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Bitcoin Mining as a Contest 
 Nicola Dimitri*† 

Abstract.  This paper presents a simple game theoretic framework, assuming complete 
information, to model Bitcoin mining activity. It does so by formalizing the activity as an 
all-pay contest: a competition where participants contend with each other to win a prize by 
investing in computational power, and victory is probabilistic. With at least two active 
miners, the unique pure strategy Nash equilibrium of the game suggests the following 
interesting insights on the motivation for being a miner: while the optimal amount of 
energy consumption depends also on the reward for solving the puzzle, as long as the 
reward is positive the decision to be an active miner depends only on the mining costs. 
Moreover, the intrinsic structure of the mining activity seems to prevent the formation of a 
monopoly, because in an equilibrium with two miners, both of them will have positive 
expected profits for any level of the opponent’s costs. A monopoly could only form if the 
rate of return on investment were higher outside bitcoin.   

 

1. Introduction  

Since its introduction in 2008,1 Bitcoin has received significant attention as a peer-to-peer 
cryptocurrency based on blockchain technology. 2 , 3 , 4  Adoption of Bitcoin may exhibit 
advantages as well as critical aspects.5, 6, 7 From an economic perspective, its use may facilitate 
exchange and possibly save on transaction costs. Because of its exchangeability with fiat 
currencies such as the dollar, advantages could also come from speculative activity based on 
oscillations of the exchange rate.8  

However, one of its most distinguishing features is that the registration of transactions is 
done through the so-called mining activity undertaken by certain entities. Such activity 
consists of solving a puzzle requiring high computational power, since registration of a block 
of transactions can only take place once the puzzle has been solved. Providing the right 
economic incentives to solve the puzzle is very important for the transactions to be registered 
on the underlying ledger. This is why miners are compensated for this activity with two types 
of rewards: first, for any solved puzzle the miner will receive a fixed sum of bitcoins by the 
protocol (the block reward) and, moreover, individuals behind a transaction may offer a fee to 
the miners for its registration.9, 10 The larger this fee, the higher the incentive for the miners to 
enclose the associated transaction in the next registered block. The fixed sum received from 
the protocol for each block of registrations will tend to decline over the years until its 
disappearance, after which only fees paid for transaction registration will reward the miners.  

In this paper we focus on the mining activity as a source of economic profitability,3 where 
the main strategic decision taken by miners is how much to invest in computational power to 
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solve the puzzle. Within a very simple static game theoretic framework, our model provides 
some interesting insights. Due to the assumption that the waiting time for obtaining the 
solution to a puzzle is an exponentially distributed random variable, the mining activity can be 
characterized as an all-pay contest—a conceptual framework widely adopted in social 
sciences. 11, 12 All-pay contests are competitions where winners are awarded a prize, specified 
in advance by the organizer. They require investments to participate, and this is what makes 
them all-pay, and victory by a contender typically occurs probabilistically. Therefore, those 
who obtain no prize lose their investments, unless these could be re-used in other contexts. 
Winning probabilities are often called contest functions.   

Indeed, mining activity can be seen as a contest where participants are trying to come first 
in the competition for the solution of the puzzle, receiving as the prize the block reward and 
any fees from participants whose transactions were registered in the solved block.   

At the Nash equilibrium of the mining game with perfect information, while the level of 
computational power chosen by an active miner depends also on how many bitcoins could be 
obtained solving the puzzle, the decision to become an active miner depends only on his own 
marginal costs as compared to his opponents’ cost structure. That is, the decision to be an 
active miner depends only upon how efficient his competitors are and not on how many 
bitcoins will be obtained as rewards.   

Moreover, still at a Nash equilibrium, a miner’s expected profit would increase if, given 
the marginal costs of his opponents, his own marginal cost would decrease. Therefore, if 
expenditures to further reduce marginal costs of computational power would be lower than the 
increase in expected profits, then miners may find it optimal to make such investments to 
decrease their costs. Lowering one’s marginal costs could also induce negative expected 
profits upon some of the miners, who for this reason would cease being active. However, the 
intrinsic structure of the game prevents the emergence of a monopoly in the mining activity, 
since at an equilibrium with only two miners they will always have positive expected profits 
for any level of their marginal costs. For this reason, a monopoly could form only if return on 
investment outside bitcoin was higher than within bitcoin.    

The paper is structured as follows: in Section 2 we introduce the basics of the model and 
the main Nash equilibrium of the game, while in Section 3 we briefly discuss the structure of 
the mining market. Section 4 concludes the paper.  

