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Abstract

We study the mean curvature motion of a droplet flowing by mean curvature on a horizontal
hyperplane with a possibly nonconstant prescribed contact angle. Using the solutions constructed
as a limit of an approximation algorithm of Almgren-Taylor-Wang and Luckhaus-Sturzenhecker,
we show the existence of a weak evolution, and its compatibility with a distributional solution.
We also prove various comparison results.

Résumé

Nous étudions le mouvement par courbure moyenne d’une goutte qui glisse par courbure moyenne
sur un hyperplan horizontal avec un angle de contact prescrit éventuellement non constant. En
utilisant les solutions construites comme limites d’un algorithme d’approximation dû à Alm-
gren, Taylor et Wang et Luckhaus et Sturzenhecker, nous montrons l’existence d’une évolution
faible, et sa compatibilité avec une solution au sens des distribution. Nous démontrons également
plusieurs résultats de comparaison.
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1. Introduction

Historically, capillarity problems attracted attention because of their applications in physics,
for instance in the study of wetting phenomena [18, 22], energy minimizing drops and their
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adhesion properties [1, 17, 20, 48], as well as because of their connections with minimal surfaces,
see e.g. [14, 29] and references therein.

In this paper we are interested in the study of the evolution of a droplet flowing on a hori-
zontal hyperplane under curvature driven forces with a prescribed (possibly nonconstant) contact
angle. Although there are results in the literature describing the static and dynamic behaviours
of droplets [2, 12, 49], not too much seems to be known concerning their mean curvature mo-
tion. Various results have been obtained for mean curvature flow of hypersurfaces with Dirichlet
boundary conditions [35, 46, 47, 52] and zero-Neumann boundary condition [3, 34, 38, 51]. It
is also worthwhile to recall that, when the contact angle is constant, the evolution is related to
the so-called mean curvature flow of surface clusters, also called space partitions (networks, in
the plane): in two dimensions local well-posedness has been shown in [16], and authors of [39]
derived global existence of the motion of grain boundaries close to an equilibrium configuration.
See also [43] for related results. In higher space dimensions short time existence for symmet-
ric partitions of space into three phases with graph-type interfaces has been derived in [30, 31].
Very recently, authors of [26] have shown short time existence of the mean curvature flow of
three surface clusters.

If we describe the evolving droplet by a set E(t) ⊂ Ω, t ≥ 0 the time, where Ω = Rn ×

(0,+∞) is the upper half-space in Rn+1, the evolution problem we are interested in reads as

V = HE(t) on Ω ∩ ∂E(t), (1.1)

where V is the normal velocity and HE(t) is the mean curvature of ∂E(t), supplied with the
contact angle condition on the contact set (the boundary of the wetted area):

νE(t) · en+1 = β on Ω ∩ ∂E(t) ∩ ∂Ω, (1.2)

where νE(t) is the outer unit normal to Ω ∩ ∂E(t) at ∂Ω, and β : ∂Ω → [−1, 1] is the cosine
of the prescribed contact angle. We do not allow ∂E(t) to be tangent to ∂Ω, i.e. we suppose
|β| ≤ 1 − 2κ on ∂Ω for some κ ∈ (0, 1

2 ]. Following [38], in Appendix B we show local well-
posedness of (1.1)-(1.2).

Short time existence describes the motion only up to the first singularity time. In order to
continue the flow through singularities one needs a notion of weak solution. Concerning the case
without boundary, there are various notions of generalized solutions, such as Brakke’s varifold-
solution [15], the viscosity solution (see [32] and references therein), the Almgren-Taylor-Wang
[4] and Luckhaus-Sturzenhecker [41] solution, the minimal barrier solution (see [10] and refer-
ences therein); see also [27, 37] for other different approaches.

In the present paper we want to adapt the scheme proposed in [4, 41], and later extended to
the notions of minimizing movement and generalized minimizing movement by De Giorgi [25]
(see also [6, 8]) to solve (1.1)-(1.2). Let us recall the definition.

Definition 1.1. Let S be a topological space, F : S × S × [1,+∞) × Z → [−∞,+∞] be
a functional and u : [0,+∞) → S . We say that u is a generalized minimizing movement
associated to F, S (shortly GMM) starting from a ∈ S and we write u ∈ GMM(F, S ,Z, a), if
there exist w : [1,+∞) × Z→ S and a diverging sequence {λ j} such that

lim
j→+∞

w(λ j, [λ jt]) = u(t) for any t ≥ 0,

and the functions w(λ, k), λ ≥ 1, k ∈ Z, are defined inductively as w(λ, k) = a for k ≤ 0 and

F(w(λ, k + 1),w(λ, k), λ, k) = min
s∈S

F(s,w(λ, k), λ, k) ∀k ≥ 0.
2



If GMM(F, S ,Z, a) consists of a unique element it is called a minimizing movement starting
from a.

In the sequel, we take S = BV(Ω, {0, 1}), F = Aβ : BV(Ω, {0, 1})×BV(Ω, {0, 1})× [1,+∞)×
Z→ (−∞,+∞] defined by

Aβ(E, E0, λ) = Cβ(E,Ω) + λ

∫
E∆E0

dE0 dx,

where E0 ∈ BV(Ω, {0, 1}) is the initial set, dE0 is the distance to Ω ∩ ∂E0 and

Cβ(E,Ω) = P(E,Ω) −
∫
∂Ω

βχE dHn

is the capillary functional. If Ω = Rn+1 (hence when the term
∫
∂Ω
βχE dHn is not present),

the weak evolution (GMM) has been studied in [4] and [41], see also [44] for the Dirichlet
case. Further, when no ambiguity appears we use GMM(E0) to denote a GMM starting from
E0 ∈ BV(Ω, {0, 1}).

After setting in Section 2 the notation, and some properties of finite perimeter sets, in Sec-
tion 3 we study the functional Cβ(·,Ω) and its level-set counterpart Cβ(·,Ω), including lower
semicontinuity and coercivity, which will be useful in Section 6. In particular, the map E 7→
Aβ(E, E0, λ) is L1(Ω) -lower semicontinuous if and only if ‖β‖∞ ≤ 1 (Lemma 3.5). Although
we can also establish the coercivity of Aβ(·, E0, λ) (Proposition 3.2), compactness theorems in
BV cannot be applied because of the unboundedness of Ω. However, in Theorem 4.1 we prove
that if E0 ∈ BV(Ω, {0, 1}) is bounded and ‖β‖∞ < 1, then Aβ(·, E0, λ) has a minimizer in
BV(Ω, {0, 1}), and any minimizer is bounded. In Lemma 4.6 we study the behaviour of minimiz-
ers as λ → +∞. In Proposition 4.4 we show existence of constrained minimizers of Cβ(·,Ω) ,
which will be used in the proof of existence of GMMs and in comparison principles. In Ap-
pendix A we need to generalize such existence and uniform boundedness results to minimizers
of functionals of type Cβ(·,Ω) +V under suitable hypotheses on V.

In Section 5 we study the regularity of minimizers of Aβ(·, E0, λ) (Theorem 5.3). We point
out the uniform density estimates for minimizers of Aβ(·, E0, λ) and constrained minimizers of
Cβ(·,Ω) (Theorem 5.1 and Proposition 5.8), which are the main ingredients in the existence proof
of GMMs (Section 7), and in the proof of coincidence with distributional solutions (Section 8).

In Section 6 we prove the following comparison principle for minimizers of Aβ(·, E0, λ)
(Theorem 6.1): if E0, F0 are bounded, E0 ⊆ F0 , ‖β1‖∞, ‖β2‖∞ < 1 and β1 ≤ β2, then

a) there exists a minimizer F∗λ of Aβ2 (·, F0, λ) containing any minimizer of Aβ1 (·, E0, λ);

b) there exists a minimizer Eλ∗ of Aβ1 (·, E0, λ) contained in any minimizer of Aβ2 (·, F0, λ).

If in addition dist(Ω∩ ∂E0,Ω∩ ∂F0) > 0, then all minimizers Eλ and Fλ of Aβ1 (·, E0, λ) and
Aβ2 (·, F0, λ) respectively, satisfy Eλ ⊆ Fλ. As a corollary, we show that if E+ is a bounded
minimizer of Cβ(·,Ω) in the collection E(E+) of all finite perimeter sets containing E+, and
if ‖β‖∞ < 1, then for any E0 ⊆ E+, any minimizer Eλ of Aβ(·, E0, λ) satisfies Eλ ⊆ E+

(Proposition 6.11 b)).
In Section 7 we apply the scheme in Definition 1.1 to the functional Aβ(·, E0, λ) : as in [41,

45] we build a locally 1
2 -Hölder continuous generalized minimizing movement t ∈ [0,+∞) 7→

E(t) ∈ BV(Ω, {0, 1}) starting from a bounded set E0 ∈ BV(Ω, {0, 1}) (Theorem 7.1). More-
over, using the results of Section 6, we prove that any GMM starting from a bounded set stays
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bounded. In general, for two GMMs one cannot expect a comparison principle (for example in
the presence of fattening). However, the notions of maximal and minimal GMM (Definition 7.2)
are always comparable if the initial sets are comparable (Theorem 7.3). This requires regularity
of minimizers of Aβ(·, E0, λ) and Cβ(·,Ω), see Sections 4 and 5. Finally, in Section 8 we prove
that, under a suitable conditional convergence assumption and if 1 ≤ n ≤ 6, our GMM solution
is, in fact, a distributional solution to (1.1)-(1.2).

2. Some preliminaries

2.1. Notation
χF stands for the characteristic function of the Lebesgue measurable set F ⊆ Rn+1 and |F|

denotes its Lebesgue measure. The set of L1(Ω) -functions having bounded total variation in an
open set Ω ⊆ Rn+1 is denoted by BV(Ω), and

BV(Ω, {0, 1}) := {E ⊆ Ω : χE ∈ BV(Ω)}.

Given E ⊆ BV(Ω, {0, 1}) we denote by P(E,Ω) the perimeter of E in Ω, i.e. P(E,Ω) :=∫
Ω
|DχE |, by ∂∗E the essential boundary of E, and by νE(x) the measure-theoretical exterior

normal to E at x ∈ ∂∗E. Since Lebesgue equivalent sets in Ω have the same perimeter in Ω,
we assume that any set E ⊂ Ω we consider coincides with the set{

x ∈ Rn+1 : lim
r→0+

|Br(x) ∩ E|
|Br(x)|

= 1
}

of points of density one, where Br(x) is the ball of radius r > 0 centered at x. Recall that
∂∗E = ∂E. For simplicity, set P(E,Rn+1) = P(E). We say that E ⊂ Rn+1 has locally finite
perimeter in Rn+1, if P(E,Ω′) < +∞ for every bounded open set Ω′ ⊂ Rn+1. The collection
of all sets of locally finite perimeter is denoted by BVloc(Ω, {0, 1}). We refer to [7, 33] for a
complete information about BV -functions and sets of finite perimeter.

For a fixed nonempty E0 ∈ BV(Ω, {0, 1}) set

E(E0) := {E ∈ BV(Ω, {0, 1}) : E0 ⊆ E}, (2.1)

which is L1(Ω) -closed.
Given ρ > 0 and l > 0 let Cl

ρ = B̂ρ × (0, l) stand for the truncated cylinder in Rn+1 of
height l, whose basis is an open ball B̂ρ ⊂ Rn centered at the origin of radius ρ > 0; also set
Ωl := Rn × (0, l).

2.2. Some properties of sets of finite perimeter
By [23, Theorem II], for every E ∈ BVloc(Ω, {0, 1}) the additive set function O 7→

∫
O |DχE |

defined on the open sets O ⊆ Ω extends to a measure B 7→
∫

B |DχE | defined on the Borel
σ -algebra of Ω. Moreover, P(·,Ω) is strongly subadditive, i.e.

