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ABSTRACT 

 

Oxidative stress is a common event in most hepatopathies, leading to 

mitochondrial permeability transition pore (MPTP) formation and further exacerbation of 

both oxidative stress from mitochondrial origin and cell death. Intracellular Ca
2+

 

elevations play a permissive role in these events, but the underlying mechanisms are 

poorly known. We examined in primary cultured rat hepatocytes whether the 

Ca
2+

/calmodulin (CaM)-dependent protein kinase II (CaMKII) signalling pathway is 

involved in this process, by using tert-butyl hydroperoxide (tBOOH) as a pro-oxidizing, 

model compound. tBOOH (500 µM, 15 min) induced MPTP formation, as assessed by 

measuring mitochondrial membrane depolarization as a surrogate marker, and increased 

lipid peroxidation in a clyclosporin A (CsA)-sesitive manner, revealing the involvement 

of MPTPs in tBOOH-induced ROS formation. Intracellular Ca
2+

 sequestration with 

BAPTA/AM, CaM blockage with W7 or trifluoperazine, and CaMKII inhibition with 

KN-62 all fully prevented tBOOH-induced MPTP opening and reduced tBOOH-induced 

lipid peroxidation to a similar extent to CsA, suggesting that Ca
2+

/CaM/CaMKII 

signaling pathway fully mediates MPTP-mediated mitochondrial ROS generation. 

tBOOH induced apoptosis, as shown by flow cytometry of annexin V/propidium iodide, 

mitochondrial release of cytochrome c, activation of caspase-3 and increase in the Bax-to-

Bcl-xL ratio, and the Ca
2+

/CaM/CaMKII signaling antagonists fully prevented these 

effects. Intramitochondrial CaM and CaMKII were partially involved in tBOOH-induced 

MPTP formation, since W7 and KN-62 both attenuated the tBOOH-induced, MPTP-

mediated swelling of isolated mitochondria. We concluded that Ca
2+

/CaM/CaMKII 
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signaling pathway is a key mediator of oxidative stress-induced induced MPTP 

formation, and the subsequent exacerbation of oxidative stress from mitochondrial origin 

and apoptotic cell death. 
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INTRODUCTION 

 

Radical oxygen species (ROS) occurring under oxidative stress (OS) conditions plays 

a pivotal role in a wide variety of pathophysiological conditions (Muriel 2009), by 

oxidizing membrane phospholipids, proteins and nucleic acids (Cochrane 1991). The 

cellular alterations induced by this redox misbalance depend on the intensity and duration 

of the oxidative injury. High levels of OS lead predominantly to dramatic changes in 

plasma membrane permeability, release of cytosolic and mitochondrial components, 

impaired mitochondrial adenosine triphosphate (ATP) production and, finally, necrosis. 

Contrarily, lower levels of OS unable to deplete ATP levels cause apoptosis, since 

apoptosis is an energy-requiring process (Eguchi 1997). 

Opening of mitochondrial permeability transition pores (MPTPs) under OS 

conditions has been implicated as a key, causative event in both manners of cell death. 

MPTP occurs by the dynamic association of a multiprotein complex of constitutive and 

regulatory proteins at the sites where the outer mitochondrial membrane is in contact with 

the inner mitochondrial membrane. The nature of this complex is uncertain, but it may 

involve a number of putative constitutive proteins such as the voltage dependent anion 

channel (VDAC) in the outer membrane, adenine nucleotide translocase (ANT), F0 /F1 ATP 

synthase, and the phosphate carrier (PiC) in the inner membrane, and some regulatory 

proteins, such as cyclophilin D and complement component 1, q subcomponent binding 

protein (C1QBP), localized in the matrix; fom all of them, only cyclophilin D has held up 

to genetic scrutiny as an essential protein involved in MPTP formation (Elrod 2013). MPTP 

opening leads to an abrupt increase in the permeability of the inner mitochondrial 
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membrane to small molecular weight solutes (< 1500 Da); this collapses ion gradients 

across the inner mitochondrial membrane, leading to mitochondrial depolarization, 

uncoupling of oxidative phosphorylation and, eventually, ATP depletion (Jeong 2008; 

Imberti 1993). MPTP onset also causes mitochondrial swelling, with rupture of the 

mitochondrial outer membrane and release of cytochrome c and other pro-apoptotic 

molecules from the inter-membrane space to the cytosol (e.g., apoptosis inducing factor, 

Smac/Diablo). These molecules, together with other cytosolic factors, set off a cascade of 

caspase activity that leads to apoptotic cell death (Jeong 2008). Alternatively, the release of 

these proteins may occur through specific changes in the outer membrane permeability, by 

translocation from cytosol of pro-apoptotic, pore-forming proteins such, as Bax and Bid 

(Korsmeyer 2000). 

Appart from governing cell death, MPTPs aggravates the initial OS that triggers its 

primary onset. This occurs by (a) MPTP-induced loss of cytochrome c, which impairs the 

flow of electrons in the respiratory chain inducing overreduction of the complexes and 

leakage of electrons to the cytosol, (b) reduction of the electron acceptor, NAD
+
, which 

results in ROS emission from the -ketoglutarate dehydrogenase complex, and (c) loss of 

glutathione from the matrix, which decreases the mitochondrial capacity to scavenge ROS 

(Chinopoulos 2006). 

Another major feature of the oxidative injury is the increase in cytosolic, free Ca
2+

 

levels; this activates Ca
2+

-dependent degradative enzymes, such as phospholipases, 

proteases and endonucleases, which play a major role in the onset of cell death (Orrenius 

1992). In addition, cellular Ca
2+

 elevations exacerbates OS-induced cell death (Thor 1984), 

by potentiating the capability of ROS to onset MPTP opening (Byrne 1999). Some 
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hypotheses have been advanced to explain this fact, although any of them have been proved 

conclusively as yet. OS causes release of matrix Ca
2+ that can be taken up back into the 

mitochondria (Ca
2+ cycling); this excessive Ca

2+ cycling has been proposed to be 

responsible for MPTP onset (Takeyama 1993). In addition, elevations of mitochondrial 

matrix free Ca
2+ may increase mitochondrial respiration, which is controlled by Ca

2+
-

regulated mitochondrial dehydrogenases. This latter process may overstimulate 

mitochondrial ROS production, thus triggering MPTP by oxidation of free thiol groups in 

ANT, which increases the affinity of this protein for cyclophilin D to induce MPTP 

generation (Kanno 2004). In addition, OS greatly enhances MPTP sensitivity to Ca
2+

. This 

occurs both by increasing cyclophilin D binding to ANT, a critical step in MPTP formation, 

and by reducing the affinity of the intramitochondrial adenine nucleotide-binding site on 

ANT; the binding of adenine nucleotides to this site inhibits competitively Ca
2+

-dependent 

MPTP formation (Halestrap 2000). Therefore, cellular Ca
2+

 overload occurring under OS 

conditions would represent a vicious circle by which Ca
2+

 and ROS mutually potentiate 

each other to exacerbate ROS formation from mitochondrial origin, which induces further 

Ca
2+

 increments. 