2. The Model  

Suppose 𝑖 = 1, 2, … , 𝑛 is the generic active miner who has to choose his bitcoin investment in 
computational power ℎ); a miner is said to be active if ℎ) > 0. We start considering 𝑛 ≥ 2, 
discussing the case of 𝑛 = 1 in Section 2.1 

The mining reward for solving the puzzle is given by 𝑅 ≥ 0 bitcoins, provided by both the 
Bitcoin protocol and the transaction fees. Due to the transaction fees, the reward may typically 
change across different puzzles and at different times; however, since our model is static this 
will not affect the main conclusions.   

Let 𝑋) be the waiting time of miner 𝑖 for solving the puzzle, which we assume to be an 
exponentially distributed random variable with parameter 01

2
, where 𝑑 is a numerical indicator 

of the difficulty for solving the puzzle. Parameter 𝑑 is adjusted by the Bitcoin protocol to keep 
the expected time between the solutions for two consecutive puzzles fixed to a predetermined 
time interval.  Hence, assuming 𝑋) to be independent random variables then 𝑋 = min 	𝑋)  is 
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also exponentially distributed with parameter 
0(9)
2

, where ℎ(;) = ℎ);
)<=  and with expected 

value 𝑋 = 2
0(9)

. For the Bitcoin protocol, 𝑋 = 𝑇 with 𝑇 = 10 minutes. 

With no major loss of generality we assume constant returns of scale in the investment on 
computational power: that is, miner 𝑖’s cost function is given by 𝐶)(ℎ)) = 𝑐)ℎ), where 𝑐) is the 
marginal, and average, cost for miner 𝑖	 to produce a unit of computational power. The 
assumption of constant returns to scale implies that fixed-cost investments on hardware are 
considered as given and that costs of computational power in this paper simply stand for 
operational variable costs such as energy consumption. In a static model like ours, this is 
without major loss of generality since a condition for an activity to be economically 
sustainable is coverage of the associated variable costs. Although operational costs are 
typically expressed in fiat currencies (dollars, euro, etc.), in the paper we express 𝐶)(ℎ)) =
𝑐)ℎ) in bitcoins. This implies that the marginal cost 𝑐) incorporates the current exchange rate 
between bitcoins and the fiat currency.    

It follows that miner 𝑖’s profit, Π)(ℎ)), is a random variable given by  
 

Π) ℎ) =

𝑅 − 𝑐)ℎ)
		−𝑐)ℎ)
		0

 with probability 

ℎ𝑖
ℎ 𝑛
ℎ−𝑖
ℎ 𝑛

1

 if 

ℎ) > 0

ℎ) > 0

ℎ) = 0

 

 

where the ratio 01
0 9

 is the contest function, representing the probability that miner 𝑖 will be the 

first to solve the puzzle, such that 01
0 9

= 0 if  ℎ(;) = 0. Moreover,	ℎC) = ℎ ; − ℎ). Therefore, 

miner 𝑖’s expected profit is 
 

Π) ℎ) =
𝑅ℎ)
ℎ ;

− 𝑐)ℎ),					𝑖 = 1, . . , 𝑛. (1) 

We assume complete information on 𝑐) , i.e., miners know each other’s marginal costs. 
This is a simplifying assumption, however perhaps not too far from reality since the needed 
power to mine is currently so significant that only a few nodes on the Bitcoin network can 
afford being active. Given their limited numbers, it is not unrealistic to think that miners could 
make some reasonable guesses as to the opponents’ hashing power as well as marginal costs.  
Maximization of Eq. (1) with respect to ℎ)	leads to the following first order condition: 
 

𝑅ℎC)
ℎ(;)

D = 𝑐)	. (2) 

Because second order conditions are met (cf. the appendix), assume, still without loss of 
generality, that 𝑐= ≤ 𝑐D ≤		. . .		≤ 𝑐;. If 𝑐(;) = 𝑐);

)<=  it follows that  
 

ℎ(;) =
𝑅 𝑛 − 1
𝑐(;)

	, (3) 

and for each active miner the optimal level of computational power is 
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ℎ) =
ℎ(;) 𝑐(;) − 𝑛 − 1 𝑐)

𝑐(;)
=
𝑅(𝑛 − 1) 𝑐(;) − 𝑛 − 1 𝑐)

𝑐(;)D
	, (4) 

therefore ℎ= ≥ ℎD ≥. . . ≥ ℎ;.  
The above can be summarized by the following proposition:  

 
Proposition. The unique pure strategy Nash equilibrium of the Bitcoin mining game, with 
complete information on the contenders’ marginal costs, is the profile (ℎ=, . . , ℎ;), where ℎ) is 
given by Eq. (4). 

 
Eq. (4) suggests some interesting observations. First, for a miner to be active, that is for 

ℎ) > 0 , it is necessary that 𝑐(;) − 𝑛 − 1 𝑐) > 0 , which means that the mining activity 
depends on his own cost structure only, as compared to the other miners, and not on the 
reward for the mining activity 𝑅  (which exclusively affects the optimal level of deployed 
computational power.  Of course, the condition 𝑅 > 0 is necessary for any positive investment 
by the miners.)  