P(E ∩ F,Ω) + P(E ∪ F,Ω) ≤ P(E,Ω) + P(F,Ω) for any E, F ∈ BV(Ω, {0, 1}). (2.2)

Let Ω be an open set with Lipschitz boundary and E ∈ BVloc(Rn+1, {0, 1}). We denote the
interior and exterior traces of the set E on ∂Ω respectively by χ+

E and χ−E and we recall that
χ±E ∈ L1

loc(∂Ω). Moreover, the integration by parts formula holds [23]:∫
Ω

χE div g dx = −

∫
Ω

g · DχE +

∫
∂Ω

(χ+
E − χ

−
E)g · νΩ dHn ∀g ∈ C1

c (Rn+1,Rn+1), (2.3)
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where νΩ is the outer unit normal to ∂Ω.
If V ⊆ Ω is an open set with Lipschitz boundary, then

P(E,Ω) = P(E,V) + P(E,Ω \ V) +

∫
Ω∩∂V

|χ+
E − χ

−
E | dH

n.

The trace set of E ⊆ Ω on ∂Ω is denoted by Tr(E). With a slight abuse of notation we set
χTr(E) = χE . Note that

P(E,Ω) := P(E,Ω) +

∫
∂Ω

χE dHn = P(E).

In general, even if E ∈ BV(Ω, {0, 1}), the traces χ±E are in L1
loc(∂Ω), but not in L1(∂Ω).

For instance, if Ω =
(
R × (0,+∞)

)
∪ A ⊂ R2 and A =

+∞⋃
m=2

(m − 1
m2 ,m + 1

m2 ) × (−1, 0], then

E = A ∈ BV(Ω, {0, 1}), whereas H1(Tr(E)) = +∞. In Lemma 2.1 we show that χE ∈ L1(∂Ω)
for any E ∈ BV(Ω, {0, 1}), provided that Ω is a half-space.

From now on we fix Ω := Rn × (0,+∞); we often identify ∂Ω = Rn × {0} with Rn, so that
E ⊂ ∂Ω means E ⊂ Rn, and π : Ω→ ∂Ω denotes the projection

π(x̂, xn+1) := x̂, x = (x̂, xn+1) ∈ Ω.

2.3. Controlling the trace of a set by its perimeter
The following lemma shows that the L1(∂Ω) -norm of the trace of E ∈ BV(Ω, {0, 1}) is

controlled by P(E,Ω).

Lemma 2.1. For any E ∈ BV(Ω, {0, 1}) and for any β ∈ L∞(∂Ω) the inequalities∣∣∣∣∣∫
∂Ω

β χE dHn
∣∣∣∣∣ ≤ ∫

Ω

|β ◦ π| |DχE | ≤ ‖β‖∞ P(E,Ω) (2.4)

hold. In particular, P(E) < +∞.

Proof. The last inequality of (2.4) is immediate. The first inequality is enough to be shown for
β ≥ 0.

If β is locally Lipschitz, then (2.4) follows from the divergence theorem. Indeed, suppose
that supp (β) is compact. Since div((β ◦ π)en+1) = 0, we have

0 =

∫
E

div((β ◦ π)en+1) dx =

∫
Ω∩∂∗E

(β ◦ π) νE · en+1 dHn −

∫
∂Ω

βχE dHn.

Hence nonnegativity of β implies that∫
∂Ω

β χE dHn ≤

∫
Ω∩∂∗E

β ◦ π dHn =

∫
Ω

β ◦ π |DχE |. (2.5)

If supp (β) is not compact, we use ηk(|x|)β(x) in (2.5) instead of β(x), where ηk : [0,+∞) →
[0,+∞) is Lipschitz, linear in [k, k + 1], ηk = 1 in [0, k] and ηk = 0 in [k + 1,+∞). Now
(2.4) follows from the monotone convergence theorem. In particular, when β ≡ 1 we have

P(E) = P(E,Ω) +

∫
∂Ω

χEdHn ≤ 2P(E,Ω).
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Assume that β = χÔ for some open set Ô ⊆ ∂Ω. Consider a sequence {βk} of nonnegative
locally Lipschitz functions converging Hn -almost everywhere to β on ∂Ω such that βk ≤ β

and supp βk ⊆ Ô. By Fatou’s lemma we get∫
∂Ω

βχEdHn ≤ lim inf
k→+∞

∫
∂Ω

βkχEdHn ≤ lim inf
k→+∞

∫
Ω

βk ◦ π |DχE | ≤

∫
Ω

β ◦ π |DχE |.

Finally, if β ∈ L∞(∂Ω) is any nonnegative function, then the statement of the lemma follows
by an approximation argument.

From Lemma 2.1 it follows that E ∈ BV(Ω, {0, 1}) if and only if E ∈ BV(Rn+1, {0, 1}).

Remark 2.2. If u ∈ BV(Ω), then its trace belongs to L1(∂Ω). Indeed, it is well-known that∫
Ω

|u|dx =

∫ 0

−∞

∫
Ω

χ{u<t}(x) dxdt +

∫ +∞

0

∫
Ω

χ{u>t}(x) dxdt, (2.6)

∫
Ω

|Du| =
∫ 0

−∞

P({u < t},Ω) dt +

∫ +∞

0
P({u > t},Ω) dt, (2.7)

in particular, {u > t}, {u < s} ∈ BV(Ω) for a.e. t > 0 and s < 0. Using (2.4) with β ≡ 1, for
a.e. t > 0 and s < 0 we get∫

∂Ω

χ{u>t}dHn ≤ P({u > t},Ω),
∫
∂Ω

χ{u<s}dHn ≤ P({u < s},Ω)

and whence ∫
∂Ω

|u| dHn ≤

∫
Ω

|Du|.

Notice that for every β ∈ L∞(∂Ω) one has also∫
∂Ω

βu dHn = −

∫ 0

−∞

∫
∂Ω

βχ{u<t} dHndt +

∫ +∞

0

∫
∂Ω

βχ{u>t} dHndt. (2.8)

The following lemma is the analog to the comparison theorem in [6, page 216]1.

Lemma 2.3. Let E0 be a closed convex set such that νE0 · en+1 ≥ 0 Hn -a.e. on Ω∩∂E0. Then
P(E0,Ω) ≤ P(E,Ω) for every E ∈ E(E0).

3. Capillary functionals

Let β ∈ L∞(∂Ω). The capillary functional Cβ(·,Ω) : BV(Ω, {0, 1}) → R and its “level set”
version Cβ(·,Ω) : BV(Ω)→ R are defined as

Cβ(E,Ω) := P(E,Ω) −
∫
∂Ω

β χE dHn, (3.1)

1For any E ∈ BV(Rn+1, {0, 1}) and any closed convex set C ⊆ Rn+1 the inequality P(E∩C) ≤ P(E) holds; equality
occurs if and only if |E \C| = 0 .
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and
Cβ(u,Ω) :=

∫
Ω

|Du| −
∫
∂Ω

βudHn,

respectively. Note that Cβ(·,Ω) is convex, Cβ(u,Ω) = C−β(−u,Ω) for any u ∈ BV(Ω) , and
Cβ(E,Ω) = Cβ(χE ,Ω) for any E ∈ BV(Ω, {0, 1}). Moreover, when ‖β‖∞ ≤ 1, by (2.4) the
functional Cβ(·,Ω) is nonnegative, and the same holds for Cβ(·,Ω) as by (2.6)-(2.8) one has

Cβ(u,Ω) =

∫ 0

−∞

C−β({u < t},Ω) dt +

∫ +∞

0
Cβ({u > t},Ω) dt. (3.2)

The functional Cβ(·,Ω) will be useful for the comparison principles (Section 6).

3.1. Coercivity and lower semicontinuity

The next lemma is a localized version of [17, Lemma 4], which is needed to prove coercivity
of Cβ(·,Ω) and Cβ(·,Ω) and will be frequently used (see for example the proofs of Theorem
A.3 and Theorem 5.1).

Lemma 3.1. Assume that ‖β‖∞ ≤ 1 and E ∈ BV(Ω, {0, 1}). Then for any open set A ⊆ Ω with
A ∈ BVloc(Rn+1, {0, 1}) and

Hn
(
[π−1(π(A)) \ A] ∩Ω ∩ ∂∗E

)
= 0 (3.3)

the inequality

P(E, A) −
∫
∂Ω

β χE∩A dHn ≥
1 − ess sup β

2

[
P(E, A) +

∫
∂Ω

χE∩A dHn
]

(3.4)

holds.

Proof. Let us first show that if F ⊂ Ω has locally finite perimeter in Rn+1, then

χF ≤ χπ(F) Hn -a.e. on ∂Ω. (3.5)

Set Ĝ := {x̂ ∈ Tr(F) : χπ(F)(x̂) = 0}. For any ε > 0 take an open set Ô ⊆ ∂Ω such that Ĝ ⊆ Ô
and Hn(Ô \ Ĝ) < ε. Since Hn(π(F) ∩ Ĝ) = 0, one has

|F ∩ π−1(Ĝ)| =
∫
π−1(Ĝ)

χF dx =

∫ +∞

0
dxn+1

∫
Ĝ
χF(x̂, xn+1)dHn(x̂)

=

∫ +∞

0
Hn(Ĝ ∩ {(x̂, 0) : (x̂, xn+1) ∈ F})dxn+1 =

∫ +∞

0
Hn(Ĝ ∩ π(F))dxn+1 = 0.

Let B̂ρ ⊂ Rn denote the ball of radius ρ > 0 centered at the origin. Recall that for any γ > 0
the following estimate [33, page 35] holds:∫

Ô∩B̂ρ
χFdHn ≤ P(F, (Ô ∩ B̂ρ) × (0, γ)) +

1
γ

∫
(Ô∩B̂ρ)×(0,γ)

χF dx.
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Then using Ĝ ⊆ Tr(F), we establish

Hn(Ĝ ∩ B̂ρ) ≤
∫

Ô∩B̂ρ
χFdHn ≤ P(F, (Ô ∩ B̂ρ) × (0, γ))

+
1
γ

∫
(Ĝ∩B̂ρ)×(0,γ)

χF dx +
1
γ

∫
((Ô\Ĝ)∩B̂ρ)×(0,γ)

χF dx

≤P(F, Ô × (0, γ)) +
1
γ
|F ∩ π−1(Ĝ)| +Hn(Ô \ Ĝ) < P(F, Ô × (0, γ)) + ε.

Now letting ε, γ → 0+ we get Hn(Ĝ ∩ B̂ρ) = 0 and (3.5) follows from letting ρ→ +∞.
We have∫

Ω

χπ(A) ◦ π
1 + β ◦ π

2
|DχE | =

∫
π−1(π(A))

1 + β ◦ π

2
|DχE | =

∫
A

1 + β ◦ π

2
|DχE |, (3.6)

where in the second equality we used (3.3). Moreover, from (3.5) with F = A we get∫
∂Ω

1 + β

2
χE∩A dHn =

∫
∂Ω

χA
1 + β

2
χE dHn ≤

∫
∂Ω

χπ(A)
1 + β

2
χE dHn. (3.7)

Now, using Lemma 2.1 with β replaced with (1 + β)χπ(A)/2, from (3.6) and (3.7) we obtain∫
∂Ω

1 + β

2
χE∩A dHn ≤

∫
A

1 + β ◦ π

2
|DχE |. (3.8)

Finally, adding the identities

P(E, A) =

∫
A
|DχE | =

∫
A

1 − β ◦ π
2

|DχE | +

∫
A

1 + β ◦ π

2
|DχE |,

−

∫
∂Ω

β χE∩A dHn =

∫
∂Ω

1 − β
2

χE∩A dHn −

∫
∂Ω

1 + β

2
χE∩A dHn,

and using (3.8) we deduce

P(E, A) −
∫
∂Ω

β χE∩A dHn ≥

∫
A

1 − β ◦ π
2

|DχE | +

∫
∂Ω

1 − β
2

χE∩A dHn.

This relation yields (3.4).