Although there is compelling evidence in the literature that Ca
2+

 is involved in ROS-

induced-MPTP opening in hepatocytes, there is no agreement as yet on the mechanisms 

underlying this effect. A likely candidate to mediate Ca
2+

-dependent mitochondrial damage 

is calmodulin (CaM). This protein binds Ca
2+

, and the complex is involved in a variety of 

cell functions through the activation of CaM-dependent enzymes (Colbran 2004). CaM is 

an ubiquitous protein found mainly in liver cytoplasm, nucleus, and plasma membrane 

(Harper 1980), but mitochondria also contain CaM both on the inner membrane and in the 

matrix space (Itano 1986). The organelle holds several CaM-binding proteins as well, 
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which have been implied as mediators of mitochondrial permeability transition (MPT) and 

cell death. They include the phosphatase calcineurin (Molkentin 2001), the cysteine 

protease calpain (Arrington 2006), and protein quinase Ca
2+

/calmodulin-dependent protein 

kinase II (CaMKII) (Joiner 2012). Therefore, at least conceptually, Ca
2+

 overload occurring 

under OS-conditions may excessively activate these CaM-downstream targets, leading to 

MPTP opening and mitochondrial ROS generation. 

In this work, we addressed this hypothesis by using tert-butyl hydroperoxide 

(tBOOH) as a pro-oxidant compound. tBOOH is a synthetic analogue of short-chain lipid 

hydroperoxides formed endogenously under OS conditions, which has been widely used as 

a model to study the effect of OS on biological systems (Nieminen 1995; Byrne 1999; 

Imberti 1993). Apart from inducing OS directly via reduction into both peroxyl and alkoxyl 

free radicals by both cytochrome P450 and the mitochondrial electron chain (Davies 1989), 

tBOOH promotes OS via ROS-induced MPTP formation and further mitochondrial 

production of ROS. This is supported by the finding that MPTP blockers inhibit the late 

phase of mitochondrial pyridine-nucleotide oxidation and ROS generation following 

tBOOH exposure to isolated hepatocytes (Nieminen 1997). This makes tBOOH a unique 

tool to study the factors regulating OS-dependent MPTP onset, and the further 

hepatocellular death. 
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MATERIAL AND METHODS 

 

Materials. Collagenase type A from Clostridium histolyticum was purchased from Gibco 

(Paisley, UK). Leibovitz-15 (L-15) tissue culture medium, bovine serum albumin (fraction 

V), tBOOH, dimethylsulphoxyde (DMSO), Triton X-100, EGTA, sodium dodecyl sulfate 

(SDS), TEMED, DTT , leupeptin, urethane, PMSF, cyclosporin A (CsA), trifluorperazine 

(TFP), FK-506 (tacrolimus), carbonyl cyanide m-chloro-phenylhydrazone (CCCP) and 

tetramethylrhodamine methyl ester (TMRM) were from Sigma Chemical Co. (St. Louis, 

MO). Cellular lysis buffer, KN-62, W7, mouse anti-CaMKII, and mouse anti rat phospho-

CaMKII were from Cell Signaling Technology (Beverly, MA). BAPTA/AM and Fura-

2/AM were from Molecular Probes (Eugene, Oregon, U.S.A.). Goat anti-mouse IgG 

(#31430), chemiluminescence reagent, and Hyperfilm ECL were from Thermo Fisher 

Scientific Inc. (Waltham, MA). All other chemicals were of reagent grade. 

 

Animals. Adult male Wistar rats weighing 300-350 g were used throughout. Animals were 

maintained on a standard diet and water ad libitum, and housed in a temperature (21º-23º 

C) and humidity (45-50%) controlled room, under a constant 12-hour light, 12-hour dark 

cycle. All animals received humane care, according to the Guide for the Care and Use of 

Laboratory Animals prepared by the National Academy of Sciences and published by the 

NIH (publication 25-28, revised 1996). 

 

Hepatocyte isolation. Hepatocytes were isolated from livers by the collagenase perfusion 
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technique, using a modification of the method of Berry and Friend (Berry 1969). Briefly, 

under urethane anesthesia (5mg/kg body wt, ip), heparin was administered in the inferior 

vena cava (1.50 U/kg of body weight), and a 14G catheter (Abbocath-T, Venisystemtm, 

Abbocath Ireland Ltd., Sligo, Ireland) was introduced in the portal vein. This was followed 

by a 10-min, non-recirculant portal perfusion with a Ca
2+

-free, oxygenated (95% O2/5% 

CO2) Hanks' solution, pH = 7.47-7.50, supplemented with HEPES (3 g/l) and EGTA (0.24 

g/l). The livers were then perfused for a further 5-min period with the same solution 

without EGTA, supplemented with 1 mM MgSO4, 2.5 mM CaCl2 and collagenase type IV 

(430 U/l). Finally, the livers were removed, and the cells isolated by mechanical 

dissociation by gently stirring with a glass stick for 3-4 min. Hepatocytes were further 

purified from non-parenchymal cells by low-speed centrifugation (30xg, 2 min), followed 

by 3 consecutive washings in oxygenated Hanks' solution containing 2.5 mM CaCl2 and 5 

mM Tris. The resulting preparation yielded ~ 400-600x10
6
 hepatocytes per liver, with high 

viability (>90%), as assessed by the trypan blue exclusion test (Baur 1975). 

 

Hepatocyte culture. Isolated hepatocytes were plated in 6-well plastic plates precoated with 

rat tail collagen at least 1 day before preparing the hepatocyte cultures. Ice-cold neutralized 

collagen solution was dispensed onto each dish/well, and the coated dishes/plates were 

placed at 37º C in a humidified incubator for approximately 2 h to allow the matrix material 

to gel, followed by addition of 3 ml of DMEM to each dish/plate and storage in a 

humidified incubator. Hepatocyte suspensions were added to the precoated dishes/plates at 

a density of 2 x 10
6
 cells/ 30mm dishes diluted in DMEM. Cells were allowed to attach for 

2-2.5 h at 37º C in a air humidified atmosphere and 5 % CO2. After attachment, the 
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medium was aspirated, and 3 ml of fresh DMEM was added. 

 

Treatments. After 18 h of culture, hepatocytes were incubated with 500 µM tBOOH (or the 

vehicle, DMSO, in controls) for 15 min in a humidified incubator at 37º C, with 5% CO2. 

The effect of the pre-incubation of the hepatocytes with a number of modulators was 

studied. Hepatocytes were pre-incubated with these modulators for 15 min, and then 

exposed to tBOOH for a further 15-min period. The modulators were kept in the incubation 

medium throughout tBOOH exposure. 

 

Evaluation of tBOOH effect on hepatocellular integrity. At the end of the incubation 

period with tBOOH, aliquots of hepatocytes were removed to assess cell viability, leakage 

of the cytosolic enzyme, lactate dehydrogenase (LDH; EC 1.1.1.27), and ATP content. 

Viability of hepatocytes cultured on multiwell plates was assessed by the trypan blue 

exclusion test (Baur 1975). 

Plasma membrane integrity was evaluated by the leakage of the cytosolic enzyme, 

LDH, into the incubation medium. LDH activity was assessed spectrophotometrically 

(Perkin Elmer UV/Vis Spectrometer Lambda2S, berlingen, Germany) by measuring NADH 

consumption at 340 nm, using commercial kits (LDH-P UV AA liq, Wiener Lab., Rosario, 

Argentina). LDH release (activity in the medium) was normalized to total LDH activity in 

the cellular compartment. For this purpose, aliquots of the cellular suspension were treated 

with Triton X-100 (0.1% v/v), followed by centrifugation at 9000xg for 2 min. 

ATP content was measured using the substrate-enzyme system, luciferin-luciferase 
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(Lyman 1967). 

 

Evaluation of tBOOH-induced OS. The magnitude of OS induced by tBOOH was 

evaluated in hepatocytes cultured in precoated dishes by measuring generation of the lipid 

peroxidation product malondialdehyde (MDA), and the oxidized glutathione (GSSG)-to-

total glutathione (GSHt) ratio. 