Replacing Eq. (2) and Eq. (3) in Eq. (1) implies that miner 𝑖’s expected profit is given by    
 

Π) ℎ) = 𝑅
𝑐(;) − 𝑛 − 1 𝑐)

𝑐(;)

D

= 𝑅
ℎ)
ℎ(;)

D

	,  

hence, expected profits are a share of the same share of the reward 𝑅 . Consistent with 
intuition, the expected profit is decreasing in 𝑐) and increasing in 𝑅. However, the expected 
rate of return (productivity) defined as  
 

𝑟)(ℎ)) =
Π) ℎ)
𝑐)ℎ)

=
𝑐 ; − 𝑛 − 1 𝑐)

𝑛 − 1 𝑐)
> 0  

is independent of 𝑅 though decreasing in 𝑐) as well. Moreover, it follows that  
 

𝑟)(ℎ)) =
𝑐 ; − 𝑛 − 1 𝑐)

𝑛 − 1 𝑐)
>

𝑐 ; − 𝑛 − 1 𝑐)
𝑐(;)

=
ℎ)
ℎ(;)

.  

That is, while each active miner 𝑖 obtains a share 01
0(9)

 of the reward 𝑅, at the Nash equilibrium 

each miner’s productivity rate is higher than this ratio.     
We conclude this section considering the specific case of symmetric marginal costs, that is 

𝑐) = 𝑐 for all 𝑖 = 1, . . , 𝑛. Then it is easy to see that ℎ ; = G ;C=
H;

, ℎ) = ℎ = G ;C=
H;I

, Π) ℎ =

𝑅 =
;

D
 and 𝑟) ℎ = =

;C=
> =

;
= 0

0(9)
, with both profit and productivity being independent of 

the marginal cost. Moreover, both are decreasing in 𝑛, obtaining as highest values Π) ℎ = G
J
 

and 𝑟) ℎ = 1 at 𝑛 = 2, which indicates that with a small number of miners the mining 
activity could be economically more attractive than with a higher number. This point will be 
further developed in Section 4. 

2.1. One Active Miner—Suppose now that 𝑛 = 1, that is, the mining activity is conducted 
by miner 1 only. In this case his profit Π=(ℎ=) would be defined as  
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Π= ℎ= =
𝑅 − 𝑐=ℎ=
		0

 with probability 
1

1
    if 

ℎ= > 0

ℎ= = 0
 

 

Therefore, for ℎ= > 0 his expected profit is Π= ℎ= = 𝑅 − 𝑐=ℎ= , which for small enough 
ℎ= = 𝜀 > 0 becomes Π= ℎ= = 𝜀 = 𝑅 − 𝑐=𝜀 > 0 = Π= ℎ= = 0 . As a result, if for some 
reason there is only one active miner, it is optimal to invest a small amount of resources, what 
is just enough to mine successfully. As for the rate of return, in this case it would be  

𝑟=(ℎ=) =
Π= ℎ=
𝑐=ℎ=

=
𝑅
𝑐=𝜀

− 1,	

which is very high for small enough 𝜀.  
However, how likely would a monopoly be? The next section discusses the issue.    

3. “Market Structure” of the Mining Activity  

The above considerations suggest that those miners who could profitably reduce their 
marginal costs would do it. To see this consider the following numerical example. Suppose 
there are three active miners 𝑖 = 1, 2, 3  with 𝑐= = 3, 𝑐D = 4  and 𝑐N = 5 , so that 𝑐(N) = 12, 

ℎ(N) =
G ;C=
H(P)

= DG
=D
= G

Q
 and Π= ℎ= = 𝑅 H(P)CDHR

H(P)

D
= G

J
 which implies that 𝑟= = SR 0R

HR0R
=

1 . Therefore, for each bitcoin invested the mining activity would generate to miner 1  an 
additional bitcoin, with a return (interest) rate on investment of 100%.	 

Suppose now miner 1 would be able to reduce his own marginal cost from 𝑐= = 3 to 𝑐= =
=
D
. Then it is easy to see that miner 3 would no longer be active as the condition 𝑐 N −

𝑛 − 1 𝑐N > 0 ceases to hold, since now it would be =U
D
− 10 < 0. As a consequence, only 

miners 1  and 2  could remain active. Therefore, now 𝑖 = 1, 2  with 𝑐= =
=
D
, 𝑐D = 4  so that 

𝑐(D) =
U
D
,  ℎ(D) =

DG
U
> G

Q
= ℎ(N)  and Π= ℎ= = 𝑅 W

U

D
= QJG

W=
> G

J
 which implies 𝑟= =

SR 0R
HR0R

= 8.  Hence, if reduction of the marginal cost to =
D

 would need less than  QJG
U=
− G

J
 

bitcoins, then it would be profitable for miner 1 to do so and exclude miner 3 from being 
active. It is interesting to notice that, even though now the number of active miners decreased 
by one unit, the total investment in computational power increased because losing one active 
miner is more than compensated for by the decrease in the total marginal cost.   