Proposition 3.2 (Coercivity of the capillary functionals). If −1 ≤ β ≤ 1−2κ Hn -a.e. on ∂Ω

for some κ ∈ [0, 1
2 ], then

κP(E) ≤ Cβ(E,Ω) ≤ P(E) ∀E ∈ BV(Ω, {0, 1}). (3.9)

Moreover, if ‖β‖∞ ≤ 1 − 2κ for some κ ∈ [0, 1
2 ], then

κ

∫
Ω

|Du| ≤ Cβ(u,Ω) ≤
∫

Ω

|Du| ∀u ∈ BV(Ω). (3.10)
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Proof. The inequality κP(E) ≤ Cβ(E,Ω) follows from Lemma 3.1 with A = Ω. Moreover, by
virtue of Lemma 2.1,

‖β‖∞ ≤ 1 =⇒ Cβ(E,Ω) ≤ P(E) ∀E ∈ BV(Ω, {0, 1}). (3.11)

Now (3.10) follows from the inequalities

κP({u < t},Ω) + κ

∫
∂Ω

χ{u<t} dHn ≤ C−β({u < t},Ω) ≤ P({u < t},Ω) +

∫
∂Ω

χ{u<t} dHn

for a.e. t < 0 and

κP({u > t},Ω) + κ

∫
∂Ω

χ{u>t} dHn ≤ Cβ({u > t},Ω) ≤ P({u > t},Ω) +

∫
∂Ω

χ{u>t} dHn

for a.e. t > 0, from (2.6)-(2.8), (3.2) and by [33, Remark 2.14], possibly after extending u to 0
outside Ω.

Remark 3.3. From the proof of Proposition 3.2 it follows that if u ≥ 0, then (3.10) holds for
any β ∈ L∞(∂Ω) with −1 ≤ β ≤ 1 − 2κ; if u ≤ 0, (3.10) is valid whenever −1 + 2κ ≤ β ≤ 1.

Remark 3.4. If β > 1 on a set of infinite Hn -measure, then Cβ(·,Ω) is unbounded from
below. Note also that if ‖β‖∞ ≤ 1, then ∅ is the unique minimizer of Cβ(·,Ω) in BV(Ω, {0, 1}).
Indeed, clearly,

0 = Cβ(∅,Ω) = min
E∈BV(Ω,{0,1})

Cβ(E,Ω).

If there were a minimizer E , ∅ of Cβ(·,Ω), there would exist l > 0 such that |E \ Ωl| > 0.
Now since Tr(E) = Tr(E ∩Ωl), by [6, page 216] we have

0 = Cβ(E,Ω) > Cβ(E ∩Ωl,Ω) ≥ 0,

a contradiction.

Lemma 3.5 (Lower semicontinuity). Assume that β ∈ L∞(∂Ω). Then the functionals Cβ(·,Ω)
and Cβ(·,Ω) are L1(Ω) -lower semicontinuous if and only if ‖β‖∞ ≤ 1.

Proof. Assume that ‖β‖∞ ≤ 1. In this case the lower semicontinuity of Cβ(·,Ω) is proven in
[17, Lemma 2]. Let us prove the lower semicontinuity of Cβ(·,Ω). Take uk, u ∈ BV(Ω) such
that uk → u in L1(Ω). By (2.6) we may assume that

∫
Ω
|{uk < t}∆{u < t}| dx → 0 as k → +∞

for a.e. t ∈ R. Then using the nonnegativity of summands, the lower semicontinuity of Cβ(·,Ω)
and Fatou’s Lemma in (3.2) we establish

lim inf
k→+∞

Cβ(uk,Ω) ≥ lim inf
k→+∞

∫ 0

−∞

C−β({uk < t},Ω) dt + lim inf
k→+∞

∫ +∞

0
Cβ({uk > t},Ω) dt

≥

∫ 0

−∞

lim inf
k→+∞

C−β({uk < t},Ω) dt +

∫ +∞

0
lim inf
k→+∞

Cβ({uk > t},Ω) dt

≥

∫ 0

−∞

C−β({u < t},Ω) dt +

∫ +∞

0
Cβ({u > t},Ω) dt = Cβ(u,Ω).

Now assume that ‖β‖∞ > 1, i.e. the set {x̂ ∈ ∂Ω : |β(x̂)| > 1} has positive Hn -measure.
Let for some ε, δ0 > 0 the set Â := {β > 1 + ε} satisfy |Â| ≥ δ0. By Lusin’s theorem, for any
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k > 4‖β‖∞
εδ0

there exists βk ∈ C(∂Ω) such that Hn({β , βk}) < 1
k and ‖βk‖∞ ≤ ‖β‖∞. Let k be so

large that Hn({βk > 1 + ε}) ≥ δ0/2 and choose an open set Ô ⊂ {βk > 1 + ε} of finite perimeter
such that δ0/4 ≤ Hn(Ô) < +∞. Define the sequence of sets Em := Ô × (0, 1

m ) ⊂ Ω. Clearly,
Em → ∅ in L1(Ω) as m→ +∞. Then, indicating by P(Ô) the perimeter of Ô in Rn, from the
relations

Cβ(Em,Ω) =
1
m

P(Ô) +Hn(Ô) −
∫

Ô
βdHn

≤
1
m

P(Ô) +Hn(Ô) −
∫

Ô
βkdHn +

∫
Ô
|β − βk |dHn

≤
1
m

P(Ô) − εHn(Ô) + 2‖β‖∞Hn(Ô ∩ {β , βk}) ≤
1
m

P(Ô) −
εδ0

4
,

we establish
lim inf
m→+∞

Cβ(Em,Ω) ≤ −
εδ0

4
< 0 = Cβ(∅,Ω).

Since Cβ(χE ,Ω) = Cβ(E,Ω), one has also lim inf
m→+∞

Cβ(χEm ,Ω) < 0 = Cβ(0,Ω). Hence Cβ(·,Ω)

and Cβ(·,Ω) are not L1(Ω) -lower semicontinuous.
Finally, the case |{β < −1 − ε}| > 0 can be treated in a similar way.

Remark 3.6. If Ω is an arbitrary bounded open set with Lipschitz boundary and ‖β‖∞ ≤ 1 ,
then the lower semicontinuity of Cβ(·,Ω) is a consequence of [5, Theorem 3.4]. In this case
Cβ(·,Ω) is bounded from below by −Hn(∂Ω). Hence again Fatou’s lemma and (3.2) yield lower
semicontinuity of Cβ(·,Ω).

4. Capillary Almgren-Taylor-Wang-type functional

In the sequel, for a given nonempty set F ⊆ Ω, dF stands for the distance function from the
boundary of ∂F in Ω :

dF(x) := dist(x,Ω ∩ ∂F).

The function

d̃F(x) :=

−dF(x) if x ∈ F,
dF(x) if x ∈ Ω \ F,

is called the signed distance function from ∂F in Ω negative inside F. The distance from the
empty set is assumed to be equal to +∞.

Notice that for E, F ⊆ Ω, F , ∅,∫
E∆F

dF dx =

∫
E\F

d̃F dx −
∫

F\E
d̃F dx =

∫
E

d̃F dx −
∫

F
d̃F dx,

provided
∫

E∩F
dFdx < +∞. Moreover, we assume

∫
E∆F

dFdx := 0 whenever |E∆F| = 0.

Given β ∈ L∞(∂Ω), E0 ∈ BV(Ω, {0, 1}) and λ ≥ 1, recalling the definition of Cβ(·,Ω) in
(3.1), we define the capillary Almgren-Taylor-Wang-type functional Aβ(·, E0, λ) : BV(Ω, {0, 1})→
[−∞,+∞] with contact angle β , as

Aβ(E, E0, λ) := Cβ(E,Ω) + λ

∫
E∆E0

dE0 dx, (4.1)
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so that
Aβ(E, E0, λ) =P(E,Ω) + λ

∫
E

d̃E0 dx −
∫
∂Ω

β χE dHn − λ

∫
E0

d̃E0 dx (4.2)

whenever
∫

E∩E0

dE0 dx < +∞.

4.1. Existence of minimizers of the functional Aβ(·, E0, λ)
We always suppose that λ ≥ 1 and in this section we assume thatE0 ∈ BV(Ω, {0, 1}) is nonempty and bounded ,

β ∈ L∞(∂Ω) and ∃κ ∈ (0, 1
2 ] : −1 ≤ β ≤ 1 − 2κ Hn-a.e on ∂Ω.

(4.3)

Hence, there exists a cylinder CH
D = B̂D × (0,H) containing E0 whose basis is an open ball

B̂D ⊂ Rn of radius D > 0 and height

H = 1 + max
{
xn+1 : x = (x′, xn+1) ∈ E0

}
.

Define

R0 := R0(n, κ, E0) = D + 1 + max
{
8n2+n+1

(
P(E0)
κ

) n+1
n

, 4µ(κ, n)
}
, (4.4)

where µ(κ, n) = (1/κ + 2)
n+1

n . The proof of the next result is essentially postponed to Appendix
A, since the main idea does not differ too much from [17].

Theorem 4.1 (Existence of minimizers and uniform bound). Suppose that (4.3) holds. Then
the minimum problem

inf
E∈BV(Ω,{0,1})

Aβ(E, E0, λ) (4.5)

has a solution Eλ . Moreover, any minimizer is contained in CH
R0

.

Proof. Let f = λd̃E0 and

V : BV(Ω, {0, 1})→ (−∞,+∞], V(E) :=
∫

E
f dx.

Then V satisfies Hypothesis A.1 and by Remark A.4, R0 ≤ R0. Now the proof directly follows
from Theorem A.3.

Remark 4.2. If E0 = ∅, then (4.5) has a unique solution Eλ = ∅. Moreover, for some choices
of λ ≥ 1 and ∅ , E0 ∈ BV(Ω, {0, 1}), the empty set solves (4.5). For example, let Bρ be the
ball centered at x such that xn+1 ≥ 4ρ + 4. If λρ ≤ n, then as in [11, 19], one can show that
Eλ = ∅ is the unique minimizer of Aβ(·, Bρ, λ).

Remark 4.3. Let F minimize Aβ(·, E0, λ) in BV(CH
R0
, {0, 1}). Then F is an unconstrained

minimizer, i.e.
Aβ(F, E0, λ) = min

E∈BV(Ω,{0,1})
Aβ(E, E0, λ). (4.6)

Indeed, let Eλ be any minimizer of Aβ(·, E0, λ). Clearly, Aβ(F, E0, λ) ≥ Aβ(Eλ, E0, λ). On the
other hand, by Theorem 4.1 Eλ ⊆ CH

R0
and by minimality of F in CH

R0
we have Aβ(F, E0, λ) ≤

Aβ(Eλ, E0, λ), which implies (4.6).
11



Recalling Remark 3.4 and definition (2.1) of E(E0) we have also the following result.

Proposition 4.4 (Existence of constrained minimizers of Cβ ). Under assumptions (4.3) the
constrained minimum problem

inf
E∈BV(Ω,{0,1}), E∈E(E0)

Cβ(E,Ω) (4.7)

has a solution. In addition, any minimizer E+ satisfies E+ ⊆ CH
R0
, where R0 is given by (4.4),

and E+ is also a solution of
inf

E∈BV(Ω,{0,1}), E∈E(E+)
Cβ(E,Ω).

Proof. Set

V : BV(Ω, {0, 1})→ [0,+∞], V(E) :=

0 if E ∈ E(E0),
+∞ if E ∈ BV(Ω, {0, 1}) \ E(E0).

(4.8)

Then V satisfies Hypothesis A.1 and R0 ≤ R0. Now existence of a minimizer E+ of Cβ(·,Ω)
in E(E0) and the inclusion E+ ⊆ CH

R0
follow from Theorem A.3. To show the last statement

we observe that the inclusion E0 ⊆ E+ implies E(E+) ⊆ E(E0). Hence the minimality of E+

yields the inequality Cβ(E+,Ω) ≤ Cβ(E,Ω) for any E ∈ E(E+).

Solutions of (4.7) will be called constrained minimizers of Cβ(·,Ω) in E(E0).

Example 4.5. Suppose that E0 ⊂ Ω is a closed convex set so that νE0 · en+1 ≥ 0 Hn -a.e. on
Ω∩ ∂E0. Then for every β ∈ L∞(∂Ω, [−1, 0]) the set E0 is a constrained minimizer of Cβ(·,Ω)
in E(E0). Indeed, by Lemma 2.3 P(E0,Ω) ≤ P(E,Ω) for all E ∈ E(E0), therefore

Cβ(E,Ω) − Cβ(E0,Ω) = P(E,Ω) − P(E0,Ω) +

∫
∂Ω

(−β)χE\E0 dHn ≥ 0.

