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Abstract 
It is argued that in some zones of the Northern Apennines, in particular the 
Rimini-Ancona thrust system, the Romagna Apennines and the Alta Valtibe-
rina trough, the probability of major earthquakes is now higher than in other 
Apennine zones. This hypothesis is suggested by the comparison of the 
present short-term kinematics of the Romagna-Marche-Umbria wedge in the 
Northern Apennines, deduced by the distribution of major shocks in the last 
tens of years, with the previous repeated behavior of the same wedge, evi-
denced by the distribution of major earthquakes in the last seven centuries. 
The seismotectonics of the Apennine region here considered is closely con-
nected with the larger context that involves the progressive migration (from 
south to north) of seismicity along the peri-Adriatic zones. The information 
provided by this study can be used to better manage the resources for preven-
tion in Italy. 
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1. Introduction 

The convergence between Africa and Eurasia and the roughly westward migra-
tion of the Anatolian-Aegean-Balkan system induces the roughly northward dis-
placement of the Adria plate [1]-[7]. This displacement gradually involves the 
various sectors of the Adriatic plate (Adria), as they decouple from the confining 
orogenic structures by major earthquakes (Figure 1). Each shock triggers an ac- 
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Figure 1. Distribution of major earthquakes that have occurred in the central Mediterra-
nean region since 1300 [15] [16] [17]. Circles and triangles respectively indicate the shal-
low and deep (h > 60 km) earthquakes. 

 
celeration of the respective decoupled Adria sector, which then enhances stress 
at the subsequent, still locked, Adria tectonic boundaries. Thus, considering that 
the seismic activation of a peri-Adriatic boundary zone may influence the oc-
currence of strong shocks in nearby sectors [8]-[13], one could expect to observe 
regularities in the time-space distribution of seismicity along the peri-Adriatic 
zones. In particular, we have recognized the tendency of seismic activity to mi-
grate from south to north along the eastern (Dinarides) and western (Apen-
nines) boundaries of Adria, up to reach the northern boundary, where such plate 
underthrusts the Eastern Southern Alps. This interpretation provides plausible 
explanations for the time patterns of seismicity that developed in the pe-
ri-Adriatic zones since 1300 [14] [15] [16] [17]. 

In this work, we discuss on how the above large scale context may control the 
distribution of major earthquakes in the Central and Northern Apennines. The 
seismicity regularity patterns that can be recognized in those zones since 1300 
and the recent seismic histories of the study area are then used to tentatively 
recognize the zones most prone to next strong earthquakes. 

2. Tectonic Setting in the Apennine Belt 

The motion of Adria is accommodated by tectonic activity at the eastern (Hellenides, 
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Dinarides), northern (Eastern Southern Alps) and western (Apennines) boundaries 
of that plate, involving fairly different strain styles (Figure 2).  

Underthrusting of Adriatic lithosphere mainly occurs beneath the Northern 
Hellenides and Southern Dinarides [19] [20] [21] [22]. 

In the Northern Dinarides the relative motion of Adria with respect to the ad-
jacent structures is mainly accommodated by dextral transpression at the fault 
system recognized in Istria and Slovenia [23] [24] [25] [26] [27]. In the Eastern 
Southern Alps, Adriatic lithosphere underthrusts the Alpine edifice [28] [29]. 

On the western side of Adria, the tectonic context is more complex (Figure 3), 
mainly due to the fact that the outer (Adriatic) sector of the Apennine chain is 
undergoing outward extrusion and uplift, in response to the belt-parallel com-
pression induced by the motion of Adria [4] [5] [7] [30] [31]. This deformation 
has caused the separation of that Apennine sector from the inner (Tyrrhenian) 
Apennines, which has been accommodated by the formation of a series of 
troughs along the axial part of the belt [32]. 