If the example suggests that there could be an incentive by some active miners to cut down 
their marginal costs to exclude competitors, and in so doing increase their own expected profit 
and return rate, the protocol guarantees that at least two miners would always have positive 
expected profit. 

Indeed, with 𝑖 = 1, 2  expression 	𝑐(;) − 𝑛 − 1 𝑐) > 0  becomes 𝑐(D) − 𝑐) > 0 , implying 
that with two active miners, none of them could exclude the other by cutting down his own 
marginal costs. This is summarised by the following corollary: 
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Corollary. At a unique pure strategy Nash equilibrium of the Bitcoin mining game with two 
active miners, both of them will have positive expected profit regardless of the opponent’s 
marginal cost. 
 

That is, the intrinsic structure of the Bitcoin mining game seems to prevent the emergence 
of a monopolistic mining activity. However if the rate of return, for one of the players, were to 
become lower than the market interest rate, then a miner may find it convenient to stop mining 
and invest resources in alternative activities.  

Finally, it is worth pointing out that when only two miners remain active, whenever their 
marginal costs are different one of them will certainly have more than 50% of the 
computational power.         

4. Conclusion  

In this paper, we proposed to model the Bitcoin mining activity as a simple static game with 
complete information. Despite its simplicity, the model seems to provide some interesting 
insights on the underlying motivation for being an active miner. The mining game is modelled 
as an all-pay contest, in the sense that miners compete for the reward by investing resources, 
victory is probabilistic and if they lose the competition energy consumption will be wasted. 
The model suggests that the main motivation for active mining is given by the miners’ cost 
structure, while the reward for solving the puzzle affects only the optimal level of 
computational power but not the decision to be active. Finally, the mining activity seems to be 
intrinsically monopoly-proof, in the sense that if only two miners were to be active, their 
profits would always be positive regardless of the marginal cost of the opponent. For this 
reason, none of the two could exclude the other by cutting down his own costs, unless 
activities other than Bitcoin mining would have a higher rate of return.     

In its simplicity the model is omitting a number of elements, which could be investigated 
in future research. Among them the current debate and interest on the block size, 9, 10 which 
may affect the main conclusions of the paper at least in so far as the number of potentially 
active miners is concerned. An explicit consideration of time, as well as of the uncertainty on 
transaction fees, is also missing. Moreover, miners could pursue goals other than expected 
profit maximization. For this reason the paper’s conclusions are limited to some early insights 
on the determinants of mining profitability.  

Appendix   

In this appendix, for completeness, we spell out the very simple derivations for Eqs. (2), (3) 
and (4). Starting from the expected profit Π) ℎ) = G01

0(9)
− 𝑐)ℎ)  consider the first order 

condition 

𝑑
𝑑ℎ)

Π) ℎ) =
𝑅(ℎ ; − ℎ))

ℎ ;
D − 𝑐) =

𝑅ℎC)
ℎ ;
D − 𝑐) = 0, 

where ℎC) = ℎ ; − ℎ). The second derivative of the expected profit is given by  

𝑑D

(𝑑ℎ))D
Π) ℎ) = −

2𝑅ℎC)
ℎ ;
N < 0. 
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Solution of the above first order condition leads to Eq. (2), which, because the second order 
condition is satisfied, identifies a maximum of the expected profit. Since 

G(0 9 C01)
0 9
I = 𝑐) then 

G(0 9 C01)
0 9
I =;

)<= 𝑐) = 𝑐(;);
)<= .	 But 

G(0 9 C01)
0 9
I =;

)<= 	 ;G
0 9

− G
0 9

= 	 (;C=)G
0 9

 and so Eq. (3), 

ℎ ; = (;C=)G
H 9

, follows. Finally, from 
G(0 9 C01)

0 9
I = 𝑐) it is 𝑅(ℎ ; − ℎ)) = 𝑐)ℎ ;

D  which solved in 

ℎ)  gives ℎ) = ℎ ; −
H10 9

I

G
= ℎ ; 1 − H10 9

G
. Replacing ℎ ; = ;C= G

H 9
 into this last 

expression provides ℎ) = ℎ ; 1 − ;C= H1
H 9

= ℎ ;
H 9 C ;C= H1

H 9
, which is Eq. (4).   
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