MDA was measured by reaction with thiobarbituric acid followed by the 

fluorimetrical HPLC detection of the MDA-thiobarbituric acid adduct formed, according to 

the HPLC method of Fukunaga et al. (Fukunaga 1998). A standard curve using 1,1,3,3-

tetramethoxypropane, which is converted mol for mol into MDA, was routinely run. 

Cell contents of GSHt and GSSG were determined by the recycling method of Tietze 

(Tietze 1969), as modified by Griffith (Griffith 1980). 

Protein content in the aliquots of cell suspension used for the assay was measured by 

the method of Lowry et al. (Lowry 1951), using BSA as a standard. 

 

Measurement of cytosolic Ca
2+

 concentration ([Ca
2+

]i). [Ca
2+

]i was assessed using Fura-

2/AM as a probe. For this purpose, 2 x 10
6
 cells were suspended at 37º C in 3 ml of a PBS 

(pH = 7.4) buffer solution containing 3 mM CaCl2, and then supplemented with 1µM Fura-

2/AM. Fluorescence intensity (F) was measured by using alternating excitation 

wavelengths of 340 and 380 nm, and a fluorescence emission wavelength of 510 nm (3 nm 

bandwidth). [Ca
2+

]i was calculated from the 340 nm/380 nm Fura-2/AM fluorescence 

intensity ratio (R), according to the following equation (Grynkiewicz 1985): 
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[Ca
2+

]i = Kd [(R-Rmin)/(Rmax-R)] (F380min/F380max) 

where Kd is the dissociation constant of the complex Fura-2/Ca
2+

 (135 nM), Rmax and Rmin 

are R values measured sequentially by addition of 10g/ml digitonin to the Fura-2-loaded 

cells before and after chelating Ca
2+

 with 5 mM EGTA/Tris solution (pH = 8.7), 

respectively. 

 

Assessment of MPTP formation. MPTP generation was evaluated in primary culture of rat 

hepatocytes by assessing the mitochondrial membrane potential as a surrogate marker, 

using TMRM as a probe (Imberti 1993); TMRM is a membrane-permeable, cationic 

fluorophore that accumulates electrophoretically in mitochondria in proportion to their 

membrane potential (Δψ). For this purpose, hepatocytes in 24-well plates were loaded at 

37º C with 8 µM TMRM in Krebs-Henseleit buffer for 10 min. The supernatant was then 

aspirated to remove the excess of TMRM, and fluorescence intensity was measured using a 

fluorescence multiwell plate reader using excitation and emission filters of 546 and 573 nm, 

respectively. Mitochondrial Δψ was calculated from the 573 nm/546 nm TMRM 

fluorescence intensity ratio (R), according to Scaduto and Grotyohann (Scaduto, Jr. 1999), 

and expressed as the percentage of the change in mitochondrial depolarization, in a scale 

ranging from a basal, non-depolarized condition (control value) to the maximal depolarized 

condition, obtained by adding the respiratory chain uncoupling compound, CCCP (10 µM). 

Additionally, MPT was assessed in isolated mitochondria by monitoring the changes 

in mitochondrial osmotic volume (swelling) secondary to MPTP formation. Swelling was 

monitored by the decrease in apparent absorbance (light-scattering), since the light 

scattered is inversely proportional to the mitochondrial volume (Azzone 1965). For this 
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purpose, the mitochondrial fraction (1 mg protein/ml) was resuspended in 1 ml of swelling 

buffer composed of 5 mM KH2PO4, 200 mM sucrose, 5 mM succinate (for mitochondria 

energization), and 25 mM KCl (pH = 7.4). After a 2-min equilibration period, tBOOH (or 

its vehicle, saline) was added so as reach a final concentration of 500 μM, and swelling was 

monitored by recording the changes in absorbance at 540 nm with a Perkin Elmer Lambda 

2S UV-Vis spectrophotometer computer controlled (Norwalk, USA). 

 

Analysis of protein kinase activation. The activation of CaMKII and mitogen-activated 

protein kinases (MAPKs) of the c-Jun NH2-terminal kinase 1/2 (JNK1/2) and p38
MAPK

 

types were assessed by Western blotting using a antibodies recognizing the activate forms 

of these kinases, which are phosphorylated at Thr
286

, Thr
183

/Tyr185, and Thr
180

/Tyr
182

, 

respectively. 

For this purpose, the content of phosphorylated and total forms of the proteins was 

analyzed by Western blotting of primary hepatocyte cultures. After treatment, hepatocytes 

were washed with cold PBS and resuspended in a cellular lysis buffer containing protease 

inhibitors (leupeptin 25 g/ml and PMSF 0.1 mM). Aliquots containing equivalent total 

protein content were subjected to SDS, 12% polyacrylamide gel electrophoresis. Separated 

proteins were electrotransferred to PVDF membranes, and probed overnight with anti-

phospho-CaMKII (1:2000), anti-phospho-JNK1/2 antibody (1:2000), or anti-phospho-

p38
MAPK

 (1:300) antibodies. Membranes were then stripped, and reproved with an anti total-

CaMKII (1:2000), anti–total JNK1/2 (1:5000), or anti-total p38
MAPK

 (1:500) antibodies. 

After using a goat anti-mouse or a mouse anti-goat IgG secondary antibody (1:5000) 

depending on the primary antibody used, a chemiluminescence reagent, and Hyperfilm 
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ECL, the phospho and total bands of each studied protein were quantified by densitometry 

using the Image J 1.34m software. 

 

Apoptosis analysis. Apoptosis was evaluated by the Annexin V/ propidium iodide (PI) flow 

cytometry assay (Vermes 1995). In addition, the involvement of the mitochondrial 

apoptosis pathway in tBOOH-induced hepatocellular death was studied by assessing 

mitochondrial cytochrome c release into cytosol, the subsequent increase in caspase-3 

activity, and the balance between proapoptotic (Bax) and antiapoptotic (Bcl-xL) 

mitochondrial proteins. 

Annexin V flow cytometry assay. After gently homogenization in the culture medium/PBS 

and harvest (5 min, 400 g), hepatocytes were carefully re-suspended in the appropriate 

buffer at the desired concentration. Apoptotic externalization of phosphatidylserine and cell 

death in hepatocytes was assessed by staining with Annexin V-FITC and PI (Annexin V-

FITC Apoptosis Detection Kit, Sigma Chemical Co, St Louis, MO), respectively, coupled 

to flow cytometric analysis (Cell Sorter BD FACSAria II, Becton, Dickinson and Co, 

Franklin Lakes, NJ), following the manufacturer’s instructions. Detection of green and red 

fluorescence was carried out; green and red fluorescence intensities detected in non stained 

cells were used to set the thresholds for each channel. Annexin V positive cells, irrespective 

of whether they were PI positive or negative cells, were considered to be apoptotic in 

nature, either at an early stage of apoptosis (annexin V positive/PI negative cells) or at an 

late stage of apoptosis (annexin V positive/PI positive cells). Even when necrotic cells all 

share the same features as late stage apoptotic cells in terms of pattern of annexin 

V/propidium iodide staining, necrosis can be ruled out from our results showing conserved 
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ATP cellular content (Table 1). Indeed, for the occurrence of apoptosis, normal levels of 

ATP are necessary, whereas low cellular ATP levels are indicative of necrosis (Eguchi 

1997). 

Immunoblot analysis of pro- and anti-apoptotic proteins. The levels of cytochrome c (in 

cytosol) and of Bax and Bcl-xL (mitochondria), all proteins involved in the apoptosis 

process, was determined by immunoblotting. Cytosolic and mitochondrial fractions were 

prepared by differential centrifugation, as previously described (Kim 2006). Briefly, 

mitochondria-enriched fractions were prepared from hepatocytes that were homogenized in 

sacarose 0.3 M with protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 10 mg/ml 

leupeptin, and 1 mg/ml aprotinin), and sonicated. Homogenates were centrifuged at 1000xg 

to remove unbroken cells, nuclei, and heavy membranes. Mitochondria enriched fractions 

were then obtained by the centrifugation of supernatant at 6000xg at 4°C for 15 min. Then, 

the supernatant was centrifuged at 45000xg for 1 h to obtain the cytosolic fraction (Ronco 

2004). Proteins were quantified in these fractions according to Lowry et al. (LOWRY 

1951). For immunoblotting, 20 µg of protein were subjected to 12% SDS-PAGE, and 

transferred to Immobilon polyvinylidene difluoride (PVDF) membranes (Perkin Elmer Life 

Sciences, Boston, MA, USA). Membranes were blocked with 5% non-fat milk/0.3% 

Tween/PBS, washed, and incubated overnight at 4 ºC with a specific primary antibody 

against Bax, Bcl-xL, or cytochrome c (1:600, Santa Cruz Biotechnology, Santa Cruz, CA, 

USA). Then, membranes were incubated with the appropriate secondary antibody 

conjugated with horseradish peroxidase (1:5000, Amersham Life Science), and the 

resulting bands were detected by enhanced chemiluminescence (ECL; Amersham 

Pharmacia Biotech). Autoradiographs were obtained by exposing PVDF membranes to 
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Amersham hyperfilmTM ECL (GE Healthcare), and the bands quantified by densitometry 

using the Gel-Pro Analyzer software (Media Cybernetics, Silver Spring, MD). 

 

Assessment of caspase-3 activity. Caspase-3 activity was determined according to the 

manufacturer’s instructions, using an EnzChek caspase-3 assay kit (Molecular Probes, 

Eugene, OR, USA). The tissues were homogenized in lysis buffer (10 mM Tris, 200 mM 

NaCl, 1 mM EDTA, and 0.001% Triton X-100). After differential centrifugation, the 

cytosolic fraction from each sample was mixed with a Z-Asp-Glu-Val-Asp-AMC substrate 

solution. A standard curve of AMC ranging from 0-100 mM was run. A control sample 

without enzyme was used to determine the background fluorescence of the substrate. 

Fluorescence was measured at an excitation wavelength of 360 nm and an emission 

wavelength of 465 nm in a DTX 880 Multimode Detector (Beckman Coulter, Brea, CA, 

USA). 

 

Statistical analysis. Data are expressed as mean  SE. Multiple means were compared with 

one-way ANOVA followed by Tukey´s test for pairwise comparisons, by using a computer 

program (PHARM/PCS, MicroComputer Specialist, Philadelphia). Differences were 

considered significant when the p values were < 0.05. 
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RESULTS 

 

Characterization of tBOOH-induced impairment in hepatocellular integrity, oxidative 

stress generation, changes in ATP content and cytosolic Ca
2+

 elevations. As shown in 

Table 1, tBOOH (500 µM, 15 min) impaired hepatocellular integrity, as indicated by a 38% 

decrease in cell viability, and a 31% increase in the release to the incubation medium of the 

cytosolic enzyme, LDH. Contrarily, ATP content was not affected by the oxidant agent. 

An increase in ROS levels was clearly apparent after tBOOH exposure, as indicated by the 

enhancement of one order of magnitude in the generation of the lipid peroxide 

malondialdehyde (Table 1); this was associated with a decrease in both total (GSH + 

GSSG) glutathione and the GSSG-to-total glutathione ratio. This OS was instrumental in 

increasing dramatically (by 25 times) the cytosolic, free Ca
2+

 concentration. 

 

Effect of intracellular Ca
2+

 sequestration and CaM/CaMKII inhibition on tBOOH-

induced changes in mitochondrial Δψ and lipid peroxidation (LPO). MPTP formation 

induced by tBOOH was assessed by measuring depolarization of mitochondrial Δψ as a 

surrogate parameter, using the mitochondrial-sensitive cation TMRM as a probe. The 

dependency of mitochondrial Δψ on MPTP formation was corroborated by our own result 

that the MPTP blocker CsA diminished significantly the changes in mitochondrial Δψ 

induced by tBOOH (Fig. 1, A); the difference between the changes in mitochondrial Δψ 

induced by tBOOH and the changes of this parameter in the presence of CsA can be thus 

regarded as a measure of MPTP formation. 
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The degree of LPO, as measured by MDA content, was dramatically increased by 

tBOOH, and the MPTP blocker CsA inhibited partially this effect (Fig. 1, B); a similar 

phenomenon had been reported elsewhere using the OS-sensitive fluorescent dye 

dichlorofluorescein as a probe to assess ROS generation (Nieminen 1997). This support the 

contention that tBOOH capability to induce ROS depends not only on the generation of 

peroxyl- and alkoxyl-free radicals after metabolization (Davies 1989) but also on its 

capability to induce MPTP formation. This CsA-sensitive fraction of tBOOH-induced LPO 

provides an observational window where the influence of signaling modulators on OS from 

mitochondrial origin can be monitored. 

As can be also seen in Fig. 1 A and B, the intracellular Ca
2+

-sequestering agent 

BAPTA/AM attenuated tBOOH-induced both mitochondrial depolarization and LPO to a 

similar extent to CsA. Overall, these results indicate that tBOOH-induced LPO depends 

partially on MPTP generation, and that this effect is facilitated by intracellular Ca
2+

 

elevations. 

In an attempt to find it out possible mediators of the facilitating effect of Ca
2+

 on 

MPTP formation and the further generation of mitochondrial ROS, we assessed the 

involvement of CaM and two of its putative downstream mediators, CaMKII and 

calcineurin, in the capability of tBOOH to induce MPT and LPO of mitochondrial origin. 

As shown in Fig. 1 A and B, respectively, the CaM antagonists TFP and W7 prevented 

completely the CsA-sensitive changes in mitochondrial Δψ and MDA content induced by 

tBOOH; CsA effect was not additive with that of W7, strongly suggesting that both the 

MPTP blocker and the CaM inhibitor acts via a similar mechanism, i.e. inhibition of MPTP 

formation. Similarly to the CaM inhibitors, the specific CaMKII inhibitor KN-62, but not 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 

 

the calcineurin inhibitor FK-506 (tacrolimus), fully prevented both alterations. This 

indicates that both the onset of MPTP induced by tBOOH and the resulting oxidative stress 

from mitochondrial origin are modulated by CaM, via CaMKII activation. 

 

Effect of tBOOH on CaMKII activation. Western blot analysis of phosphorylated CaMKII 

showed that the amount of the phosphorylated, active form of CaMKII significantly 

increased at 15 min after tBOOH administration (Fig. 2). On the other hand, total CaMKII 

content remained unchanged. Pretreatment with the CaM inhibitors TFP and W7, or with 

the CaMKII inhibitor KN-62, completely prevented the increase in phosphorylated 

CaMKII. This rules out the alternative possibility that CaMKII is activated by direct 

oxidation of paired methionine residues in the regulatory domain of CaMKII in the absence 

of Ca
2+

/CaM, as was shown to occur in cardiomyocytes (Erickson 2008). 

 

Effect of tBOOH on JNK1/2 and p38
MAPK

 activation. Western blot analysis of 

phosphorylated and total forms of JNK1/2 and p38 MAPK showed that the amount of the 

phosphorylated, active form of these MAPKs significantly increased at 15 min of tBOOH 

administration, whereas total JNK1/2 and p38
MAPK

 content remained unchanged (Fig. 3). 

Pretreatment with the Ca
2+

-chelating agent BAPTA/AM, the CaM inhibitors TFP and W7, 

or with the CaMKII inhibitor KN-62 completely prevented the increase in phosphorylated 

JNK1/2 and p38
MAPK

. 

 

tBOOH induces apoptosis via the Ca
2+

/CaM/CaMKII signaling pathway. Because 

dissipation of the mitochondrial potential is a common and early feature of apoptosis, we 
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analyzed here whether tBOOH exposure leads to apoptosis, and whether inhibition of the 

Ca
2+

/CaM/CaMKII signaling pathway at different steps prevents this effect. Cytometric 

annexin V/propidium iodide assay showed that tBOOH significantly increased annexin V 

(+) /propidium iodide (-) cells (early apoptosis) by 86% (Fig. 4, A). The proportion of 

annexin V (+)/propidium iodide (+) (late apoptosis) also was increased by 122% (Fig. 4, B). 

As a consequence, the proportion of cells with either early or late apoptosis, i.e., annexin V 

(+) cells, was increased by 89% by tBOOH (Fig. 5, C). On the other hand, in cell pretreated 

with inhibitors acting at different levels in the Ca
2+

/CaM/CaMKII signaling pathway, the 

proportion of cells with either early apoptosis or late apoptosis after tBOOH exposure was 

similar to that of control cells, or to that treated with the MPTP blocker CsA (Fig. 4, A and 

B, respectively). A similar pattern of prevention was obtained when the proportion of 

apoptotic cells irrespective of their stage was considered (Fig. 4, C). 

 

Involvement of the mitochondrial pathway in tBOOH-induced apoptosis. The role for 

mitochondria in tBOOH-induced apoptosis via the Ca
2+

/CaM/CaMKII signaling pathway 

was assessed by studying the release of mitochondrial cytochrome c into cytosol, the 

further increase in the activity of caspase-3, and the balance between the mitochondrial pro-

apoptotic protein Bax and the anti-apoptotic protein Bcl-xL. 

Immunoblot analysis of cytosolic cytochrome c showed that there was an increase of 

120% in cytochrome c release from mitochondria after tBOOH exposure, and that Ca
2+

 

sequestration with BAPTA, inhibition of CaM with TFP or W7, and CaMKII inhibition 

with KN-62 all fully prevented mitochondrial cytochrome c release (Fig. 5). 

As anticipated from the fact that cytosolic cytochrome c triggers apoptosis via 
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activation of the executioner caspase-3, the activity of this caspase increased aprox. 3 times 

in cytosol after tBOOH exposure. This effect was also fully prevented by the MPTP 

blocker CsA, indicating that the “intrinsic” (mitochondrion-driven) pathway of caspase-3 

activation is triggered by tBOOH (Fig. 6). Ca
2+

 sequestration with BAPTA, inhibition of 

CaM with TFP or W7, and CaMKII inhibition with KN-62 all fully prevented the increase 

in caspase-3 activity at the same extent as CsA did. 

Finally, we examined the expression of Bax and Bcl-xL at the protein level in the 

mitochondrial fraction by western blot analysis. Bax and Bcl-xL are members of the Bcl-2 

family which plays major, opposite roles as regulators of the apoptotic process: while Bax 

acts as a promoter, Bcl-xL acts as an inhibitor (Tzung 1997). Immunoblot analyses revealed 

that mitochondrial Bax protein levels increased by 139% (P < 0.01) after tBOOH 

administration, whereas Bcl-xL remained virtually unchanged (Fig. 7, upper panel). 

Consequently, Bax-to-Bcl-xL ratio, an indicator of cell vulnerability to apoptosis, was 

increased by 186% by tBOOH (Fig. 7, lower panel). Inhibition of CaM with TFP or W7, 

and inhibition of CaMKII with KN-62 both prevented the increase in both Bax 

mitochondrial level and Bax-to-Bcl-xL ratio. 

 

Involvement of mitochondrial CaMKII in tBOOH-induced MPTP. CaMKII is a 

ubiquitous enzyme, and CaMKII with mitochondrial localization has been recently reported 

to play a crucial role in Ca
2+

-induced MPTP and apoptosis in cardiomyocytes (Joiner 

2012). To assess the involvement of mitochondrion-localized CaMKII in tBOOH-induced 

MPTP formation in hepatocytes, we studied in isolated hepatocellular mitochondria the 

effect CaMKII on tBOOH-induced osmotic swelling of the mitochondrial matrix, a 
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phenomenon due to opening of MPTPs in the inner mitochondrial membrane. The time 

course of mitochondrial swelling, as monitored by recording the decrease in absorbance 

(light-scattering) at 540 nm over 15 min, is shown in Fig. 8. Control mitochondria treated 

with the tBOOH vehicle showed a slight decrease due to spontaneous swelling, whose 

magnitude agrees with results obtained by others (Roy 2009; Lee 2008). On the other hand, 

tBOOH induced a fast decrease in light scattering due to MPTP formation, as confirmed by 

the fact that the MPTP blocker CsA fully abrogated this effect. Swelling was less 

pronounced when either the CaM inhibitor W7 or the CaMKII inhibitor KN-62 was present 

in the medium, suggesting a partial role for a mitochondrial Ca
2+

/CaM/CaMKII signalling 

pathway in tBOOH-mediated effect. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 

 

DISCUSSION 

 

MPTP onset has been implicated as a pivotal event contributing to hepatocyte cell 

death under OS conditions. This was readily apparent from studies showing that MPTP 

blockers inhibit the late phase of mitochondrial pyridine nucleotide oxidation and ROS 

generation in isolated hepatocytes exposed to tBOOH (Nieminen 1997). The MPTPs 

generated by an initial oxidant insult (ROS generated from tBOOH metabolization, in our 

case) further exacerbate ROS production by inducing leakage of electrons from the 

mitochondrial respiratory chain, which triggers a detrimental vicious circle (Nieminen 

1995). 

Despite there is compelling evidence in the literature that Ca
2+

 is involved in MPTP 

onset caused by oxidizing agents in hepatocytes (Imberti 1993; Byrne 1999), the 

intracellular events mediating this effect has not been fully clarified as yet; its elucidation is 

however relevant to develop new therapeutic approaches for protection against OS-induced 

hepatocellular damage. In this report, we provide novel evidence that the 

Ca
2+

/CaM/CaMKII signaling pathway plays a pivotal role in both tBOOH-induced MPTP 

formation in hepatocytes and its potential to exacerbate OS from mitochondiral origin, two 

events that are linked causally with each other. This is supported by our finding that Ca
2+

 

sequestration with BAPTA, blockage of the formation of the Ca
2+

/CaM complex with W7 

or TFP, or inhibition of CaMKII with KN-62 all prevented tBOOH-induced OS and MPTP 

formation to a similar extent to the MPTP blocker CsA (see Fig. 1). Our finding that no 

additive effect was recorded when both MPTP and CaM were simultaneously inhibited by 

CsA and W7, respectively (see Fig. 1), further confirms the involvement of MPTP as a 

common target of both inhibitors. 
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Disruption of intracellular Ca
2+

 homeostasis and defects in mitochondrial function 

induce cell death in a variety of pathological conditions involving Ca
2+

 elevations and 

oxidative damage [for reviews, see (Orrenius 1992; Lemasters 2009)]. Several lines of 

evidence indicate that many of these detrimental effects are mediated by CaM and/or 

CaMKII. For example, CaM and CaMKII inhibitors protect against both 

hypoxia/hypoglycemia- (Hajimohammadreza 1995) and veratridine-induced neuronal 

depolarization (Takano 2003). In addition, CaM antagonists attenuate MPTP-mediated 

neuronal death due to ischemia (Kuroda 1997), and apoptotic death of pheochromocytoma 

cells (PC12) induced by the depolarizing agent 1-methyl-4-phenylpyridinium (Lee 2005). 

In the latter cell line, ROS formation, cytochrome c release, activation of caspase-3 and cell 

death induced by rotenone, an inhibitor of mitochondrial-respiratory-chain-complex I, was 

counteracted by CaM antagonists. Similarly, CaM antagonists protected rat heart 

myocardium H9c2 cells against toxicity of rotenone by suppressing ROS formation 

(Yaglom 2003). Moreover, in rat ventricular, permeabilized cardiomyocytes, direct CaM 

exposure induced depolarization of Δψ mitochondrial and opening of MPTP by increasing 

ROS production in a CaMKII-dependent manner (Odagiri 2009) Finally, CaMKII has been 

implied in cadmiun-induced apoptosis in mesangial cells (Liu 2007). 

The role of Ca
2+

/CaM/CaMKII signaling pathway in MPTP opening and the 

associated generation of OS from mitochondrial origin had not been assessed in 

hepatocytes. Only some reports provides circumstantial evidence that CaM and/or CaMKII 

are involved in ROS generation and OS-induced liver damage, such as that induced by the 

hepatotoxicants acetaminophen (Dimova 1995) and CCl4 (Villarruel 1990). However, the 

action mechanisms of these toxic compounds are multifactorial in nature, and this prevents 
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a clear conclusion to be drawn on the CaM and/or CaMKII mechanisms of action. In this 

work, we provide mechanistic support for these preliminary results by showing that CaM 

modulates OS from mitochondrial origin via MPTP formation and further apoptotic 

hepatocellular death, and that this effect involves CaMKII as a main downstream effector. 

CaMKII belongs to the multifunctional, Ca
2+

/CaM-activated, serine/threonine kinase 

family (Hudmon 2002). Therefore, CaMKII may influence MPTP onset by modifying the 

phosphorylation status of mitochondrial proteins belonging to, or regulating, MPTP. In line 

with this, changes in the phosphorylation status of several low-molecular-weight, 

mitochondrial proteins were observed in rat brain associated with MPTP opening. 

Interestingly, this phenomenon was dependent on Ca
2+

, and prevented by the CaM 

antagonist calmidazolium (Azarashvili 2003). 

It is difficult at this stage to identify specific putative structural or regulatory 

components of the MPTP as target for CaMKII-mediated phosphorylation. To the best of 

our knowledge, only VDAC has been described to be regulated by different kinases, such 

as PKA (Bera 2001) and PKC (Baines 2003), but all these phosphorylations inhibited 

rather than enhanced MPTP opening probability. Finally, the “novel” PKC isoform PKC 

travels to mitochondria under OS conditions, where it triggers the release of cytochrome c 

and apoptosis (Horbinski 2005; Majumder 2001). However, this member of the “novel” 

PKC family is unresponsive to Ca
2+

. Alternatively, the “conventional”, Ca
2+

-dependent 

PKC isoform PKC, which we had showed to be activated by tBOOH in a previous work 

even at lower concentrations (100 µM) (Perez 2006), has prosurvival rather than 

proapoptotic functions in several cell lines (Horbinski 2005; Ruvolo 1998). Lack of 

involvement of all these PKC isoforms was further confirmed by our results that neither 
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phorbol-12-myristate 13-acetate nor staurosporine, which activates and inhibits both 

“conventional” and “novel” PKC isoforms, respectively (Gschwendt 1996), modified 

tBOOH capability to induce ROS generation, MPTP onset and apoptosis (data not shown). 

Rather, our results are more consistent with the existence of signaling cascades 

downstream of CaMKII involving JNK and p38
MAPK

 (see Fig. 3). This finding is in line 

with previous results showing that CaMKII can phosphorylate and activate both p38
MAPK

 

(Nguyen 2004) and JNK1/2 (Brnjic 2010), and that this event leads to apoptosis via 

activation of the upstream protein apoptosis signal-regulating kinase 1 (ASK1) (Brnjic 

2010; Liu 2013). A rol for these MAPKs in tBOOH-induced MPTP opening by 

phosphorylating apoptosis-related mitochondrial proteins is indeed likely. p38
MAPK

 

phosphorylates VDAC in myocardiocytes after myocardial isquemia reperfusion, and the 

kinase inhibition counteracted necrosis induced by this manoeuvre (Schwertz 2007); 

unfortunately, MPTP generation was not assessed under this condition. As for JNK, its 

activation has been shown to trigger Bax translocation to mitochondria by phosphorylation 

of the Bax cytosolic anchor protein 14-3-3 (Tsuruta 2004); this may explain our finding that 

mitochondrial Bax content increases after tBOOH exposure in a Ca
2+

/CaM/CaMKII-

dependent manner (see Fig. 7). Once in mitochondria, Bax oligomerizes in the outer 

mitochondrial membrane to form pores, which allows for cytochrome c release and further 

caspase-3 activation (Orrenius 2007), two events that have been also shown to occur here 

after tBOOH exposure in a Ca
2+

/CaM/CaMKII-dependent manner (see Figs. 5 and 6, 

respectively). The alternative possibility that JNK regulates Bax by direct phosphorylation 

is also likely. In the human hepatoma cell line HepG2, various cell death agonists, 

including pro-oxidant ones, induced apoptosis by promoting mitochondrial Bax 
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translocation via its phosphorylation at Thr
167

 by both JNK and p38
MAPK

 (Kim 2006). 

Whether activation of these kinases explains the dependency of tBOOH-induced apoptosis 

on CaMKII activity remains to be ascertained, and this is the subject of ongoing research. 

The possibility is likely, since CaMKII-dependent activation of JNK has been demonstrated 

to occur in other cellular models leading to mitochondrion-driven apoptosis (Timmins 

2009; Li 2012). 

Alternatively, CaMKII may upregulate by phosphorylation the activity of a 

phosphatase able to activate by dephosphorylation the effects of pro-apoptotic proteins 

known to be inhibited the phosphorylating activity of other protein kinases. For example, 

calcineurin, a Ca
2+

/CaM-dependent, serine-threonine phosphatase, induces apoptosis by 

promoting Bad dephosphorylation (Wang 1999). However, we were unable to abrogate 

tBOOH-induced both LPO and changes in mitochondrial Δψ by pre-treating hepatocytes 

with FK506, a specific calcineurin inhibitor (see Fig. 1). Incidentally, the lack of effect of 

FK506 confirms that the protective effect of CsA reported here was not due to its well-

establish inhibitory effect on calcineurin phosphatase activity (Hemenway 1999), but to its 

capability to abrogate MPTP onset (Bernardi 1996). 

Another possibility, which may well act in concert with the previous ones, is that 

CaMKII increases primarily mitochondrial Ca
2+

 uptake, and that the increase in 

mitochondrial Ca
2+

 helps per se to trigger MPTP opening by potentiating the capability of 

ROS to onset MPTP (Byrne 1999; Vercesi 2006). In line with this, a tight temporal 

correlation has been shown to exist between the increase in mitochondrial Ca
2+

 levels 

induced by tBOOH and the opening of MPTPs in primary cultured hepatocytes (Byrne 

1999). This holds true for other cell lines as well. In permeabilized rat ventricular 
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myocytes, exogenously added CaM opens MPTPs in a CaMKII-dependent manner, and this 

effect was causally related to the uptake of Ca
2+

 released from sarcoplasmic reticulum by 

neighboring mitochondria (Odagiri 2009). Complementarily, CaMKII mediates increase in 

Ca
2+

 entry through the inner membrane of the cardiomyocytes mitochondria via the 

mitochondrial Ca
2+

 uniporter (Joiner 2012). Furthermore, exogenously administered CaM 

stimulated ROS production in the mitochondrial matrix of cardiomyocytes in part via 

MPTP formation (Odagiri 2009). Recent studies by another group demonstrated that 

mitochondrial rather than cytosolic CaMKII isoform is involved in CaM capability to open 

MPTPs in this cell type, since mitochondrial targeting of a CaMKII inhibitor fully 

abrogated this effect (Joiner 2012). However, our results in hepatocyte isolated 

mitochondria showing that the CaM inhibitor W7 and the CaMKII antagonist KN-62 

inhibited tBOOH-induced MPTP formation only partially (see Fig. 8) suggest that cytosol-

localized CaMKII cooperates with the mitochondrial one to account for the full mediation 

of this enzyme in the MPTP opening recorded in intact hepatocytes (see Fig. 1). 

Another important Ca
2+

-mediated intramitochondrial mechanism involved in tBOOH-

mediated MPTP formation is the activation of the Ca
2+

-dependent cysteine protease 

calpain. Selective inhibition of this protease was shown to fully abrogate tBOOH-induced 

MPTP onset in isolated rat mitochondria (Aguilar 1996); the absolute dependency of MPTP 

formation on calpain activity suggests that CaMKII and calpain act through a common 

mechanism to onset MPTP. There is some circumstantial evidence in the literature that 

CaMKII can phopshorylate and activate calpain, as has been shown for calpain II isolated 

from vascular smooth muscle (McClelland 1994). The reverse activation sequence also may 

occur, since calpain I, like other proteases including caspases, activates in vitro 
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autophosphorylated CaMKII by proteolysis (Rich 1990). Whether this mutual activation 

applies to mitochondrial calpain isoform/s remains to be ascertained. Alternatively, 

CaMKII-mediated phosphorylation of a protein involved in MPTP formation may sensitize 

this substrate for further calpain-dependent proteolysis, as was described for the calpain-

induced proteolytic cleavage of GluR1 C-terminal fusion protein in cortical neurons (Yuen 

2007). Irrespective of the mechanism involved, a similar common dependency on CaMKII 

and calpain activity to produce cell death has been identified in another apoptosis model in 

hepatocytes, such as that induced by the protein phosphatase inhibitor microcystin (Ding 

2002). Actually, the tBOOH pro-apoptotic mechanisms revealed here strongly resembles 

those of microcystin in hepatocyes. In the case of microcystin, CaMKII is activated before 

ROS formation via inhibition of its dephosphorylation, and activated CaMKII mediates 

ROS mitochondrial formation via MPTP opening and further cytochrome c release, which 

triggers the execution of apoptosis (Ding 2003). Our results here showing that a similar 

mechanism applies for a “pure” model of OS strongly contributes to extrapolate this 

concept to other pro-oxidant hepatotoxicants, and to the several pathological situations 

involving OS as a cause of apoptotic hepatocellular death. 

In summary, as schematized in Fig. 9, our study shows that the Ca
2+

/CaM/CaMKII 

pathway plays a major role in tBOOH-induced MPTP formation, and the consequent 

exacerbation of both ROS formation from mitochondrial origin and hepatocellular 

apoptosis. This points CaM and CaMKII as promising targets for the development of new 

therapies to conteract hepatocellular oxidative damage. 
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Table 1 

Effect of tBOOH on cellular integrity, redox status and Ca
2+

 levels 

 DMSO 
a
 tBOOH

b
 

Cellular viability (% of total cells) 96 ± 3 62 ± 3* 

LDH release (% of total cell content) 32 ± 2 42 ± 3* 

ATP cellular content (µmol/10
6
 cells) 48 ± 6 43 ± 3 

MDA cellular content /nmol/mg prot.) 1.3 ± 0,2 8,0 ± 0,3* 

Total glutathione (mg/mg of protein) 27 ± 2 17 ± 1* 

GSSG-to-total glutathione ratio (%) 3,1 ± 0,1 4,1 ± 0,2* 

Cytosolic free Ca
2+

 (nM) 119 ± 11 3029 ± 474* 

Cells were pretreated for 15 min either with tBOOH (500 µM) or DMSO (controls). 

Note: LDH, lactate dehydrogenase; ATP, adenosine triphosphate; MDA, 

malondialdehyde; GSSG, oxidized glutathione. 

* p < 0.05 vs. DMSO, for n = 4-10. 
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FIGURE LEGENDS 

 

Figure 1. Involvement of Ca
2+

and signalling molecules acting downstream of Ca
2+

in 

tBOOH-induced mitochondrial permeability transition (MPT), and the subsequent 

malondialdehyde (MDA) formation. (A) Effect of the intracellular Ca
2+

 chelator 

BAPTA/AM (50 µM), the antagonists of CaM trifluoperazine (TFP, 10 µM) and W7 (100 

µM; with or without 5 µM cyclosporin A-CsA), the calcineurin inhibitor FK-506 (1 µM), 

or the CaMKII inhibitor KN-62 (10 µM) on tBOOH (500 µM, 15 min)-induced MPT, as 

assessed by measuring mitochondrial membrane depolarization as a surrogate marker, 

using tetra-methyl-rhodamine methyl ester as a fluorescent probe. Mitochondrial membrane 

depolarization was expressed as the percentage of the change in mitochondrial 

depolarization, in a scale ranging from a basal, non-depolarized condition (control value) to 

the maximal depolarized condition, obtained by adding the respiratory chain uncoupling 

compound, carbonyl cyanide m-chloro-phenylhydrazone (10 µM). The dotted line 

represents the mean value of the change in mitochondrial Δψ induced by tBOOH in 

hepatocytes pretreated with the MPTP blocker CsA (54 ± 3%); the differences of the values 

of the different experimental groups with this reference value reflects MPT-dependent 

changes in mitochondrial Δψ. (B) Effect of these pre-treatments on tBOOH-induced LPO, 

as evaluated by measuring MDA formation. The dotted line represents the mean value of 

the MDA content in CsA-pretreated hepatocytes exposed to tBOOH (54 ± 3%); the 

differences of the values of the different experimental groups with this reference value 

reflects MPT-dependent MDA formation. 

Note that BAPTA, the CaM antagonists and the CaMKII inhibitor prevented partially both 

MPTP and MDA formation to the same extent as the MPT blocker CsA did, suggesting that 
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MPTP formation and the subsequent LPO are facilitated by Ca
+2

 elevations, and this 

phenomena are modulated by CaM via CaMKII activation. Contrarily, the calcineurin 

inhibitor FK-506 was without effect, suggesting that calcineurin play no role in tBOOH 

effects. 

Values are mean ± SE, for 4-10 independent experiments. 
a
Significantly different from 

control (p < 0 .05); 
b
significantly different from tBOOH-treated cells (p < 0.05). 

 

Figure 2. Activation by phosphorylation of CaMKII by tBOOH, and its prevention by CaM 

and CaMKII inhibition. Upper panel: Representative Western blottings of phospho (p)-

CaMKII and total CaMKII content in whole cellular lysates of cultured rat hepatocytes, 

exposed to tBOOH (500 µM, 15 min), with or without a 15-min pre-treatment with the 

CaM antagonists trifluorperazine (TFP, 10 µM) and W7 (100 µM), or with the CaMKII 

inhibitor KN-62 (10 µM). Lower panel: CaMKII phosphorylation status for each 

experimental condition, expressed as the phosphorylated-to-total CaMKII ratio, and 

referred to control values. Results are mean ± SE, for 5 independent experiments. 

a
Significantly different from control (p < 0.05); 

b
significantly different from tBOOH-treated 

cells (p < 0.05). 

 

Figure 3. Activation by phosphorylation of JNK1/2 and p38
MAPK

 by tBOOH, and its 

prevention by intracellular Ca
2+

 chelation and CaM/CaMKII inhibition. Upper panels: 

Representative Western blottings of (A) phospho (p)-JNK1/2 and (B) p-p38 MAPK, and of 

the total content of these MAPK in whole lysates of cultured rat hepatocytes, exposed to 

tBOOH (500 µM, 15 min), with or without a 15-min pre-treatment with the Ca
2+

 chelating 
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agent BAPTA/AM (50 µM), the CaM antagonists trifluorperazine (TFP, 10 µM) and W7 

(100 µM), or the CaMKII inhibitor KN-62 (10 µM). Lower panels: JNK1/2 and p38
MAPK

 

phosphorylation status for each experimental condition, expressed as the phosphorylated-

to-total ratio, and referred to control values. Results are mean ± SE, for 4 independent 

experiments. 
a
Significantly different from control (p < 0 .05); 

b
significantly different from 

tBOOH-treated cells (p < 0.05). 

 

Figure 4. Involvement of the Ca2+/CaM/CaMKII signaling pathway in tBOOH-induced 

apoptosis. Apoptosis was assessed with annexin V-FITC and propidium iodide (PI) 

staining, by using flow cytometry analysis. Cells in culture were incubated with tBOOH 

(500 µM, 15 min), with or without a 15-min pre-treatment with the mitochondrial 

permeability transtion blocker cyclosporin A (CsA, 5 µM), the intracellular Ca
2+

 chelator 

BAPTA/AM (50 µM), the CaM antagonists trifluorperazine (TFP, 10 µM) and W7 (100 

µM), or the CaMKII inhibitor KN-62 (10 µM). The percentages of cells (referred to control 

values) with early apoptosis [annexin V (+)/PI (-)], with late apoptosis [annexin V (+)/PI 

(+)], or with any stage of apoptosis [annexin V (+)], are depicted in the panels A, B, and C, 

respectively. Results represent mean ± SEM of 3 experiments. 
a
Significantly different from 

control (p < 0 .05); 
b
significantly different from tBOOH-treated cells (p < 0.05). 

 

Figure 5. Involvement of the Ca2+/CaM/CaMKII signaling pathway in tBOOH-induced 

mitochondrial release of cytochrome c. Upper panel: Representative Western blottings of 

cytochrome c content in the cytosolic fraction of cultured rat hepatocytes exposed to 

tBOOH (500 µM, 15 min), with or without a 15-min pre-treatment with the CaM antagonist 
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W7 (100 µM), or with the CaMKII inhibitor KN-62 (10 µM); ß-actin was used as loading 

control. Lower panel: Densitometric analysis of cytochrome c electrophorectic bands for 

each experimental condition, referred to the respective signal intensity of ß-actin, and 

expressed as percentage of control values. Data are mean ± SE for 5 separate experiments. 

a
Significantly different from control (p < 0 .05); 

b
significantly different from tBOOH-

treated cells (p < 0.05). 

 

Figure 6. Involvement of the Ca2+/CaM/CaMKII signaling pathway in tBOOH-induced 

activation of caspase-3. Activity of caspase-3 in cultured cells exposed to tBOOH (500 

µM, 15 min), with or without a 15-min pre-treatment with the mitochondrial permeability 

transtion blocker cyclosporin A (CsA, 5 µM), the intracellular Ca
2+

 chelator BAPTA/AM 

(50 µM), the CaM antagonists trifluorperazine (TFP, 10 µM) and W7 (100 µM), or the 

CaMKII inhibitor KN-62 (10 µM). Caspase-3 activity was determined by using a 

fluorometric assay, as described in Material and Methods Section. Bars represent activity 

expressed as percentage of control values. Data are mean ± SE for 4 independent 

experiments. 
a
Significantly different from control group (p < 0 .05); 

b
significantly different 

from tBOOH-treated cells (p < 0.05). 

 

Figure 7. Involvement of the Ca2+/CaM/CaMKII signaling pathway in tBOOH-induced 

increase in the Bax-to-Bcl-xL ratio. Upper panel: Representative Western blottings of Bax 

and Bcl-xL illustrating their protein expressions in the mitochondrial fraction of cultured rat 

hepatocytes exposed to tBOOH (500 µM, 15 min), with or without a 15-min pre-treatment 

with the CaM antagonist W7 (100 µM), or the CaMKII inhibitor KN-62 (10 µM); 
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prohibitin was used as a mitochondrial protein loading control. Lower panel: Bax-to-Bcl-

xL ratio for each experimental condition, calculated from the densitometric analysis of the 

electrophorectic bands of these proteins normalized to the respective signal intensity of 

prohibitin, and expressed as percentage of controls. Data are mean ± SE for 3 independent 

experiments. 
a
Significantly different from control group (p < 0 .05); 

b
significantly different 

from tBOOH-treated cells (p < 0.05). 

 

Figure 8. Effect of CaM and CaMKII antagonists on tBOOH-induced swelling of isolated 

rat liver mitochondria. Mitochondria were suspended at a concentration of 0.5 mg of 

protein/ml, and a 2-min baseline of light scattering at 540 nm was obtained. Then, tBOOH 

(500 μM final concentration) was added to the swelling buffer, together (or not) with the 

mitochondrial permeability transtion blocker cyclosporin A (CsA, 5 µM), the CaM 

antagonist W7 (100 µM), or the CaMKII inhibitor KN-62 (10 µM). Changes in light 

scattering at 540 nm were then recorded at 30-s intervals for 15 min. Data are mean ± SE 

for 8-16 independent experiments. *p < 0 .005; 
#
p < 0.001. 

 

Figure 9. Schematic representation of the main conslusions drawn from this study. The 

Ca
2+

-calmodulin (CaM)-dependent protein kinase type II (CaMKII) signaling pathway 

mediates the facilitating role of oxidative-stress-induced Ca
2+

 mitochondrial permeability 

transition via both the onset of the mitochondrial permeability transition pore (MPTP), 

probably via p38
MAPK

 (p38) activation, and Bax translocation to mitochondria, probably via 

JNK activation. Disruption of the mitochondrial permeability barrier leads to: a) 

impairment of the mitochondrial electron transport chain with leakage of electrons and 
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subsequent ROS generation from mitochondrial origin, which contributes to the 

amplification/perpetuation of the oxidative damage, and b) hepatocellular death by 

apoptosis via the mitochondrial pathway, due to the mitochondrial pore-mediated release of 

cytochrome c (Cyt c), followed by apoptosome formation and activation of caspase-3 

(Casp-3). 
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