The following lemma shows the behaviour of Eλ as λ→ +∞.

Lemma 4.6 (Asymptotics of Eλ as time goes to 0+ ). Assume (4.3) and |E0 \ E0| = 0. Then
any minimizer Eλ satisfies:

a) lim
λ→+∞

|Eλ∆E0| = 0,

b) lim
λ→+∞

Cβ(Eλ,Ω) = Cβ(E0,Ω),

c) lim
λ→+∞

λ
∫

Eλ∆E0
dE0 dx = 0.

Proof. a) We have

κP(Eλ) ≤ Aβ(Eλ, E0, λ) ≤ Aβ(E0, E0, λ) = Cβ(E0,Ω) ≤ P(E0).

Moreover, from Aβ(Eλ, E0, λ) ≤ P(E0) and (2.4) we get λ
∫

Eλ∆E0
dE0 dx ≤ P(E0), hence

lim
λ→+∞

∫
Eλ∆E0

dE0 dx = 0. (4.9)
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Recall from Theorem 4.1 that Eλ ⊆ CH
R0

for all λ ≥ 1. Hence, by compactness, from every
diverging sequence {λi} we can select a subsequence {λik } such that

Eλik
→ E∞ in L1(Ω)

for some E∞ ∈ BV(CH
R0
, {0, 1}). From (4.9) we deduce that

∫
E∞∆E0

dE0 dx = 0, and thus, since

dE0 ≥ 0 and by assumption |E0 \ E0| = 0, we get |E∞∆E0| = 0. Now the arbitrariness of {λ j}

implies a).
b) Clearly, Cβ(Eλ,Ω) ≤ Aβ(Eλ, E0, λ) ≤ Cβ(E0,Ω) for all λ ≥ 1. Then by a) and by the

L1(Ω) -lower semicontinuity of Cβ(·,Ω) (Lemma 3.5) we establish

Cβ(E0,Ω) ≤ lim inf
λ→+∞

Cβ(Eλ,Ω) ≤ lim sup
λ→+∞

Cβ(Eλ,Ω) ≤ Cβ(E0,Ω),

and b) follows.
c) follows from b) and nonnegativity of λ

∫
Eλ∆E0

dE0 dx, since

lim sup
λ→+∞

λ

∫
Eλ∆E0

dE0 dx ≤ lim
λ→+∞

[Cβ(E0,Ω) − Cβ(Eλ,Ω)] = 0.

5. Density estimates and regularity of minimizers

In this section we assume thatE0 ∈ BV(Ω, {0, 1}) is nonempty and bounded ,
β ∈ L∞(∂Ω) and ∃κ ∈ (0, 1

2 ] : ‖β‖∞ ≤ 1 − 2κ.
(5.1)

Define

R(n, κ) :=
(
2n+3 ωn + (n + 1)ωn+1

ωn+1κn+1

) 1
2

, γ(n, κ) :=
κ(n + 1)√

R(n, κ)2 + 4κ(n + 1) + R(n, κ)
, (5.2)

and
C(n, κ) := (n + 1)ωn+1 + 2ωn +

κ(n + 1)
2

ωn+1, c(n, κ) := cn+1

(
κ

4

)n
, (5.3)

where cn+1 is the relative isoperimetric constant for the ball, i.e.

cn+1 min{|Br ∩ F|, |Br \ F|}
n

n+1 ≤ P(F, Br), r > 0, F ∈ BV(Br, {0, 1}).

The aim of this section is to prove the following uniform density estimates for minimizers of
Aβ(·, E0, λ), needed to prove regularity of minimizers (Theorem 5.3) and Proposition 5.7.

Theorem 5.1. Assume that E0 and β are as in (5.1) and Eλ ∈ BV(Ω, {0, 1}) is a minimizer of
Aβ(·, E0, λ). Then either Eλ = ∅ or(

κ

4

)n+1
≤
|Eλ ∩ Br(x)|
ωn+1rn+1 ≤ 1 −

(
κ

4

)n+1
, (5.4)
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c(n, κ) ≤
P(Eλ, Br(x))

rn ≤ C(n, κ) (5.5)

for every x ∈ ∂Eλ and r ∈ (0, γ(n,κ)
λ1/2 ). In particular,

Hn(∂Eλ \ ∂
∗Eλ) = 0. (5.6)

We postpone the proof after several auxiliary results. First we show a weaker version of
Theorem 5.1; the difference stands in that Proposition 5.2 holds for r ≤ O( 1

λ
) and O( 1

λ
) depends

on E0, whereas Theorem 5.1 is valid for r ≤ O( 1
λ1/2 ) and O( 1

λ1/2 ) is independent of E0.

Proposition 5.2. Under the assumptions of Theorem 5.1, setting

Λ := Λ(λ, n, κ, P(E0)) = λ diam(B̂D+R0+1 × (−1,H + 1)),

for any nonempty Eλ, x ∈ ∂Eλ and r ∈ (0,min{1, κ(n+1)
2Λ
}), the density estimates (5.4)-(5.5)

hold.

Proof. For completeness we give the full proof of the proposition using the methods of [41, 45].
We recall that one could also employ the density estimates for almost minimizers of the capillary
functional (see for instance [21, Lemma 2.8]).

Set r0 := min{1, κ(n+1)
2Λ
}, and fix x ∈ ∂∗Eλ. Let Br := Br(x) be the ball of radius r ∈ (0, r0)

centered at x, we can choose r such that

Hn(∂Br ∩ ∂Eλ) = 0.

First we show that Eλ satisfies

κP(Eλ ∩ Br) ≤ 2Hn(Eλ ∩ ∂Br) + Λ|Eλ ∩ Br |. (5.7)

Comparing Aβ(Eλ, E0, λ) with Aβ(Eλ \ Br, E0, λ), for a.e. s ∈ (r, r0) we establish

P(Eλ, Bs ∩Ω)−
∫

Br∩∂Ω

βχEλ∩Br dHn + λ

∫
Eλ∩Br

d̃E0 dy

≤P(Eλ, (Bs \ Br) ∩Ω) +Hn(Eλ ∩ ∂Br).

Sending s→ r+ we get

P(Eλ, Br ∩Ω) −
∫

Br∩∂Ω

βχEλ
dHn + λ

∫
Eλ∩Br

d̃E0 dy ≤Hn(Eλ ∩ ∂Br). (5.8)

By Theorem 4.1 Eλ ⊆ CH
R0

and thus, since r0 ≤ 1, for any y ∈ Br

λ|d̃E0 (y)| ≤ λ diam(B̂D+R0+1 × (−1,H + 1)) = Λ. (5.9)

Moreover, using (3.9) for Eλ ∩ Br we get (5.7):

κP(Eλ ∩ Br) ≤P(Eλ, Br ∩Ω) +Hn(Eλ ∩ ∂Br) −
∫

Br∩∂Ω

βχEλ
dHn

≤2Hn(Eλ ∩ ∂Br) + Λ|Eλ ∩ Br |.
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Now by the isoperimetric inequality,

P(Eλ ∩ Br) ≥ (n + 1)ω
1

n+1
n+1|Eλ ∩ Br |

n
n+1 . (5.10)

Set m(r) := |Eλ ∩ Br |. Then m is absolutely continuous, m(0) = 0, m(r) > 0 for all r > 0 and
m′(r) = Hn(Eλ ∩ ∂Br) for a.e. r ∈ (0, r0). Consequently, (5.7) and (5.10) give

κ(n + 1)ω
1

n+1
n+1m(r)

n
n+1 ≤ 2m′(r) + Λm(r) = 2m′(r) + Λm(r)

n
n+1 m(r)

1
n+1 . (5.11)

Since m(r) ≤ ωn+1rn+1 and r ≤ κ(n+1)
2Λ

, from the last inequality we obtain

κ

4
(n + 1)ω

1
n+1
n+1m(r)

n
n+1 ≤ m′(r).

Integrating we get the lower volume density estimate

m(r) ≥
(
κ

4

)n+1
ωn+1rn+1, ∀r ∈ (0, r0).

Let us prove the upper volume density estimate in (5.4). Since Eλ ⊆ Ω if x ∈ ∂Ω ∩ ∂∗Eλ,
the inequality

|Br \ Eλ|

ωn+1rn+1 ≥
1
2
>

(
κ

4

)n+1
∀r > 0 (5.12)

is trivial. So assume that x ∈ Ω∩∂∗Eλ. Since Aβ(Eλ, E0, λ) ≤ Aβ((Eλ∪Br)∩Ω, E0, λ), arguing
as in the proof of (5.8) we get

P(Eλ, Br ∩Ω) +

∫
∂Ω

βχ(Br∩Ω)\Eλ
dHn ≤Hn((Ω \ Eλ) ∩ ∂Br) + λ

∫
(Br∩Ω)\Eλ

d̃E0 dy. (5.13)

From the isoperimetric inequality, (3.9), (5.13) and also (5.9), it follows that

κ(n + 1)ω
1

n+1
n+1|(Br \ Eλ) ∩Ω|

n
n+1 ≤ κP((Br \ Eλ) ∩Ω) ≤ C−β((Br \ Eλ) ∩Ω,Ω)

≤P(Eλ, Br ∩Ω) +

∫
∂Ω

βχ(Br∩Ω)\Eλ
dHn +Hn((Ω \ Eλ) ∩ ∂Br)

≤2Hn((Ω \ Eλ) ∩ ∂Br) + Λ|(Br \ Eλ) ∩Ω|.

(5.14)

Repeating the same arguments as before we establish

|Br \ Eλ|

ωn+1rn+1 ≥
|(Br \ Eλ) ∩Ω|

ωn+1rn+1 ≥

(
κ

4

)n+1
∀r ∈ (0, r0).

Let us now show (5.5). From (5.8) we get

P(Eλ, Br) =P(Eλ, Br ∩Ω) +

∫
Br∩∂Ω

χEλ
dHn

≤Hn(Eλ ∩ ∂Br) +

∫
Br∩∂Ω

(1 + β)χEλ
dHn + Λ|Eλ ∩ Br |

≤(n + 1)ωn+1rn + 2ωnrn + ωn+1rn(Λr)

≤

[
(n + 1)ωn+1 + 2ωn + ωn+1

κ(n + 1)
2

]
rn
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for a.e r ∈ (0, r0). Since P(Eλ, ·) is a nonnegative measure, this inequality holds for all r ∈
(0, r0). This proves the upper perimeter estimate in (5.5).

The lower perimeter density estimate in (5.5) follows from (5.4) and the relative isoperimetric
inequality (see for example [7, page 152]).

Theorem 5.3 (Regularity of minimizers up to the boundary). Assume that E0 and β satisfy
(5.1). Then any nonempty minimizer Eλ is open in Rn+1 and Ω ∩ ∂∗Eλ is an n -dimensional
manifold of class C2,α for a suitable α ∈ (0, 1) , and H s(Ω∩(∂Eλ \∂

∗Eλ)) = 0 for all s > n−7.
Moreover, if β ∈ Lip(∂Ω), then

a) Hn((∂Eλ ∩ ∂Ω)∆(Tr(Eλ))) = 0;

b) ∂Eλ ∩ ∂Ω is a set of finite perimeter in ∂Ω and

Hn−1(∂(∂Eλ ∩ ∂Ω) \ ∂∗(∂Eλ ∩ ∂Ω)) = 0,

where ∂(∂Eλ ∩ ∂Ω) denotes the boundary of ∂Eλ ∩ ∂Ω in ∂Ω. Moreover, if Mλ =

Ω ∩ ∂Eλ, then
∂(∂Eλ ∩ ∂Ω) = Mλ ∩ ∂Ω.

c) There exists a relatively closed set Σ ⊂ Mλ with Hn−1(Σ ∩ ∂Ω) = 0 such that in a
neighborhood of any x ∈ (Mλ ∩ ∂Ω) \ Σ the set Mλ is a C1,1/2 -manifold with boundary,
and

νEλ
· en+1 = β on (Mλ ∩ ∂Ω) \ Σ.

Proof. Since Eλ is a minimizer of Aβ(·, E0, λ) in every ball B ⊂ Ω, we can apply [44, Corol-
lary 3.1] to prove that Eλ is open and Ω ∩ ∂∗Eλ is C2,α with Ω ∩ ∂Eλ = Ω ∩ ∂∗Eλ for
n = 2, . . . , 6, and H s(Ω ∩ (∂Eλ \ ∂

∗Eλ)) = 0 for all s > n − 7. Moreover, if β ∈ Lip(∂Ω), by
(5.9) the remaning assertions follow from [21, Lemma 2.16, Theorem 1.10].

Remark 5.4. (Compare with [41, Remark 1.4] and [45].)
a) Assume that x ∈ Eλ and r > 0 are such that Br(x)∩E0 = ∅. Then dE0 ≥ 0 in Eλ∩Br(x)

and from (5.8) we get

P(Eλ, Br ∩Ω) −
∫

Br∩∂Ω

βχEλ
dHn ≤Hn(Eλ ∩ ∂Br). (5.15)

Then proceeding as in the proof of Proposition 5.2 we get |Eλ ∩ Br | ≥ (κ/2)n+1 ωn+1rn+1. More-
over, from (5.15) it follows that

P(Eλ, Br ∩Ω) ≤ Hn(Eλ ∩ ∂Br) +

∫
Br∩∂Ω

χEλ
dHn ≤

[
(n + 1)ωn+1 + ωn

]
rn.

b) Similarly, if x ∈ Eλ and Br(x) ∩ (Ω \ E0) = ∅, then |Br \ Eλ| ≥ (κ/2)n+1 ωn+1rn+1.
Observe that in both cases r need not be in (0,min{1, κ(n+1)

2Λ
}) and the assumption x ∈ ∂Eλ

is not necessary.

The following proposition is the analog of [41, Lemma 2.1] and [45, Proposition 3.2.1].
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Proposition 5.5 ( L∞ -bound for the distance function). Assume that E0 and β are as in (5.1)
and Eλ ∈ BV(Ω, {0, 1}) is a minimizer of Aβ(·, E0, λ). Then

√
λ‖dE0‖L∞(Eλ∆E0) ≤ R(n, κ). (5.16)

Proof. Let R := R(n, κ). Suppose by contradiction that there exist ε > 0, λ ≥ 1 and x ∈ Eλ∆E0
such that dE0 (x) > (R + ε)λ−1/2. Consider first the case x ∈ Eλ \ E0. By regularity of Eλ

(Theorem 5.3) we may assume that x ∈ ∂Eλ \ E0. Note that Bρ ∩ E0 = ∅, where Bρ := Bρ(x),
ρ = (R + ε)λ−1/2/2. Since Aβ(Eλ, E0, λ) ≤ Aβ(Eλ \ Bρ, E0, λ), and d̃E0 (y) = dE0 (y) ≥ ρ for any
y ∈ Bρ ∩ Eλ, from (5.8) we establish

(R + ε)λ1/2

2
|Eλ∩Bρ| ≤ λ

∫
Eλ∩Bρ

d̃E0 dy ≤ Hn(Eλ∩∂Bρ)+
∫

Bρ∩∂Ω

βχEλ
dHn ≤ [ωn+1(n+1)+ωn]ρn.

This and Remark 5.4 (a) yield2

ωn+1
(R + ε)κn+1

2n+2 λ1/2ρn+1 ≤ [ωn+1(n + 1) + ωn]ρn,

or equivalently, recalling the definition of ρ

(R + ε)2 ≤ 2n+3 ωn + (n + 1)ωn+1

ωn+1κn+1 = R2,

which is a contradiction. A similar contradiction is obtained when x ∈ E0 \ Eλ.

Corollary 5.6. Assume (4.3) and |E0 \ E0| = 0. If ‖β‖∞ < 1, then Ω ∩ ∂Eλ
K
→ Ω ∩ ∂E0 as

λ→ +∞, where
K
→ denotes Kuratowski convergence [40].

Proof. It suffices to show that every diverging sequence {λ j} has a subsequence {λ′j} such that

K − lim
j→+∞

Ω ∩ ∂Eλ′j
= Ω ∩ ∂E0.

Choose any sequence λ j → +∞. By compactness of closed sets in Kuratowski convergence
[40, page 340], there exists a closed set C ⊂ Ω such that up to a not relabelled subsequence

Ω ∩ ∂Eλ j

K
→ C as j → +∞. Let us show first that Ω ∩ ∂E0 ⊆ C. Take any x ∈ Rn+1 \ C ; we

may suppose that x ∈ Ω. Since C is closed, there exists a ball Bρ(x) such that Bρ(x) ∩ C = ∅.

Since Ω ∩ ∂Eλ j

K
→ C as j → +∞, we have Bρ(x) ∩ Ω ∩ ∂Eλ j = ∅ for j ≥ 1 large enough.

Therefore, P(Eλ j , Bρ(x) ∩ Ω) = 0, and by a) and lower semicontinuity, P(E0, Bρ(x) ∩ Ω) = 0.
This yields Bρ/2(x) ∩Ω ∩ ∂E0 = ∅ and thus Rn+1 \C ⊆ Rn+1 \Ω ∩ ∂E0.

Now suppose that there exists x ∈ C \ Ω ∩ ∂E0. Then there exists ρ > 0 such that Bρ(x) ∩
Ω ∩ ∂E0 = ∅. Since x ∈ C, there exists x j ∈ Ω ∩ ∂Eλ j such that x j → x. Choose j ∈ N so
large that x j ∈ Bρ/4(x) and R(n, κ)λ−1/2

j < ρ/4, where R(n, κ) is defined in (5.2). By Proposition
5.5, we have

dE0 (x j) ≤ R(n, κ)λ−1/2
j <

ρ

4
.

On the other hand, by construction, dE0 (x) ≥ 3ρ
4 , which leads to a contradiction. This yields

C ⊆ Ω ∩ ∂E0 .

2 Since the upper bound for the radii in Proposition 5.2 is of order O( 1
λ ), in general, we cannot apply it with ρ.
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Proof of Theorem 5.1. We repeat the same procedures of the proof of Proposition 5.2 with im-
proved estimates for the volume term of Aβ(·, E0, λ). Let R := R(n, κ), γ := γ(n, κ). Fix
x ∈ ∂∗Eλ, and choose r ∈ (0, γλ−1/2) such that Hn(∂Br ∩ ∂Eλ) = 0. From (5.16) it follows

sup
(Eλ\E0)∩Br

dE0 ≤ Rλ−1/2.

Therefore, using the obvious inequality

sup
(Eλ∩E0)∩Br

dE0 ≤ 2r + sup
(E0\Eλ)∩Br

dE0 ≤ (2γ + R)λ−1/2,

from (5.8) we establish that

P(Eλ, Br ∩Ω) −
∫

Br∩∂Ω

βχEλ
dHn ≤Hn(Eλ ∩ ∂Br) + (R + 2γ)λ1/2|Eλ ∩ Br |. (5.17)

Since m(r) := |Eλ ∩ Br | ≤ ωn+1rn+1 and r ≤ γ
λ1/2 , similarly to (5.11) from (5.17) we deduce

κ(n + 1)ω
1

n+1
n+1m(r)

n
n+1 ≤ 2m′(r) + (R + 2γ)λ1/2rω

1
n+1
n+1m(r)

n
n+1 , for a.e. r ∈ (0, γλ1/2).

By the definition of γ one has

(R + 2γ)λ1/2r ≤ (R + 2γ)γ =
1
2
κ(n + 1).

Thus,
κ

4
(n + 1)ω

1
n+1
n+1m(r)

n
n+1 ≤ m′(r) for a.e. r ∈ (0, γλ−1/2).

Integrating this differential inequality we get the lower volume density estimate in (5.4).
Let us prove the upper volume density estimate in (5.4). Due to (5.12) we may suppose that

x ∈ Ω ∩ ∂∗Eλ. As above one can estimate dE0 in (Br \ Eλ) ∩Ω as follows:

sup
Ω∩((Br\Eλ)\E0)

dE0 ≤ 2r + sup
Eλ∆E0

dE0 ≤ (2γ + R)λ−1/2. (5.18)

Since d̃E0 ≤ 0 in Ω ∩ ((Br \ Eλ) ∩ E0), plugging (5.18) in (5.13) and proceeding as above we
establish

κ

4
(n + 1)ω

1
n+1
n+1|(Br \ Eλ) ∩Ω|

n
n+1 ≤ Hn((Ω \ Eλ) ∩ Br),

from which the upper volume density estimates in (5.4) follows.
The proof of (5.5) is exactly the same as the proof of perimeter density estimates in Proposi-

tion 5.2. Finally, (5.6) is a standard consequence of a covering argument.

Let us prove the following L1 -estimate for the minimizers of Aβ(·, E0, λ), the analog of [41,
Lemma 1.5] and [45, Proposition 3.2.3]. Notice carefully the exponent −1/2 of λ in (5.19).

Proposition 5.7 ( L1 -estimate). Assume that E0 and β satisfy (5.1) and the uniform volume
density estimates (5.4) holds for E0. Then for any minimizer Eλ of Aβ(·, E0, λ) the estimate

|Eλ∆E0| ≤ Cn,κP(E0) ` +
1
`

∫
Eλ∆E0

dE0 dx, ` ∈

(
0,
γ(n, κ)
λ1/2

)
(5.19)
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holds, where

Cn,κ :=
(

8
κ

)n+1

ω
1

n+1
n+1 b(n) cn+1 (5.20)

and b(n) is the constant in Besicovitch covering theorem.

Proof. Set

A := {x ∈ Eλ∆E0 : dE0 (x) ≥ `}, B := {x ∈ Eλ∆E0 : dE0 (x) < `}.

By Chebyshev inequality

|A| ≤
1
`

∫
Eλ∆E0

dE0 dx.

Let us estimate |B|. Since E0 is bounded, by Besicovitch covering theorem there exist at most
countably many balls {B`(xi)}, xi ∈ ∂E0 such that any point of ∂E0 belongs to at most b(n)
balls, ∂E0 ⊂

⋃
i

B`(xi) and B ⊂
⋃
i

B2`(xi). Since the balls {B2`(xi)} cover B, by the density

estimates (5.4) and the relative isoperimetric inequality we get

|B2`(xi)| =2n+1ωn+1`
n+1 ≤ 2n+1

(
4
κ

)n+1

min{|B`(xi) ∩ E0|, |B`(xi) \ E0|}

≤

(
8
κ

)n+1

ω
1

n+1
n+1 ` min{|B`(xi) ∩ E0|, |B`(xi) \ E0|}

n
n+1

≤

(
8
κ

)n+1

ω
1

n+1
n+1 ` cn+1 P(E0, B`(xi)).

Therefore

|B| ≤
(

8
κ

)n+1

ω
1

n+1
n+1 cn+1 `

∑
i

P(E0, B`(xi)) ≤
(

8
κ

)n+1

ω
1

n+1
n+1 b(n) cn+1 P(E0) `.

Now (5.19) follows from the estimates for |A|, |B| and from |Eλ∆E0| ≤ |A| + |B|.

A specific choice of ` will be made in the proof of Theorem 7.1. We conclude this section
with a proposition about the regularity of minimizers of Cβ(·,Ω).

Proposition 5.8 (Density estimates for constrained minimizers of Cβ ). Assume that E0 and
β satisfy (5.1) and there exist c1, c2, ε ∈ (0, 1) such that for every x ∈ ∂E0 and r ∈ (0, ε) the
inequalities

e1 ≤
|Br(x) ∩ E0|

|Br(x)|
≤ e2

hold. Let E+ be a constrained minimizer of Cβ(·,Ω) in E(E0). Then for every x ∈ ∂E+ and
r ∈ (0, ε)

e1

(
κ

8

)n+1
≤
|Br(x) ∩ E+|

|Br(x)|
≤ 1 −

(
κ

4

)n+1
,

cn+1e
n

n+1
1 (κ/8)n ≤

P(E+, Br(x))
rn ≤ (n + 1)ωn+1 + ωn.

(5.21)

In particular, Hn(∂E+ \ ∂∗E+) = 0.
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Proof. Let x ∈ ∂E+, and r ∈ (0, ε) be such that Hn(∂Br ∩ ∂
∗E+) = 0, where Br := Br(x).

We start with the upper volume density estimate in (5.21). We may suppose x ∈ Ω ∩ ∂∗E+,
since the case x ∈ ∂Ω ∩ ∂∗E+ is trivial. Using Cβ(E+,Ω) ≤ Cβ((E+ ∪ Br) ∩ Ω,Ω), as in (5.13)
we establish

P(E+, Br) +

∫
∂Ω

βχ(Br\E+)∩Ω dHn ≤ Hn((Ω \ E+) ∩ ∂Br). (5.22)

Adding Hn(∂Br ∩ (Ω \ E+)) to both sides and proceeding as in (5.14) we get

κ(n + 1)ω
1

n+1
n+1|(Br \ E+) ∩Ω|

n
n+1 ≤ 2Hn((Ω \ E+) ∩ ∂Br)

and hence as in the proof of Theorem 5.1

|Br \ E+| ≥

(
κ

4

)n+1
ωn+1rn+1.

This implies the upper volume density estimate in (5.21).
The lower volume density estimate is a little delicate, since in general we cannot use the set

E = E+ \Br as a competitor since it need not belong to E(E0). If d := dE0 (x) = 0, then x ∈ ∂E0
and, hence, using E0∩Br ⊂ E+∩Br and the lower volume density estimate for E0 we establish

|E+ ∩ Br |

|Br |
≥
|E0 ∩ Br |

|Br |
≥ e1 ≥ e1

(
κ

8

)n+1
.

If d > 0 and r ∈ (0,min{ε, d}), we may use comparison set E+ \ Br and as in the proof of (5.4)
we obtain

|E+ ∩ Br |

|Br |
≥

(
κ

4

)n+1
≥ e1

(
κ

8

)n+1
. (5.23)

Suppose d < ε. Since one can extend (5.23) to (0, d] by continuity, if r ∈ (d,min{2d, ε}), then

|E+ ∩ Br |

|Br |
≥
|E+ ∩ Bd |

|Bd |
·

(
d
r

)n+1

≥

(
κ

8

)n+1
≥ e1

(
κ

8

)n+1
.

Let r ∈ [2d, ε) and x0 ∈ Ω ∩ ∂E0 be such that d = |x − x0|. Then using B(x, r) ⊃ B(x0, r − d),
the lower density estimate for E0 and r − d ≥ r/2, we obtain

|E+ ∩ Br |

|Br |
≥
|E0 ∩ Br−d(x0)|
|Br−d(x0)|

·

(
r − d

r

)n+1

≥ e1

(
1
2

)n+1

≥ e1

(
κ

8

)n+1
.

Now the lower perimeter estimate follows from the volume density estimates and the relative
isoperimetric inequality. The upper perimeter estimate is obtained from (5.22):

P(E+, Br) ≤ Hn((Ω \ E+) ∩ ∂Br) −
∫
∂Ω

βχ(Br\E+)∩Ω dHn ≤ ((n + 1)ωn+1 + ωn)rn.

Finally, the relation Hn(∂E+ \ ∂∗E+) = 0 is a consequence of the density estimates together
with a covering argument.
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6. Comparison principles

The main result of this section is the following comparison between minimizers of Aβ(·, E0, λ).

Theorem 6.1 (Comparison for minimizers of Aβ ). Assume that E0, F0, β1, β2 satisfy (4.3).
Suppose that E0 ⊆ F0 and β1 ≤ β2. Then

a) there exists a minimizer F∗λ of Aβ2 (·, F0, λ) containing any minimizer of Aβ1 (·, E0, λ);

b) there exists a minimizer Eλ∗ of Aβ1 (·, E0, λ) contained in any minimizer of Aβ2 (·, F0, λ).

If in addition
dist(Ω ∩ ∂E0,Ω ∩ ∂F0) > 0, (6.1)

then all minimizers Eλ and Fλ of Aβ1 (·, E0, λ) and Aβ2 (·, F0, λ) respectively, satisfy

Eλ ⊆ Fλ.

Remark 6.2. We do not exclude the case that either Eλ or Fλ is empty.

Remark 6.3. For any E0, β satisfying (4.3), using Theorem 6.1 with β1 = β2 = β and F0 =

E0, we establish the existence of unique minimizers Eλ∗ and E∗λ of Aβ(·, E0, λ), such that any
other minimizer Eλ satisfies Eλ∗ ⊆ Eλ ⊆ E∗λ.

Definition 6.4 (Maximal and minimal minimizers). We call E∗λ and Eλ∗ the maximal and
minimal minimizer of Aβ(·, E0, λ) respectively.

Before proving Theorem 6.1 we need the following observations. Given β satisfying (4.3),
C = Ch

r , h, r > 0 and v ∈ L∞loc(Ω), v ≥ 0 a.e. in Ω \ C, define the convex functional
Bβ(·, v,C) : BV(Ω, [0, 1])→ (−∞,+∞], a sort of level-set capillary Almgren-Taylor-Wang-type
functional, as

Bβ(u, v,C) = Cβ(u,Ω) +

∫
Ω

uv dx.

Set

R1(C, v) := r + 1 + max
{
8n2+n+1

(
Cβ(C,Ω) + ‖v‖L∞(C)|C|

κ

) n+1
n

, 4µ(κ, n)
}
, (6.2)

where µ(κ, n) = (1/κ + 2)
n+1

n . By Example A.2 the functional

V : BV(Ω, {0, 1})→ (−∞,+∞], V(E) :=
∫

E
vdx

satisfies Hypothesis A.1. Thus, by Theorem A.3 the functional E ∈ BV(Ω, {0, 1}) 7→ Bβ(χE , v,C) ∈
R has a minimizer, and every minimizer Ev satisfies

Ev ⊆ Ch
R1(C,v). (6.3)

Notice that by (2.8) and (3.2),

Bβ(u, v,C) =

∫ 1

0
Bβ(χ{u>t}, v,C) dt ∀u ∈ BV(Ω, [0, 1]), (6.4)

which yields that χEv is a minimizer of Bβ(·, v,C) in BV(Ω, [0, 1]).
The following remark is in the spirit of [13, Section 1].
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Remark 6.5 (Minimality of level sets). From (6.4) it follows that u ∈ BV(Ω, [0, 1]) is a min-
imizer of Bβ(·, v,C) in BV(Ω, [0, 1]) if and only if χ{u>t} is a minimizer of Bβ(·, v,C) for
a.e. t ∈ [0, 1]. Indeed, let for some u ∈ BV(Ω, [0, 1]) the function χ{u>t} be a minimizer of
Bβ(·, v,C) for a.e. t ∈ [0, 1]. Then for any w ∈ BV(Ω, [0, 1]) and for a.e. t ∈ [0, 1] one has
Bβ(w, v,C) ≥ Bβ(χ{u>t}, v,C), therefore,

Bβ(u, v,C) =

∫ 1

0
Bβ(χ{u>t}, v,C)dt ≤ Bβ(w, v,C).

Conversely, if u ∈ BV(Ω, [0, 1]) is a minimizer of Bβ(·, v,C), then for a.e. t ∈ [0, 1] one has
Bβ(u, v,C) ≤ Bβ(χ{u>t}, v,C). Hence, from (6.4) it follows that Bβ(u, v,C) = Bβ(χ{u>t}, v,C) for
a.e. t ∈ [0, 1]. In particular, if u ∈ BV(Ω, [0, 1]) is a minimizer of Bβ(·, v,C), then by (6.3)
{u > t} ⊆ Ch

R1(C,v) for a.e. t ∈ [0, 1], i.e. u = 0 a.e. in Ω \Ch
R1(C,v). Hence,

min
u∈BV(Ω,[0,1])

Bβ(u, v,C) = min
u∈BV(Ω,[0,1]), u = 0 a.e. in Ω \Ch

R1(C,v)

Bβ(u, v,C). (6.5)

Lemma 6.6. Let E0, β satisfy (4.3), and R0 be defined as in (4.4). Then Eλ is a minimizer of
Aβ(·, E0, λ) if and only if χEλ

is a minimizer of Bβ(·, vλE0
,CH

R0
), where vλE0

= λχCH
R0

d̃E0 .

Proof. By (4.2) we have

Aβ(E, E0, λ) = Bβ(χE , vλE0
,CH

R0
) − λ

∫
E0

d̃E0 dx ∀E ∈ BV(CH
R0
, {0, 1}). (6.6)

Now if Eλ minimizes Aβ(·, E0, λ), we have Eλ ⊆ CH
R0

(Theorem 4.1) and thus, for any
u ∈ BV(Ω, [0, 1]) with u = 0 a.e. in Ω \CH

R0
from (6.4)-(6.6) we deduce

Bβ(u, vλE0
,CH

R0
) =

∫ 1

0
Bβ(χ{u>t}, vλE0

,CH
R0

) dt =

∫ 1

0
Aβ({u > t}, E0, λ) dt + λ

∫
E0

d̃E0 dx

≥

∫ 1

0
Aβ(Eλ, E0, λ) dt + λ

∫
E0

d̃E0 dx = Bβ(χEλ
, vλE0

,CH
R0

).

By (6.5) χEλ
is a minimizer of Bβ(·, vλE0

,CH
R0

).
Conversely, assume that χEλ

is a minimizer of Bβ(·, vλE0
,CH

R0
), then by (6.6) Eλ ⊆ CH

R0
is

a minimizer of Aβ(·, E0, λ) in BV(CH
R0
, {0, 1}). Hence, by Remark 4.3 Eλ is a minimizer of

Aβ(·, E0, λ).

Proposition 6.7 (Strong comparison for minimizers of Bβ ). Assume that v1, v2 ∈ L∞loc(Ω),
v1 > v2 a.e. in Ω and v2 ≥ 0 a.e. in Ω \ C. Suppose also that β1 ≤ β2 satisfy (4.3).
Let u1, u2 ∈ BV(Ω, [0, 1]) be minimizers of Bβ1 (·, v1,C) and Bβ2 (·, v2,C) respectively. Then
u1 ≤ u2 a.e. in Ω.

Proof. Adding the inequalities Bβ1 (u1, v1,C) ≤ Bβ1 (u1∧u2, v1,C) and Bβ2 (u2, v2,C) ≤ Bβ2 (u1∨

u2, v2,C) and using∫
Ω

|D(u1 ∧ u2)| +
∫

Ω

|D(u1 ∨ u2)| ≤
∫

Ω

|Du1| +

∫
Ω

|Du2|,
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we establish ∫
∂Ω∩{u1>u2}

(β2 − β1)(u1 − u2) dHn ≤

∫
{u1>u2}

(v2 − v1)(u1 − u2) dx.

Since v1 > v2 and β1 ≤ β2, this inequality holds if and only if |{u1 > u2}| = 0, i.e. u1 ≤ u2 a.e.
in Ω.

Proposition 6.8 (Comparison for minimizers of Bβ ). Assume that v1, v2 ∈ L∞loc(Ω), v1 ≥ v2
a.e. in Ω and v2 ≥ 0 a.e. in Ω \C. Suppose also that β1 ≤ β2 satisfy (4.3). Then:

a) there exists a minimizer u1∗ of Bβ1 (·, v1,C) such that u1∗ ≤ u2 for any minimizer u2 of
Bβ2 (·, v2,C);

b) there exists a minimizer u∗2 of Bβ2 (·, v2,C) such that u1 ≤ u∗2 for any minimizer u1 of
Bβ1 (·, v1,C).

Proof. a) Take ε ∈ (0, 1). Since v1 + ε > v2 a.e. in Ω, by Proposition 6.7 any minimizer
uε1, u2 ∈ BV(Ω, [0, 1]) of Bβ1 (·, v1 + ε,C) and Bβ2 (·, v2,C) respectively, satisfies uε1 ≤ u2. Let
R1 := max{R1(C, v1),R1(C, v2)}. By minimality, Bβ1 (uε1, v1 + ε,C) ≤ Bβ1 (0, v1 + ε,C) = 0, and
since by Remark 6.5 uε1 = 0 a.e. in Ω \Ch

R1
, recalling (3.10) we get

κ

∫
Ω

|Duε1| ≤ (‖v1‖L∞(Ch
R1

) + 1)|Ch
R1
| < +∞.

By compactness, there exists u1∗ ∈ BV(Ω, [0, 1]) such that, up to a (not relabelled) subsequence,
uε1 → u1∗ in L1(Ω) and a.e. in Ω as ε→ 0+. Then any minimizer u2 of Bβ2 (·, v2,C) satisfies
u1∗ ≤ u2 a.e. in Ω.

It remains to show that u1∗ is a minimizer of Bβ1 (·, v1,C). By (6.5) we may consider only
those u ∈ BV(Ω, [0, 1]) with u = 0 a.e. in Ω \Ch

R1
as a competitor. In this case, the continuity

of u 7→
∫

Ch
R1

uv dx, the minimality of uε1 and the lower semicontinuity of Cβ(·,Ω) imply

Bβ1 (u, v1,C) = lim
ε→0+
Bβ1 (u, v1 + ε,C) ≥ lim inf

ε→0+
Bβ1 (uε1, v1 + ε,C)

≥ lim inf
ε→0+

Cβ1 (uε1,Ω) + lim
ε→0+

∫
Ch
R1

uε1(v1 + ε) dx

≥Cβ1 (u1∗,Ω) +

∫
Ch
R1

u1∗v1 dx = Bβ1 (u1∗, v1,C).

b) can be proven in a similar manner.

Proof of Theorem 6.1. Let R := max{R(E0),R(F0)}, where R(E0) and R(F0) are defined as in
(4.4). Then by Theorem 4.1 any minimizer Eλ (resp. Fλ ) of Aβ1 (·, E0, λ) (resp. Aβ2 (·, F0, λ) )
is contained in the cylinder C := B̂R × (0,H), where

H = 1 + max
{

max
(x′,xn+1)∈E0

xn+1, max
(x′,xn+1)∈F0

xn+1

}
.

Set v1 := v1(λ, E0) = λd̃E0 and v2 := v2(λ, F0) = λd̃F0 . Since E0 ⊆ F0 ⊂ Ω, we have
d̃E0 ≥ d̃F0 . Moreover, by (4.3) there exists a cylinder C := CH

D such that v2 ≥ 0 in Ω \C.
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a) Since v1 ≥ v2 and β1 ≤ β2, by Proposition 6.8 b) there exists a minimizer u∗2 := u∗2(λ, F0)
of Bβ2 (·, v2,C) such that any minimizer u1 of Bβ1 (·, v1,C) satisfies

u1 ≤ u∗2. (6.7)

By Remark 6.5 there exists t ∈ (0, 1) such that χ{u∗2>t} is a minimizer of Bβ2 (·, v2,C). Then,
recalling the expression of v2, by Lemma 6.6 F∗λ := {u∗2 > t} is a minimizer of Aβ2 (·, F0, λ).
Moreover, if Eλ is a minimizer of Aβ1 (·, E0, λ), then by Lemma 6.6 χEλ

is a minimizer of
Bβ1 (·, v1,C), and by (6.7) χEλ

≤ u∗2. In particular,

Eλ = {χEλ
> t} ⊆ {u∗2 > t} =: F∗λ.

b) is analogous to a) using Proposition 6.8 a).
The last assertion follows with the same arguments from Lemma 6.6 and Proposition 6.7,

since (6.1) implies that d̃E0 > d̃F0 .

One useful case is when E0 is a constrained minimizer of Cβ(·,Ω) in E(E0) : in this case
E0 acts as a barrier for minimizers of Aβ(·, E0, λ).

Proposition 6.9. Assume that E0, β1, β2 satisfy (4.3). Let β1 ≤ β2, E0 be a constrained min-
imizer of Cβ2 (·,Ω) in E(E0) and Eλ ∈ BV(Ω, {0, 1}) be a minimizer of Aβ1 (·, E0, λ). Then
Eλ ⊆ E0.

Proof. Comparing Eλ with E0 ∩ Eλ we get

P(Eλ,Ω) + λ

∫
Eλ\E0

d̃E0 dx ≤ P(Eλ ∩ E0,Ω) +

∫
∂Ω

β1 χEλ\E0 dHn.

From the constrained minimality of E0 we have Cβ2 (E0,Ω) ≤ Cβ2 (E0 ∪ Eλ,Ω), i.e.

P(E0,Ω) ≤ P(E0 ∪ Eλ,Ω) −
∫
∂Ω

β2 χEλ\E0 dHn.

Adding these inequalities we obtain

P(Eλ,Ω) + P(E0,Ω) + λ

∫
Eλ\E0

d̃E0 dx ≤P(Eλ ∪ E0,Ω) + P(Eλ ∩ E0,Ω)

+

∫
∂Ω

(β1 − β2)χEλ\E0 dHn.

Then the condition β1 ≤ β2 and (2.2) yield that

λ

∫
Eλ\E0

d̃E0 dx ≤ 0.

Since d̃E0 > 0 outside E0, the last inequality is possible only if |Eλ\E0| = 0, i.e. Eλ ⊆ E0.

Proposition 6.9 gives the following monotonicity principle.

Proposition 6.10 (Monotonicity). Assume that E0, β satisfy (4.3), E0 is a constrained mini-
mizer of Cβ(·,Ω) in E(E0) such that |E0 \ E0| = 0 and Eα ∈ BV(Ω, {0, 1}) is a minimizer of
Aβ(·, E0, α) for α ≥ 1. Then Eλ ⊆ Eµ for any 1 ≤ λ < µ. Moreover, every Eα, α ≥ 1 is also
a constrained minimizer of Cβ(·,Ω) in E(Eα).

24



Proof. Comparison between Eλ and Eλ ∩ Eµ gives

P(Eλ,Ω) + λ

∫
Eλ\Eµ

d̃E0 dx ≤ P(Eλ ∩ Eµ,Ω) +

∫
∂Ω

β χEλ\Eµ
dHn.

Similarly, for Eµ and Eλ ∪ Eµ we have

P(Eµ,Ω) ≤ P(Eλ ∪ Eµ,Ω) + µ

∫
Eλ\Eµ

d̃E0 dx −
∫
∂Ω

β χEλ\Eµ
dHn.

Adding the above inequalities and using (2.2) we obtain

(λ − µ)
∫

Eλ\Eµ

d̃E0 dx ≤ 0. (6.8)

By hypothesis |E0 \ E0| = 0, according to Proposition 6.9, Eλ, Eµ ⊆ E0, Thus d̃E0 ≤ 0 in
Eλ \ Eµ. But since λ < µ, (6.8) is possible only if |Eλ \ Eµ| = 0, i.e. Eλ ⊆ Eµ.

To prove the final assertion take any set E ∈ E(Eα). Then using Aβ(Eα, E0, α) ≤ Aβ(Eα ∩

E0, E0, α), α
∫

(E0∩E)\Eα
dE0 dx ≥ 0, and Eα ⊆ E0 ∩ E, we get

Cβ(Eα,Ω) ≤ Cβ(Eα,Ω) + α

∫
(E0∩E)\Eα

dE0 dx ≤ Cβ(E ∩ E0,Ω).

Moreover, since Cβ(E0,Ω) ≤ Cβ(E ∪ E0,Ω), from (2.2) we obtain

Cβ(Eα,Ω) + Cβ(E0,Ω) ≤ Cβ(E0 ∩ E,Ω) + Cβ(E0 ∪ E,Ω) ≤ Cβ(E,Ω) + Cβ(E0,Ω),

i.e. Cβ(Eα,Ω) ≤ Cβ(E,Ω).

Proposition 6.11 (Comparison between minimizers of Cβ and Aβ ). Suppose that E0 and
β satisfy (4.3).

a) Let E+ ∈ BV(Ω, {0, 1}) be a constrained minimizer of Cβ(·,Ω) in E(E0). Then every
minimizer Eλ of Aβ(·, E0, λ) satisfies Eλ ⊆ E+.

b) Let E+ ∈ BV(Ω, {0, 1}) be a bounded constrained minimizer of Cβ(·,Ω) in E(E+). Then
for every E0 ⊆ E+ and for every minimizer Eλ of Aβ(·, E0, λ) one has Eλ ⊆ E+. More-
over, E+ can be chosen such that |E+ \ E+| = 0.

Proof. a) By Proposition 4.4 E+ is a constrained minimizer of Cβ(·,Ω) in E(E+). Let E+
λ be

the maximal minimizer of Aβ(·, E+, λ) (Definition 6.4). By Proposition 6.9 we have E+
λ ⊆ E+.

Take any minimizer Eλ of Aβ(·, E0, λ). Since E0 ⊆ E+, by Theorem 6.1 a) we have

Eλ ⊆ E+
λ ⊆ E+.

b) The proof of the first part is exactly the same as the proof of a). To prove the second part,
we take any E′0 ∈ BV(Ω, {0, 1}) satisfying the hypotheses of Proposition 5.8 and containing E0.
By Theorem 4.4 there exists a constrained minimizer E+ of Cβ(·,Ω) in E(E′0). In particular,
E+ is bounded, and by Proposition 5.8 Hn(∂E+) = P(E+) < +∞. Since E+ \ E+ ⊆ ∂E+, we
have |E+ \ E+| = 0.
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7. Existence of a generalized minimizing movement

Consider the functional Âβ : BV(Ω, {0, 1})×BV(Ω, {0, 1})× [1,+∞)×Z→ [−∞,+∞] given
by

Âβ(F,G, λ, k) :=

Aβ(F,G, λ) if k > 0,
|F∆G| if k ≤ 0.

For any k ∈ N we build the family of sets Eλ(k) iteratively as follows: Eλ(0) := E0 and
Eλ(k), k ≥ 1, is a minimizer of Âβ(·, Eλ(k − 1), λ, k) in BV(Ω, {0, 1}); notice that existence of
minimizers follows from Theorem 4.1.

From now on, we omit the dependence on k of Âβ, and we use the notation Âβ(F,G, λ).

Theorem 7.1 (Existence). Let E0 and β satisfy (5.1). Then GMM(E0) is nonempty, i.e. there
exist a map t ∈ [0,+∞) 7→ E(t) ∈ BV(Ω, {0, 1}) and a diverging sequence {λ j} ⊂ [1,+∞) such
that

lim
j→+∞

|Eλ j ([λ jt])∆E(t)| = 0, t ∈ [0,+∞). (7.1)

Moreover, every GMM t ∈ [0,+∞) 7→ E(t) starting from E0 is contained in a bounded set E+

depending only on E0 and β, and belongs to C1/2
loc ((0,+∞), L1(Ω)), in the sense that

|E(t)∆E(t′)| ≤ θ(n, κ)P(E0)|t − t′|1/2 for all t, t′ > 0, |t − t′| < 1, (7.2)

where θ(n, κ) =
Cn,κ

κ
+ 1 and Cn,κ is defined in (5.20). If in addition |E0 \ E0| = 0, then (7.2)

holds for any t, t′ ≥ 0 with |t − t′| < 1. Finally,

νEλ j ([λ jt])H
n ∂∗Eλ j ([λ jt])

w∗
⇀ νE(t)H

n ∂∗E(t) for all t ≥ 0 as λ j → +∞. (7.3)

Proof. Given k ≥ 0 set dk(·) := dist(·,Ω ∩ ∂Eλ(k)). Then for k ≥ 1 the minimality of Eλ(k)
entails

Aβ(Eλ(k), Eλ(k − 1), λ) ≤ Aβ(Eλ(k − 1), Eλ(k − 1), λ),

i.e.
Cβ(Eλ(k),Ω) + λ

∫
Eλ(k)∆Eλ(k−1)

dk−1dx ≤ Cβ(Eλ(k − 1),Ω). (7.4)

In particular, the sequence k ∈ N ∪ {0} 7→ Cβ(Eλ(k),Ω) is nonincreasing and

Cβ(Eλ(k),Ω) ≤ Cβ(Eλ(0),Ω) = Cβ(E0,Ω) ≤ P(E0). (7.5)

Let t > 0 and set k = [λt]. Then (3.9) yields

κP(Eλ([λt])) ≤ Cβ(Eλ([λt]),Ω) ≤ P(E0). (7.6)

Take t1, t2 > 0, t1 < t2 and let λ ≥ 1 be large enough that for some k0,N ∈ N, N ≥ 3

k0 = [λt1], k0 + N − 1 = [λt2],

i.e.
k0

λ
≤ t1 <

k0 + 1
λ

< . . . <
k0 + N − 1

λ
≤ t2 <

k0 + N
λ

.
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Then
N − 2
λ

=
k0 + N − 1 − (k0 + 1)

λ
≤ t2 − t1. (7.7)

Since all Eλ(s), s ≥ 1 satisfy uniform density estimates (5.4)-(5.5) (Theorem 5.1), by
Proposition 5.7 we have3

|Eλ([λt2])∆Eλ([λt1])| = |Eλ(k0 + N − 1)∆Eλ(k0)| ≤
k0+N−2∑

s=k0

|Eλ(s)∆Eλ(s + 1)|

≤Cn,κ`

k0+N−2∑
s=k0

P(Eλ(s)) +
1
`

k0+N−2∑
s=k0

∫
Eλ(s+1)∆Eλ(s)

dEλ(s) dx

(7.8)

for any ` ∈ (0, γ(n,κ)
λ1/2 ). The first sum can be estimated using (7.6):

k0+N−2∑
s=k0

P(Eλ(s)) ≤
P(E0)
κ

(N − 1). (7.9)

Moreover, for any s ∈ N, by (7.4)∫
Eλ j (s+1)∆Eλ(s)

dEλ(s) dx ≤
1
λ

(
Cβ(Eλ(s),Ω) − Cβ(Eλ(s + 1),Ω)

)
,

and thus

k0+N−2∑
s=k0

∫
Eλ(s+1)∆Eλ(s)

dEλ(s) dx ≤
1
λ

k0+N−2∑
s=k0

(
Cβ(Eλ(s),Ω) − Cβ(Eλ(s + 1),Ω)

)
=

1
λ

(
Cβ(Eλ(k0),Ω) − Cβ(Eλ(k0 + N − 1),Ω)

)
.

Using (7.5) and the nonnegativity of Cβ(·,Ω) we get

k0+N−2∑
s=k0

∫
Eλ(s+1)∆Eλ(s)

dEλ(s) dx ≤
P(E0)
λ

. (7.10)

Thus, from (7.8), (7.9) and (7.10)

|Eλ([λt1])∆Eλ([λt2])| ≤
Cn,κP(E0)

κ
(N − 1)` +

P(E0)
λ`

. (7.11)

Now take λ so large that

t2 − t1 >
1

γ(n, κ)2 λ
,

3Notice that at this point we use t1 > 0; since a priori we do not know whether E0 satisfies the density estimates,
we cannot start summing from s = 0 = k0.
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so that Proposition 5.7 holds for ` = 1
λ|t2−t1 |1/2

. From (7.11) and (7.7) we obtain

∣∣∣Eλ([λt1])∆Eλ([λt2])
∣∣∣ ≤Cn,κP(E0)

κ

N − 2
λ|t2 − t1|1/2

+
1
λ

Cn,κP(E0)
κ|t2 − t1|1/2

+ P(E0) |t2 − t1|1/2

≤θ(n, κ)P(E0) |t2 − t1|1/2 +
1
λ

Cn,κP(E0)
κ|t2 − t1|1/2

.

(7.12)

By Proposition 6.11 b) there exists a constrained minimizer E+ ⊇ E0 of Cβ(·,Ω) in E(E+)
such that |E+ \ E+| = 0 and Eλ(1) ⊆ E+. By induction, we can show that Eλ(k) ⊆ E+ for all
k ≥ 1. Consider now an arbitrary diverging sequence {λ j}. Compactness and a diagonal process
yield the existence of a subsequence (still denoted by {λ j} ) such that Eλ j ([λ jt]) converges in
L1(Ω) to a set E(t) for any rational t ≥ 0 as j→ +∞.

If t1, t2 ∈ Q ∩ (0,+∞), with 0 < |t1 − t2| < 1, letting λ j → +∞ in (7.12) we get

|E(t1)∆E(t2)| ≤ θ(n, κ)P(E0)|t2 − t1|1/2. (7.13)

By completeness of L1(Ω) we can uniquely extend {E(t) : t ∈ Q ∩ (0,+∞)} to a family
{E(t) : t ∈ (0,+∞)} preserving the Hölder continuity (7.13) in (0,+∞). Now we show (7.1).
If t = 0, E0 = Eλ j (0) → E(0) in L1(Ω) as j → +∞. If t > 0, take any ε ∈ (0, 1) and
tε ∈ Q∩ (0,+∞) such that |t − tε| < ε. By the choice of {λ j}, (7.1) holds for tε and thus, using
(7.12)-(7.13) we get

lim sup
j→+∞

|Eλ j ([λ jt])∆E(t)| ≤ lim sup
j→+∞

|Eλ j ([λ jt])∆Eλ j ([λ jtε])|

+ lim sup
j→+∞

|Eλ j ([λ jtε])∆E(tε)| + |E(tε)∆E(t)|

≤2θ(n, κ)P(E0)|t − tε|1/2 < 2θ(n, κ)P(E0)
√
ε.

Therefore, letting ε→ 0+ we get (7.1).
When |E0 \ E0| = 0, for any t ∈ (0, 1), choosing λ sufficiently large, from (7.12) we obtain

|Eλ([λt])∆E(0)| ≤|Eλ([λt])∆Eλ(1)| + |Eλ(1)∆E0|

≤θ(n, κ)P(E0)
∣∣∣∣t − 1

λ

∣∣∣∣1/2 +
1
λ

Cn,κP(E0)
κ|t − 1

λ
|1/2

+ |Eλ(1)∆E0|.
(7.14)

By Lemma 4.6 a) the last term on the right hand side converges to 0 as λ→ +∞. Hence letting
λ→ +∞ in (7.14) we get the (1/2) -Hölder continuity of t 7→ E(t) in [0,+∞).

Now let us prove (7.3). We need to show that for any t ∈ [0,+∞)

lim
j→+∞

∫
∂∗Eλ j ([λ jt])

φ · νEλ j ([λ jt]) dHn =

∫
∂∗E(t)

φ · νE(t) dHn ∀φ ∈ Cc(Rn+1,Rn+1).

If φ ∈ C1
c (Rn+1,Rn+1), by the generalized divergence formula (2.3) and by (7.1) we have

lim
j→+∞

∫
∂∗Eλ j ([λ jt])

φ · νEλ j ([λ jt]) dHn = lim
j→+∞

∫
Eλ j ([λ jt])

div φ dHn

=

∫
E(t)

div φ dHn =

∫
∂∗E(t)

φ · νE(t) dHn.

(7.15)
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In general, we approximate φ ∈ Cc(Rn+1,Rn+1) uniformly with φk ∈ C1
c (Rn+1,Rn+1), k ≥ 1

and use the previous result.
Finally, if {E(t)}t≥0 ∈ GMM(E0), then by construction and Proposition 6.11 b) one has

Eλ j ([λ jt]) ⊆ E+, where E+ := E+(E0, β) is a bounded minimizer of Cβ(·,Ω) in E(E+); there-
fore E(t) ⊆ E+ for all t ≥ 0.

Definition 7.2 (Maximal and minimal GMM). Let E0, β satisfy (5.1), and {λ j} be a diverging
sequence such that

E∗(t) := lim
j→+∞

Eλ j ([λ jt])∗ ∀t ≥ 0

exist in L1(Ω), where Eλ j ([λ jt])∗ is the maximal minimizer of Aβ(·, Eλ j ([λ jt] − 1)∗, λ j) with
(E0)∗ := E0 (Definition 6.4). We call E∗(t) the maximal GMM associated to the sequence {λ j}.
Analogously,

E∗(t) := lim
j→+∞

Eλ j ([λ jt])∗ ∀t ≥ 0,

obtained using the minimal minimizers Eλ j ([λ jt])∗ of Âβ(·, Eλ j ([λ jt]−1)∗, λ j) with (E0)∗ := E0,
is called the minimal GMM associated to the sequence {λ j}.

Observe that if t 7→ E(t) is any GMM obtained by the sequence {λ j}, then according to the
proof of Theorem 7.1 (possibly passing to nonrelabelled subsequences) there exist the maximal
GMM t 7→ E∗(t) and the minimal GMM t 7→ E∗(t) associated to {λ j}. Now by Remark 6.3
one has E∗(t) ⊆ E(t) ⊆ E∗(t) for all t ≥ 0.

Theorem 7.3 (Comparison principle for maximal and minimal GMM). Let E0, F0, β1, β2
satisfy (5.1) with E0 ⊆ F0 and β1 ≤ β2. If E∗(t) and F∗(t) are minimal GMMs associated to a
sequence {λ j}, then E∗(t) ⊆ F∗(t) for all t ≥ 0. Analogously, if E∗(t) and F∗(t) are maximal
GMMs associated to {λ′j}, then E∗(t) ⊆ F∗(t) for all t ≥ 0.

Proof. Since E0 ⊆ F0, and β1 ≤ β2, by definition of Eλ(k)∗ and Fλ(k)∗ (resp. Eλ(k)∗ and
Fλ(k)∗ ) and by Theorem 6.1, we have Eλ∗(k) ⊆ Fλ∗(k) (resp. E∗λ(k) ⊆ F∗λ(k) ) which implies
E∗(t) ⊆ F∗(t) (resp. E∗(t) ⊆ F∗(t) ) for all t ≥ 0.

From the proof of Theorem 7.1 and Propositions 6.9 -6.10 we get the following result (com-
pare with [11]), that could be applied, for instance, to E0 as in Example 4.5.

Theorem 7.4. Let E0 be a constrained minimizer of Cβ(·,Ω) in E(E0) such that |E0 \ E0| = 0.
Then every maximal (minimal) GMM t 7→ E(t) starting from E0 satisfies E(t) ⊆ E(t′) provided
t > t′ ≥ 0.

Proof. Applying Propositions 6.9 and 6.10 inductively to maximal minimizers Eλ(k)∗ of Âβ(·,
Eλ(k − 1)∗, λ) we get Eλ(k)∗ ⊆ Eλ(k − 1)∗ for all k ≥ 1 and λ ≥ 1. Hence, if t > t′ ≥ 0 then
Eλ([λt])∗ ⊆ Eλ([λt′])∗. Now the assertion of the theorem follows from (7.1). The arguments for
minimal minimizers are the same.

8. GMM as a distributional solution

The aim of this section is to prove that under suitable assumptions GMM is in fact a distribu-
tional solution of (1.1)-(1.2). Let us start with the following
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Definition 8.1 (Admissible variation). A vector field X = (X′, Xn+1) ∈ C1
c (Ω,Rn+1) is called

admissible if X · en+1 = 0 on ∂Ω.

Observe that if X ∈ C1
c (Ω,Rn+1) is admissible, then for any s ∈ (−ε, ε) with ε > 0 suf-

ficiently small, the vector field fs = Id +sX is a C1 -diffeomorphism that satisfies fs(Ω) = Ω,
fs(Ω) = Ω.

Proposition 8.2 (First variation of Aβ ). Suppose that E0, β satisfy assumptions (5.1) and let
E ∈ BV(Ω, {0, 1}) be bounded with Tr(E) ∈ BV(Rn, {0, 1}). Then

d
ds
Aβ( fs(E), E0, λ)

∣∣∣∣
s=0

=

∫
Ω∩∂∗E

(div X − νE · (∇X)νE) dHn

+ λ

∫
Ω∩∂∗E

d̃E0 X · νE dHn −

∫
∂∗Tr(E)

β X′ · ν′Tr(E)dH
n−1,

(8.1)

where ∂∗Tr(E) is the essential boundary of Tr(E) on ