial success regarding geographical origin. 38 

 39 

Keywords:  Liquid chromatography; Multivariate curve resolution; Principal component 40 

analysis; Direct injection; Wine data exploration. 41 
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1. Introduction 47 

Wine is a complex matrix composed of water, ethanol and a variety of chemical 48 

compounds such as peptides, proteins, carbohydrates, thiols, and phenolic compounds [1]. 49 

The latter ones can be classified into flavonoids (flavanols, flavonols, dihydroflavonols, and 50 

anthocyanins) and non-flavonoids (phenolic acids, phenols, and stilbenes) [2]. Flavonoids 51 

share a common skeleton consisting of two phenolic rings (A and B) linked by a heterocyclic 52 

pyran ring (C), as shown in Fig. 1. Anthocyanins and flavanols are particularly abundant in 53 

grape and wine and are essential to wine quality. Indeed, anthocyanins are the red pigments of 54 

grapes and are responsible for the colour of red wines, whereas flavanols contribute to taste 55 

(especially astringency and bitterness) [3]. Due to the presence of aromatic rings in their 56 

structure, most phenolic compounds present in wine absorb UV-visible radiation with an 57 

absorption maximum at 280 nm, with the exception of anthocyanins (520 nm), flavonols (360 58 

nm) and phenolic acids (320 nm) [2]. 59 

Due to the complexity of wine data obtained by usual instrumental techniques, it is not 60 

possible to resolve or quantify all the chemical constituents present in wine. Therefore, the 61 

combination of these techniques with chemometric analysis can reveal latent patterns in the 62 

data, which may enable classification of the samples in terms of varietal, geographical origin, 63 

aging, adulteration, etc. [4]. Several instrumental techniques have been employed for wine 64 

classification, such as gas chromatography-mass spectrometry (GC-MS) [5-7], high-65 

performance liquid chromatography with diode array detection (HPLC-DAD) [8,9] or liquid 66 

chromatography coupled to mass spectrometric detection (LC-MS) [10-12], proton nuclear 67 

magnetic resonance (
1
H NMR) [13,14], near-infrared spectroscopy (NIR) [15,16], capillary 68 

electrophoresis (CE) [17,18] and elemental analysis [19,20]. To achieve sample 69 

discrimination, the obtained data have been processed by different chemometric algorithms 70 

such as principal component analysis (PCA), linear discriminant analysis (LDA), partial least-71 
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squares-discriminant analysis (PLS-DA), soft independent modelling of class analogy 72 

(SIMCA), artificial neural networks (ANN), etc. [4]. 73 

In the past few years, several reports employed HPLC-DAD coupled chemometric 74 

tools in order to classify wines [21-26]. Nevertheless, to our knowledge, there are no reports 75 

of wine classification by direct injection HPLC-DAD without sample pre-treatment coupled 76 

to multivariate curve resolution-alternating least-squares (MCR-ALS) as data processing 77 

algorithm. In this work we employed the latter combination of techniques to attempt 78 

classification of wines by grape varietal and geographical origin of some Argentinean wines. 79 

The application of the MCR-ALS algorithm is usually made by joining the elution time-80 

spectral data matrices adjacent to each other sharing the spectral subspace (i.e., by column-81 

wise augmentation), creating the so-called augmented data matrix before MCR-ALS 82 

decomposition. However, for reasons which will be clear below, we adopted the somewhat 83 

exceptional procedure of augmentation by sharing the time subspace (i.e., row-wise 84 

augmentation) [27,28]. This required previous alignment of the chromatographic-spectral data 85 

matrix in order to alleviate the time shifts between runs [29]. 86 

The purpose of the present work is to model direct injection LC-DAD data for wine 87 

samples with MCR-ALS, in order to extract information which may allow for wine 88 

discrimination according to varietal and geographical origin. The results of this data 89 

exploration indicate that the Malbec varietal can be adequately discriminated from the 90 

remaining ones, while only partial success is obtained regarding the geographical origin of 91 

samples. 92 

 93 

2. Experimental section 94 

2.1. Reagents and standards 95 
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HPLC grade acetonitrile were purchased from Panreac (Barcelona, Spain), formic acid 96 

from Cicarelli (Rosario, Argentina) was pro analysis grade and used directly. Ultrapure water 97 

(18.2 MΩ cm) was obtained from a Milli-Q water purification system (Millipore Corp., 98 

Bedford, USA). 99 

 100 

2.2. Wine Samples 101 

The 27 wine samples were obtained from red grapes of V. Vinífera L. of eight varieties 102 

[Aspiran (A), Bonarda (B), Cabernet Sauvignon (C), Malbec (Ma), Merlot (Me), Sangiovese 103 

(Sa), Syrah (Sy) and Tempranillo (T)], harvested in 2012 from thirteen collaborating wineries 104 

of Mendoza and San Juan (Argentina), including an experimental winery from Facultad de 105 

Ciencias Agrarias (FCA), Universidad Nacional de Cuyo, Mendoza, Argentina. The thirteen 106 

wineries were: Galán (A, B, C, Ma, Me, T), CoViTu (B, C, Ma, Me, T), experimental winery 107 

FCA (C, Ma, Me), San Rafael (Ma, Sy), Agrelo (Ma, Me, Sa), San Juan (Cs, Ma -two 108 

samples-, Sy), Mayor Drummond (Cs), La Consulta (Sy), Plantago (Ma), and Albahaca (Ma). 109 

The wine samples from each winery were collected directly from fermentation tanks at the 110 

end of malolactic fermentation, transferred under nitrogen to completely filled amber glass 111 

bottles, and stored at 4 °C to ensure their preservation until their analysis in the laboratory. 112 

 113 

2.3. HPLC-DAD 114 

The optimization of HPLC method was based on the work developed by de Villiers et 115 

al. [8]. Prior to analysis, wine samples were filtered through a 0.45 µm pore size nylon 116 

membrane (Aura Industries Inc., New York, USA) without further treatment, and 20 µL of 117 

every sample were injected directly into the chromatographic system, consisting of a Hewlett-118 

Packard 1100 series HPLC equipped with a degasser model G1322A, a quaternary pump 119 

model G1311A, and a photodiode array detector model G1315A (Agilent Technologies, Palo 120 
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Alto, USA). Separation was performed on a reversed-phase column Lichrocart 250-4 121 

Purospher STAR RP-18e column (Merck, Argentina) (250 mm × 4 mm, 5 µm particle size) 122 

with a Security Guard Gemini C18 guard cartridge (Phenomenex, USA) (4 mm × 3 mm) at 25 123 

°C. Two mobile phases were employed for elution: A (water/formic acid, 99:1, v/v) and B 124 

(acetonitrile/formic acid, 99:1, v/v), and the gradient profile was as follows: 0% B (min 0); 125 

3% B (min 1); 15% B (min 10); 30% B (min 25); 50% B (min 35); 95% B (min 40); and 0% 126 

B (min 45). The flow rate was 1.0 mL min
–1

. Each sample was run by triplicate, and good 127 

repeatability was observed. No changes were detected in cromatographic parameters as 128 

retention time, and peak shapes and areas in a reference sample that was run at the beginning 129 

and at the end of the analysis. All the analyses were conducted with the same guard column 130 

cartridge, keeping the maximum working pressure in the range 165-170 bar, being 250 bar the 131 

maximum recommended working pressure for the column used in this study. Diode array 132 

detection proceeded from 200 to 600 nm with a bandwidth of 2 nm and a data acquisition of 133 

five points per second. The presence of formic acid in the elution solvents is needed to 134 

maintain the pH below 2.5, thus ensuring that anthocyanins are present as a single species 135 

(flavylium cation). 136 

 137 

2.4. Software 138 

All calculations were made using MATLAB software (version 7.0, The Mathworks 139 

Inc., USA). Chromatographic time alignment was performed using the COSHIFT algorithm 140 

[30] included in the software developed by Tomasi et al. [31]. MCR-ALS was implemented 141 

using the graphical interface provided by Tauler in his web page http://www.mcrals.info/ [32]. 142 

Principal component analysis was run using an in-house MATLAB code. All programs were 143 

run on a HP Pavilion dv5-2043la microcomputer with an Intel Pentium P6000, 1.86 GHz 144 

microprocessor and 6 GB of RAM. UV-Visible data were exported from the HPLC-DAD 145 
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system as .csv (comma separated values) using the HP ChemStationRev.A.05.02 software for 146 

subsequent data processing under MATLAB.  147 

Preliminary LC-DAD data analysis showed absorption signals in the range 200 to 260 148 

nm corresponding to the HPLC solvent that were subtracted from the original data before 149 

chemometric analysis. To carry out this study in acceptable computational times, it was 150 

necessary to reduce the data obtained in the HPLC-DAD runs. Therefore, each sample subject 151 

to analysis consisted of an array of 2400×170 data points (0-40 min taken in steps of 1 s and 152 

262-600 nm taken in steps of 2 nm, respectively). 153 

 154 

3. Theory 155 

3.1. MCR-ALS  156 

The first step in MCR-ALS is to roughly estimate the number of components, which 157 

can be simply performed by visual inspection of singular values or principal component 158 

analysis (PCA) plots for the experimental data matrix [32,33]. This initial number of 159 

components can be afterwards refined, checking for their fit and reliability. The assumed 160 

bilinear model in MCR-ALS is analogous to the generalized Lambert-Beer’s law, where the 161 

individual responses of each component are additive. In matrix form, this model is expressed 162 

as: 163 

 D = C S
T
 + E          (1) 164 

where D (size JK) is the matrix of experimental data, C (size JN) is a matrix whose 165 

columns contain the concentration profiles of the N components present in the samples, S
T
 166 

(size NK) is a matrix whose rows contain the component spectra and E (size JK) collects 167 

the experimental error and the variance not explained by the bilinear model of equation (1). 168 

 The resolution is accomplished using an iterative ALS procedure [33-35]. In each 169 

iteration, new C and S
T
 matrices are obtained under a series of constraints (non-negativity, 170 
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unimodality, closure, etc.) to give physical meaning to the solutions, to limit their possible 171 

number for the same data fitting, and to decrease the extent of possible rotation ambiguities 172 

[36]. Iterations continue until an optimal solution is obtained that fulfils the postulated 173 

constraints and the established convergence criterion. 174 

 The procedure described above can be easily extended to the simultaneous analysis of 175 

multiple data sets or data matrices if they have at least one data mode (direction) in common. 176 

For instance, if the different data sets have been analyzed by the same spectroscopic method, 177 

the possible data arrangement and bilinear model extension is given by the following 178 

equation:    179 
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     (2) 180 

where Daug is the augmented data matrix, constructed from I individual data matrices [37]: D1, 181 

D2, ...DI. Each of these data matrices has size J×K, where J is the number of rows and K is the 182 

number of columns. In this column-wise augmentation mode, the data matrices are placed on 183 

top of each other, giving the matrix Daug of size IJ×K, which keeps the same number of 184 

columns in all of them, and where the different data matrices share their column vector space, 185 

Caug is the column-wise augmented matrix of size IJ×N, and Eaug is the corresponding 186 

augmented error matrix. 187 

 In the case of data matrices augmented row-wise, the individual data matrices are 188 

placed one adjacent to the other, giving the matrix Daug of size J×IK, which keeps the same 189 

number of rows in all of them, and where the row vector space is shared: 190 

 Daug = [D1D2  ...  DI] = C  TT

2

T

1 ... ISSS  +  TT

2

T

1 ... IEEE  =  191 

         = C
T

aug

T

aug ES 
         

 (3) 192 
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where all symbols are as in equation (2). When data fulfill the trilinear model, both type of 193 

matrix augmentations, column- and row-wise, are equivalent. However, when data do not 194 

fulfill the trilinear model (but they still fulfill the bilinear model), the two types of 195 

augmentation are not equivalent: matrix augmentation should be performed in the mode 196 

where chemical rank (mathematical rank in absence of noise) is better preserved, i.e., where it 197 

is equal to the number of chemical constituents. This implies that the response profiles of the 198 

components in this mode are invariant, and do not change from sample to sample. In many 199 

cases, particularly in chromatographic-spectral analysis, such a situation is not achieved, and 200 

the chemical rank is only preserved in one of the two modes of matrix augmentation [37]. In 201 

this latter case it is usual to perform a column-wise augmentation sharing the spectral 202 

subspace among the samples, because of experimental changes in elution profiles from run to 203 

run, both in shape and peak position. However, this requires that the various sample 204 

component present different spectra, so that selectivity is achieved in the spectral mode. 205 

Column-wise augmentation was initially attempted in this work, but several sample 206 

components showed almost identical spectra (e.g., all anthocyanin compounds absorbing at 207 

ca. 520 nm cannot be resolved from each other in this way). Therefore, we decided to employ 208 

the less common augmentation by sharing the time subspace, or row-wise augmentation 209 

above [27,28]. However, this requires that the elution time traces were aligned before MCR-210 

ALS data processing, in order to have a common elution profile for a given component in all 211 

samples. After decomposition in this augmentation mode, the scores for each constituent are 212 

computed as the sum of the elements of the corresponding profile in each of the sub-matrices 213 

of Saug according to: 214 
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where i identifies the sample, n the constituent, j each of the data points or channels in the 216 

sub-matrix along the non-augmented mode and si(k,n) the element of the Si matrix [see 217 

equation (3)] at channel k for component n. 218 

 219 

3.2. Principal component analysis 220 

 After MCR-ALS decomposition of the augmented matrix, a matrix of scores is 221 

obtained, of size I×N (I = number of samples, N = number of constituents), which could in 222 

principle be employed for sample discrimination. However, if N> 3 it is preferable to reduce 223 

the dimensionality of the score matrix using PCA, which usually concentrates the variance in 224 

a smaller number of principal components (PCs). Usually two of them are employed to build 225 

a plot of sample positions in score space, achieving sample discrimination. The outcome of 226 

PCA is thus: (1) the PC values for each sample, from which the first two are used for 227 

discrimination, and (2) a loading matrix, which shows the relative contribution of each MCR-228 

ALS score to each of the PC, helping to choose the true discriminating variables [38]. 229 

 230 

4. Results and discussion 231 

4.1. LC-DAD data pre-processing 232 

Figure 2A shows the chromatographic-spectral landscape obtained for a specific 233 

sample (Aspiran varietal, Galán winery) after injection into the HPLC-DAD system. From 234 

this latter Figure, specific chromatographic traces can be obtained at selected wavelengths: 235 

Fig. 2B and 2C show the corresponding elution time profiles for the same sample at 280 and 236 

520 nm respectively. Due to the fact that most of the flavonoids absorb at 280 nm, Fig. 2B 237 

shows a large number of unresolved components at this latter wavelength. On the other hand, 238 

comparatively less components appear in the chromatogram of Fig. 2C at 520 nm, which 239 

however implies the presence of several anthocyanin compounds. 240 
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The complexity of the studied samples, which can be gathered from the visual 241 

inspection of Fig. 2, requires suitable data processing algorithms to extract hidden features, or 242 

to resolve individual sample components in terms of their chromatograms and spectra. 243 

Among the various algorithms allowing to process sets of data matrices such as those 244 

presently studied, one should select a methodology which is able to model the particular data 245 

structure at hand. One specific property of the present data is the existence of changes in the 246 

elution time profile for a given component from run to run. The algorithm of choice under 247 

these conditions is multivariate curve resolution-alternating least-squares (MCR-ALS). As 248 

discussed in a previous section, this latter methodology frequently builds an augmented data 249 

matrix by placing all individual sample matrices adjacent to each other in a column-wise 250 

augmentation mode. This allows one to model, after suitable constraints during the fitting 251 

phase, the varying time profiles of the sample components in the various samples. 252 

However, the successful application of this technique requires that sufficient 253 

selectivity exists in the spectral mode. If several sample components display very similar or 254 

identical spectra, they cannot be resolved into individual components by MCR-ALS. In this 255 

case, one viable alternative is to perform a row-wise matrix augmentation [27,28]. The 256 

requirements for resolution in this augmentation mode are: (1) selectivity in the 257 

chromatographic data mode, and (2) time synchronization or alignment of the chromatograms 258 

in such a way that component peaks have the same shape (although the area under the peak 259 

may differ) in different samples. 260 

Many different algorithms are available for chromatographic-spectral matrix 261 

alignment [29]. Some of them shift an entire chromatographic matrix with respect to a 262 

reference one by a number of data points, without modifying the peak shapes or the time 263 

distance between peaks. More powerful methodologies exist, however, which are able to warp 264 

the chromatograms, changing peak positions and shapes. They are in principle necessary to 265 
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process long chromatographic runs such as those presently studied. Among the latter ones the 266 

following have been reported: Interval Correlation Optimized Shifting (ICOSHIFT) [39], 267 

Dynamic Multi-way Warping (DMW) [31], Correlation Optimized Warping (COW) [40], 268 

Correlation Optimized Shifting (COSHIFT) [31], etc. All these possibilities were probed to 269 

the present data, with optimum results using the latter COSHIFT algorithm, which operates 270 

by shifting a data matrix in both the row and column directions, in order to get maximum 271 

matrix-correlation from the RV-coefficient (which is a multivariate generalization of the 272 

squared Pearson correlation coefficient), assuming that peak widths are invariant. It is 273 

important to notice, in this regard, that we did not detect significant changes in 274 

chromatographic peak shapes from run to run. As an example, Fig. 3 shows a zoom selection 275 

of the chromatographic profile at 280 nm of a typical sample (Malbec varietal, Galán winery) 276 

before (blue line) and after (red line) the application of this algorithm, in which the finally 277 

obtained alignment is apparent. The sample used as reference (black line, Merlot varietal, 278 

CoViTu winery) was utilized as reference for the alignment of the remaining ones. 279 

 280 

4.2. MCR-ALS resolution of LC-DAD data 281 

After COSHIFT chromatographic alignment of all samples, MCR-ALS analysis was 282 

applied to the row-wise augmented data matrix, namely, an array of 2400 × 4590 data points 283 

as explained in Section 3.1. As a first step before data resolution, the number of components 284 

was estimated by principal component analysis of the augmented data matrix, inspecting a 285 

plot of singular values as a function of increasing number of trial components. In this way, 10 286 

components were selected, which explained 94.37% of the data variance; after the tenth 287 

component, no further significant decrease in the singular values was detected. Additionally, 288 

this initial estimate was confirmed by processing the LC-DAD data with MCR-ALS with 289 

more components as initial estimate (i.e., 12, 15 and 20, with 95.41%, 96.54% and 97.67% 290 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 

 

explained variance, respectively), with results which did not significantly differed from those 291 

obtained with 10 components as initial estimate. On the other hand, principal component 292 

analysis of the column-wise augmented data matrix, namely, an array of 64800 × 170 data 293 

points, as explained in Section 3.1, showed that only 3 components were needed to explain 294 

97.39% of the data variance (components 4 and 5 only explained 1.37% and 0.52% 295 

respectively), revealing that more components can in principle be resolved in the row-wise 296 

augmented data matrix. 297 

In order to achieve successful resolution, non-negativity in both spectra and 298 

chromatograms was applied during the least-squares fit, until successive changes in residual 299 

fit were smaller than 0.1%. This typically required 30 iterations. MCR-ALS resolution was 300 

obtained with good quality parameters, namely, fitting error (L.O.F.) of 5.99% and 7.69% 301 

(regarding PCA and experimental respectively) and 99.41% of explained variance. The result 302 

is shown in Fig. 4, in the form of a common chromatographic profile for the 10 resolved 303 

constituents (Fig. 4A) and a fragment of the augmented spectra corresponding to four selected 304 

samples (Fig. 4B). Figure 4 shows that several sample components were resolved with 305 

maxima at ca. 520 nm, corresponding to different anthocyanin compounds. This would not be 306 

possible in the usual column-wise augmentation mode, because in the latter mode a single 307 

spectrum is retrieved for all anthocyanin compounds, and our intention was to differentiate 308 

these important class of compounds from each other. 309 

As fingerprint information, MCR-ALS renders the area under the resolved spectral 310 

profile for each component in a particular sample. This information was arranged into a 311 

matrix of size 27 × 10 (27 samples × 10 constituents). In order to reduce the dimensionality of 312 

this latter matrix for intuitive discrimination purposes, principal component analysis was 313 

applied to this fingerprint matrix, as discussed in the next section. 314 

 315 
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4.3. PCA discrimination using MCR-ALS scores 316 

In order to study the relation among the MCR-ALS fingerprint information with the 317 

eight wine varietals and the thirteen wineries, the output score matrix was subjected to 318 

principal component analysis (PCA). Figure 5A shows a typical score plot of first vs. second 319 

principal component (45.40% and 24.06% of variance retained by PC1 and PC2 respectively). 320 

In this Figure, we can observe a partial discrimination into winery provenance (i.e., 321 

geographical origin) of the samples corresponding to Galán, CoViTu, San Juan, and San 322 

Rafael wineries from the remaining samples. Moreover, a plot of first vs. third principal 323 

component (PC3, 13.40% variance retained), shown in Fig. 5B, reveals that all samples 324 

corresponding to the Malbec varietal (the insignia argentine varietal) are discriminated from 325 

the remaining samples. 326 

Examination of the contribution of the constituents resolved by MCR-ALS in each 327 

principal component reveals which compounds were decisive for wine discrimination (Fig. 328 

6A). Constituents No. 3 and 10 displayed the largest contributions to PC1 and PC2. For PC3, 329 

on the other hand, in addition to No. 10, a contribution from No. 2 is detected. Figure 6B 330 

shows the resolved spectra of the relevant constituents, in which it can be observed that 331 

constituents No. 2 and 3 have spectra with absorption maxima at 520 nm (anthocyanins), 332 

whereas constituent No. 10 has a spectrum with an absorption maximum at 330 nm (phenolic 333 

acids). This means that different anthocyanin compounds contribute for discrimination by 334 

geographical origin, whereas for Malbec varietal discrimination from the rest of the samples, 335 

both anthocyanins and phenolic acids are needed. 336 

 337 

5. Conclusions 338 

Wine study was carried out by direct sample injection HPLC-DAD without sample 339 

pre-treatment. The obtained data were processed by MCR-ALS in the form of an augmented 340 
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data matrix, with a less common row-wise augmentation with the data matrices sharing the 341 

time subspace. To achieve this, it was necessary to perform previous time alignment of the 342 

chromatograms using the COSHIFT algorithm. The matrix of sample scores resolved by 343 

MCR-ALS was then submitted to PCA, which allowed discriminating all Malbec varietals 344 

from the remaining samples, and also to explore the wine samples by geographical origin, in 345 

this case with only partial success. The results here obtained are promising. Analysis of the 346 

constituents of each principal component showed that anthocyanin compounds present in 347 

wine were crucial to perform both types of discrimination. 348 

 349 

Acknowledgements 350 

We acknowledge financial support from Universidad Nacional de Rosario, 351 

Universidad Nacional de Cuyo, CONICET (Consejo Nacional de Investigaciones Científicas 352 

y Técnicas) and ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica, Project 353 

PICT 2010-0084). P.L.P. thanks CONICET for a postdoctoral fellowship.  354 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16 

 

References 355 

 356 

[1] R.S. Jackson, 6- Chemical constituents of grapes and wine, in:  Wine science (Third 357 

edition), Academic Press, San Diego, 2008, pp. 270-331. 358 

[2] M.V. Moreno-Arribas, M.C. Polo, 9- Phenolic compounds, in: M.V. Moreno-Arribas, 359 

M.C. Polo (Eds.) Wine chemistry and biochemistry, Springer New York, 2009, pp. 437-527. 360 

[3] M.V. Moreno-Arribas, M.C. Polo, 9D- Influence of phenolics on wine organoleptic 361 

properties, in: M.V. Moreno-Arribas, M.C. Polo (Eds.) Wine chemistry and biochemistry, 362 

Springer New York, 2009, pp. 529-570. 363 

[4] J. Saurina, Characterization of wines using compositional profiles and chemometrics, 364 

Trends Anal. Chem., 29 (2010) 234-245. 365 

        redoux,    de  illiers, P  M jek, F.d.r. Lynen, A. Crouch, P. Sandra, Stir bar sorptive 366 

extraction combined with GC-MS analysis and chemometric methods for the classification of 367 

South African wines according to the volatile composition, J. Agric. Food Chem., 56 (2008) 368 

4286-4296. 369 

[6] D. Ballabio, T. Skov, R. Leardi, R. Bro, Classification of GC-MS measurements of wines 370 

by combining data dimension reduction and variable selection techniques, J. Chemom., 22 371 

(2008) 457-463. 372 

[7] R.F. Alves, A.M.D. Nascimento, J.M.F. Nogueira, Characterization of the aroma profile 373 

of Madeira wine by sorptive extraction techniques, Anal. Chim. Acta, 546 (2005) 11-21. 374 

[8] A.d. Villiers, G. Vanhoenacker, P. Majek, P. Sandra, Determination of anthocyanins in 375 

wine by direct injection liquid chromatography–diode array detection–mass spectrometry and 376 

classification of wines using discriminant analysis, J. Chromatogr., A, 1054 (2004) 195-204. 377 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17 

 

[9] M. Fanzone, Á. Peña-Neira, V. Jofré, M. Assof, F. Zamora, Phenolic characterization of 378 

Malbec wines from mendoza province (Argentina). J. Agric. Food Chem., 58 (2010) 2388-379 

2397. 380 

[10] L. Vaclavik, O. Lacina, J. Hajslova, J. Zweigenbaum, The use of high performance liquid 381 

chromatography-quadrupole time-of-flight mass spectrometry coupled to advanced data 382 

mining and chemometric tools for discrimination and classification of red wines according to 383 

their variety, Anal. Chim. Acta, 685 (2011) 45-51. 384 

         uadros- nostroza, P   iavalisco,     ummel,     ckardt,     illmitzer,    Pe a-385 

 ort s, Discrimination of wine attributes by metabolome analysis, Anal. Chem., 82 (2010) 386 

3573-3580. 387 

[12] L. Jaitz, K. Siegl, R. Eder, G. Rak, L. Abranko, G. Koellensperger, S. Hann, LC–MS/MS 388 

analysis of phenols for classification of red wine according to geographic origin, grape variety 389 

and vintage, Food Chem., 122 (2010) 366-372. 390 

[13] M. Anastasiadi, A. Zira, P. Magiatis, S.A. Haroutounian, A.L. Skaltsounis, E. Mikros, 
1
H 391 

NMR-based metabonomics for the classification of Greek wines according to variety, region, 392 

and vintage. Comparison with HPLC data, J. Agric. Food Chem., 57 (2009) 11067-11074. 393 

[14] J.-E. Lee, G.-S. Hwang, F. Van Den Berg, C.-H. Lee, Y.-S. Hong, Evidence of vintage 394 

effects on grape wines using 
1
H NMR-based metabolomic study, Anal. Chim. Acta, 648 395 

(2009) 71-76. 396 

[15] D. Cozzolino, H.E. Smyth, M. Gishen, Feasibility study on the use of visible and near-397 

infrared spectroscopy together with chemometrics to discriminate between commercial white 398 

wines of different varietal origins, J. Agric. Food Chem., 51 (2003) 7703-7708. 399 

[16] L. Liu, D. Cozzolino, W.U. Cynkar, R.G. Dambergs,     anik, B K  O’Neill,   B   olby, 400 

M. Gishen, Preliminary study on the application of visible–near infrared spectroscopy and 401 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

18 

 

chemometrics to classify Riesling wines from different countries, Food Chem., 106 (2008) 402 

781-786. 403 

[17] R. Garrido-Delgado, S. López-Vidal, L. Arce, M. Valcárcel, Differentiation and 404 

identification of white wine varieties by using electropherogram fingerprints obtained with 405 

CE, J. Sep. Sci., 32 (2009) 3809-3816. 406 

  8     Pazourek, D   ajdošov , M  Spanil , M  Farkov , K  Novotná, J. Havel, Analysis of 407 

polyphenols in wines: Correlation between total polyphenolic content and antioxidant 408 

potential from photometric measurements: Prediction of cultivars and vintage from capillary 409 

zone electrophoresis fingerprints using artificial neural network, J. Chromatogr., A, 1081 410 

(2005) 48-54. 411 

[19] M.P. Fabani, R.C. Arrúa, F. Vázquez, M.P. Diaz, M.V. Baroni, D.A. Wunderlin, 412 

Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of 413 

Argentinean wines, Food Chem., 119 (2010) 372-379. 414 

[20] P. Pohl, What do metals tell us about wine?, Trends Anal. Chem., 26 (2007) 941-949. 415 

[21] D.P. Makris, S. Kallithraka, A. Mamalos, Differentiation of young red wines based on 416 

cultivar and geographical origin with application of chemometrics of principal polyphenolic 417 

constituents., Talanta, 70 (2006) 1143-1152. 418 

[22] N.H. Beltrán, M.a. Duarte-Mermoud, M.a. Bustos, S.a. Salah, E.a. Loyola, A. Peña-419 

Neira, J.W. Jalocha, Feature extraction and classification of Chilean wines, J. Food Eng., 75 420 

(2006) 1-10. 421 

[23] S.a. Bellomarino, X.a. Conlan, R.M. Parker, N.W. Barnett, M.J. Adams, Geographical 422 

classification of some Australian wines by discriminant analysis using HPLC with UV and 423 

chemiluminescence detection., Talanta, 80 (2009) 833-838. 424 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 

 

[24] M. Fanzone, Á. Peña-Neira, M. Gil, V. Jofré, M. Assof, F. Zamora, Impact of phenolic 425 

and polysaccharidic composition on commercial value of Argentinean Malbec and Cabernet 426 

Sauvignon wines, Food Res. Int., 45 (2012) 402-414. 427 

[25] D. Serrano-Lourido, J. Saurina, S. Hernández-Cassou, A. Checa, Classification and 428 

characterisation of Spanish red wines according to their appellation of origin based on 429 

chromatographic profiles and chemometric data analysis, Food Chem., 135 (2012) 1425-430 

1431. 431 

[26] E. Salvatore, M. Cocchi, A. Marchetti, F. Marini, A. de Juan, Determination of phenolic 432 

compounds and authentication of PDO Lambrusco wines by HPLC-DAD and chemometric 433 

techniques, Anal. Chim. Acta, 761 (2013) 34-45. 434 

[27] A. Mancha de Llanos, M.M. Zan, M.J. Culzoni, A. Espinosa-Mansilla, F. Cañada-435 

Cañada, A.M. Peña, H.C. Goicoechea, Determination of marker pteridines in urine by HPLC 436 

with fluorimetric detection and second-order multivariate calibration using MCR-ALS, Anal. 437 

Bioanal. Chem., 399 (2011) 2123-2135. 438 

[28] M.J. Culzoni, A. Mancha de Llanos, M.M. De Zan, A. Espinosa-Mansilla, F. Cañada-439 

Cañada, A. Muñoz de la Peña, H.C. Goicoechea, Enhanced MCR-ALS modeling of HPLC 440 

with fast scan fluorimetric detection second-order data for quantitation of metabolic disorder 441 

marker pteridines in urine, Talanta, 85 (2011) 2368-2374. 442 

[29] T.G. Bloemberg, J. Gerretzen, A. Lunshof, R. Wehrens, L.M.C. Buydens, Warping 443 

methods for spectroscopic and chromatographic signal alignment: A tutorial, Anal. Chim. 444 

Acta, 781 (2013) 14-32. 445 

[30] V.G. van Mispelaar, A.C. Tas, A.K. Smilde, P.J. Schoenmakers, A.C. van Asten, 446 

Quantitative analysis of target components by comprehensive two-dimensional gas 447 

chromatography, J. Chromatogr., A, 1019 (2003) 15-29. 448 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

20 

 

[31] G. Tomasi, F. van den Berg, C. Andersson, Correlation optimized warping and dynamic 449 

time warping as preprocessing methods for chromatographic data, J. Chemom., 18 (2004) 450 

231-241. 451 

[32] J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, A graphical user-friendly interface for 452 

MCR-ALS: a new tool for multivariate curve resolution in MATLAB, Chemom. Intell. Lab. 453 

Syst., 76 (2005) 101-110. 454 

[33] M. Maeder, A. Zilian, Evolving factor analysis, a new multivariate technique in 455 

chromatography, Chemom. Intell. Lab. Syst., 3 (1988) 205-213. 456 

[34] M. Maeder, Evolving factor analysis for the resolution of overlapping chromatographic 457 

peaks, Anal. Chem., 59 (1987) 527-530. 458 

[35] W. Windig, J. Guilment, Interactive self-modeling mixture analysis, Anal. Chem., 63 459 

(1991) 1425-1432. 460 

[36] R. Tauler, A. Smilde, B. Kowalski, Selectivity, local rank, three-way data analysis and 461 

ambiguity in multivariate curve resolution, J. Chemom., 9 (1995) 31-58. 462 

[37] R. Tauler, M. Maeder, A. de Juan, 2.24- Multiset data analysis: Extended multivariate 463 

curve resolution, in: Editors-in-Chief:, D.B. Stephen, T. Romà, W. Beata (Eds.) 464 

Comprehensive chemometrics, Elsevier, Oxford, 2009, pp. 473-505. 465 

[38] I.T. Jolliffe, Principal component analysis, 2nd ed., Springer, New York, 2002. 466 

[39] G. Tomasi, F. Savorani, S.B. Engelsen, icoshift: An effective tool for the alignment of 467 

chromatographic data, J. Chromatogr., A, 1218 (2011) 7832-7840. 468 

[40] N.-P.V. Nielsen, J.M. Carstensen, J. Smedsgaard, Aligning of single and multiple 469 

wavelength chromatographic profiles for chemometric data analysis using correlation 470 

optimised warping, J. Chromatogr., A, 805 (1998) 17-35. 471 

 472 

 473 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21 

 

Figure captions 474 

 475 

Fig. 1. Representative structures of the three main families of phenolic compounds found in 476 

wine. 477 

 478 

Fig. 2. A) A typical chromatographic-wavelength landscape. B) Chromatographic trace at 280 479 

nm. C) Chromatographic trace at 520 nm. 480 

 481 

Fig. 3. Illustration of the application of the COSHIFT algorithm for chromatographic 482 

alignment to a typical sample. Black line, reference trace at 280 nm, blue line, an unaligned 483 

chromatogram at the same wavelength, and red line, aligned chromatogram. 484 

 485 

Fig. 4. Profiles for the ten constituents resolved by MCR-ALS from the augmented data 486 

matrix in the spectral direction. A) Elution time profiles. B) Augmented spectral profiles (only 487 

four representative samples are shown). 488 

 489 

Fig. 5. Discrimination of wine samples from principal component analysis. A) PC2 vs. PC1. 490 

B) PC3 vs. PC1. 491 

 492 

Fig. 6. A) Loading composition of the first three principal components, in terms of the ten 493 

MCR-ALS resolved components. B) MCR-ALS resolved spectra of components No. 2, 3 and 494 

10. 495 
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