 

 
Figure 2. Tectonic sketch of the central Mediterranean region [1] [2] [3] [4] [5] [7] [18]. 
(1) (2) African and Adriatic continental domains; (3) Ionian oceanic domain; (4) Outer 
sector of the Apennine belt stressed and carried by the Adriatic plate; (5)-(7) Major ex-
tensional, transcurrent and compressional tectonic features; (8) Outer front of belts. 
Green arrows show a tentative reconstruction of the Quaternary kinematic pattern with 
respect to Eurasia [2]. CA = Central Apennines; ESA = Eastern Southern Alps; I = Istria; 
NA = Northern Apennines; S = Slovenia; SA = Southern Apennines. 
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Figure 3. Post-early Pleistocene tectonic setting in the Apennine belt [15]. The outward 
escape of the Apennine wedges (colored) and adjacent buried folds accommodates belt 
parallel shortening driven by Adria. (1) Molise-Sannio wedge (MS); (2) Eastern 
Latium-Abruzzi wedge (ELA); (3) Laga Units (La); (4) Romagna-Marche-Umbria wedge 
(RMU); (5) Tuscany-Emilian wedge (TE); (6) Outer mostly buried thrusts and folds of 
the belt; (a)-(c) Main compressional, extensional and transcurrent features; (d) Outer 
front of the belt. Red arrows indicate the presumed long term average kinematics of Adria 
and Apennine wedges with respect to Europe. Aq = L’Aquila fault system; AVT = Alta 
Valtiberina trough; Be = Benevento fault system; CAd = Central Adriatic ridge; EmBF = 
Emilia buried folds; FeBF = Ferrara buried folds; Fu = Fucino fault system; Ga = Garfagna-
na trough; Ir = Irpinia fault system; Le = Leonessa trough; Lu = Lunigiana trough; Mt = 
Matese fault system; Mu = Mugello trough; No-Cf-GT-Gu = Norcia-Colfiorito-Gualdo Ta-
dino-Gubbio fault system; Ri-An = Rimini-Ancona thrust front; Ro-Fo = Supposed fault 
system in the Romagna Apennines and Forli zone, identified by seismic activity; Rt = Rie-
ti trough; VU = Valle Umbria trough; VV = Villalvernia-Varzi. 

 
The more mobile and uplifting parts of the outer belt are the Molise-Sannio 

(MS) wedge, in the Southern Apennines, the eastern part of the Lazio-Abruzzi 
carbonate platform (ELA), in the Central Apennines, and the Ro-
magna-Marche-Umbria (RMU) and Toscana-Emilia (TE) wedges, in the 
Northern Apennines. The inner extensional boundary of the MS wedge is lo-
cated in the Irpinia, Benevento and Matese zones [33]. A significant evidence of 
the belt-parallel shortening the Apennines are undergoing since the middle 
Pleistocene is the strong uplift of the whole belt, involving both main ridge axes, 
intramontane extensional trough and foredeep basins [34]-[42]. 
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In the Central Apennines, the transtensional decoupling between the eastern 
and western sectors of the ELA wedge is mainly accommodated by the L’Aquila 
and Fucino fault systems [32] [43]. In the Northern Apennines, extensional tec-
tonics mainly occurs along the internal boundary of the RMU wedge, corres-
ponding to the Alta Valtiberina, Valle Umbra, Leonessa and Rieti troughs and to 
a youngest almost parallel fault system that develops from the Laga mountains to 
the Gubbio zone, through the Norcia, Colfiorito and Gualdo Tadino zones [30] 
[32] [42] [44] [45]. It is worth noting that in the Alta Valtiberina trough the sub-
sidence induced by active normal faulting overcomes the uplift of the belt, as in-
dicated by the depositional pattern of Quaternary fluvial deposits [42]. 

The Romagna Apennine sector is cut by a major roughly N-S discontinuity, 
the Romagna-Forli fault system (Ro-Fo), which is mainly revealed by the align-
ment of epicentres of its numerous seismic activations [30]. The lack of clear 
morphological evidence of such fault may be imputed to its very young genera-
tion (late Pleistocene). The divergence between the TE wedge and the inner Ap-
ennines has been accommodated by extensional deformation, and related seis-
mic activity, in the Mugello, Lunigiana and Garfagnana troughs [46] [47] and in 
the Villalvernia-Varzi fault [48]. 

The outward extrusion of the Apennine wedges has caused shortening along 
their buried external fronts, in particular along the outer side of the TE wedge 
(Emilia and Ferrara arcs), of the RMU wedge (Rimini-Ancona thrusts) and in 
the Central Adriatic ridge [49] [50] [51] [52]. 

The kinematic pattern inferred from geological evidence has been clearly con-
firmed by the results of space geodetic observations, which are described in oth-
er papers [31] [53]. The kinematic pattern resulting from such data (Figure 4) 
indicates that the outer sector of the Apennine chain moves considerably faster 
(4 - 6 mm/y) than the inner Tyrrhenian side of that belt (1 - 2 mm/y). These two 
belt sectors are also characterized by clearly different orientations of motion, 
roughly NE ward at the outer side and mainly N to NW ward in the inner west-
ern side.  

3. Seismic Histories of Peri-Adriatic Boundary Zones and 
Tentative Tectonic Interpretation 

The list of major earthquakes that occurred in the main peri-Adriatic zones 
(Figure 5) since 1300 AD is given in Figure 6. 

The supposed migrating seismic sequences along the eastern (Dinaric) and 
western (Apennine) boundaries of Adria, up to the northern Adria front in the 
Eastern Southern Alps are evidenced by red circles and arrows (Figure 6). 

The first sequence (poorly recognizable) might have started in the middle of 
the XIV century and then continued through the Central-Northern Apennines 
and Northern Dinarides, up to reach the northern Alpine front around the be-
ginning of the XV century.  

The second sequence was triggered by major earthquakes in the Southern Di-
narides around the middle of the XV century and involved very strong earth- 
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Figure 4. Horizontal velocities (red vectors) of the GPS sites with respect to a fixed Eura-
sian frame (Euler pole at 54.23˚N, 98.83˚W, ω = 0.257˚/Myr [54]. The inset shows the lo-
cation of the 13 IGS stations that have been used to align the daily solutions of the net-
work to the ITRF 2008 references frame [54]. Details about the analysis of geodetic data 
are provided by [31] [53]. 

 

 
Figure 5. Geometries of the peri-Adriatic zones cited in Figure 6. Tectonic symbols as in 
Figure 2. 
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Figure 6. List of major earthquakes (M ≥ 5.5) occurred in the peri-Adriatic zones since 1300 AD [15] [16] [55]. Each shock is 
indicated by the year of occurrence and the magnitude. To avoid mess, the magnitude threshold in the Central-Southern Dina-
rides is increased to 6, while in the three fault systems that bound the northern RMU wedge (contoured by the thicker red lines) 
the threshold magnitude is lowered to 5, in order to better recognize the main seismic activations of those zones (see text). Red 
circles and arrows help to recognize the events which may be involved in the migrating sequences (numbered from 1 to 6 on the 
left side of the figure). 
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quakes in the Southern Apennines in 1456 AD, followed by major shocks in the 
Central-Northern Apennines and Dinarides, up to reach the northern Adria 
front around the beginning of the XVI century. 

The third sequence started with major earthquakes in the Southern Dinarides 
and Southern-Central Apennines in the first part of the XVII century and 
reached the northern Adria front around the end of that century. 

The fourth sequence was triggered by a strong shock (M > 7) in the Southern 
Dinarides and three strong shocks in the Southern Apennines. Then, it reached 
the northern Adria boundary in the second half of the XVIII century. 

The fifth sequence was triggered in the first part of the XIX century by a long 
seismic phase in the Southern Dinarides and Southern Apennines and then 
reached the Alps and Northern Dinarides around the end of that century. 

The last complete sequence started in the Dinarides around the end of the XIX 
and the beginning of the XX century. Then, it continued with a very strong 
shock in the Central Apennines (1915 M = 7.1), followed by several major events 
in the Northern Apennines (1916-1920). The northern Adria front was mainly 
involved in the 1928-1936 time interval.  

In the subsequent period, intense and frequent seismicity occurred in the 
southern and central Adria boundaries (both concerning the Dinarides and 
Apennines), while minor activity has involved the Northern Apennines, North-
ern Dinarides and Eastern Southern Alps (Figure 6). 

As far as the last (and still incomplete) seismic sequence is concerned, the ac-
tivation of fault systems in the Northern Apennines started in 1979 in the Norcia 
zone. Then, seismic activity continued to involve the northern prolongation of 
that fault system (Figure 3), with major shocks in the Gubbio (1984), Colfiorito 
(1997), L’Aquila (2009) and more recently in the Amatrice-Norcia zones in 2016 
and 2017 (Figure 6). The seismic activation of such extensional faults may be an 
effect of the acceleration of the RMU wedge and of the consequent separation of 
that sector from the inner less mobile Tyrrhenian side of the belt (Figure 3 and 
Figure 4). This acceleration could have strengthened stresses at the northern 
boundaries of such wedge, corresponding to the Rimini-Ancona compressional 
front (Ri-An), the Romagna-Forli transpressional fault (Ro-Fo) and the exten-
sional Alta Valtiberina trough (AVT), as shown in Figure 7. However, this stress 
increase has not so far been sufficient to activate those faults, as indicated by the 
lack of significant seismicity since the last strong seismic crisis in the period 
1916-1918. 

In this context, one could suppose that the seismic breaking of such bounda-
ries zones, and the consequent northward acceleration of the RMU wedge, may 
represent the most probable next development of the ongoing tectonic setting, 
aimed at releasing the deformation so far accumulated by the RMU wedge. 
However, it is obviously difficult to evaluate, even approximately, when the 
above decoupling process will take place. 

In order to get possible insights into the future seismic behavior of the three  
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Figure 7. Boundaries of the northern sector of the RMU wedge (yellow). Symbols as in 
Figure 2. The presumed kinematics of this wedge is indicated by the arrow.  

 
boundary zones cited above, one could observe that such fault systems tend to 
activate within few years from each other (Figure 6). This phenomenon can be 
recognized in six short periods (1383-1393, 1472-1489, 1661-1694, 1768-1789, 
1861-1875, 1916-1918). The significance of this repeated behavior is underlined 
by the fact that such multiple seismic activations are mostly separated by long 
periods of low activity (from several decades to more than a century), with no 
events with magnitude greater than 5. 

To tentatively predict when the next episode of such regularity pattern may 
occur, one could consider that the ongoing quiescence, of about hundred years 
(Figure 6), is the longest so far occurred, except the one that separated the acti-
vations of the three zones involved in the second (1472-1489) and the third 
(1661-1694) migrating sequences. 

If the almost coeval activation of the above fault zones could be considered as 
a systematic phenomenon, one might expect that after the break of one zone the 
probability of a strong earthquake would significantly increase in the other two 
zones. This possibility is confirmed, in particular, by what occurred during the 
seismic crisis that developed in the Northern Apennines after the strong earth-
quake that hit the Central Apennines (Fucino) in 1915 (Figure 6). In that case 
the considerably short times that divided the seismic activations of the three 
RMU boundary zones (about one year) may be explained by the very large strain 
that was triggered by the large Fucino shock (M = 7.1). 

To this regard, [9] have shown that the post seismic strain perturbations trig-
gered by the strong shocks that occurred in the above zones from 1915 to 1920 
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can plausibly explain the spatio-temporal development of such seismic sequence, 
involving the activation of the Ri-An, AVT and Ro-Fo fault systems (Figure 7). 

4. Conclusions 

The advanced knowledge so far acquired about the tectonic setting in the central 
Mediterranean area and its connection with the spatio-temporal distribution of 
major earthquakes in the peri-Adriatic zones is tentatively used to get informa-
tion about the most probable location of next strong shocks in the Italian region.  

The facts that seismic activity tends to gradually migrate from south to north 
along the boundaries of the Adria plate (evidenced by the tentative recognition 
of six main seismic sequences since 1300 AD) and that in the last period (post 
1930) the main decoupling earthquakes mostly occurred in the southern and 
central sectors of the peri-Adriatic boundaries suggest that at present the occur-
rence of strong shocks is more probable in the northern peri-Adriatic zones 
(Northern Apennines, Northern Dinarides and Eastern Southern Alps). 

Furthermore, the comparison of the recent seismicity pattern in the Northern 
Apennines with the ones that occurred in the previous peri-Adriatic seismic se-
quences suggests that the most probable development of tectonic activity will in-
volve the seismic activation of the fault systems located around the northern part 
of the Romagna-Marche-Umbria wedge, corresponding to the Ancona-Rimini, 
Romagna Apennines and Alta Valtiberina zones. In fact, the knowledge of the 
present tectonic setting suggests that the occurrence of decoupling earthquakes 
in these zones may allow the northward displacement of the RMU wedge, which 
seems to be the process that can best accommodate the release of the strain so far 
accumulated by such structure, stressed by belt-parallel compression in the outer 
Apennine chain. Whilst the northern boundaries of the RMU wedge are blocked, 
one can expect that the push of such Apennine sector on the Toscana-Emilia 
wedge increases strain and stress in this last structure, increasing the probability 
of earthquakes at the fault systems that lay along its inner and outer boundaries, 
i.e. the buried Emilia and Ferrara arcs and the Lunigiana and Garfagnana 
troughs (Figure 3). The results presented in this study can be useful for recog-
nizing the Italian seismic zones most prone to next strong earthquakes, which 
can help the choice of the most efficient development of a prevention plan. 
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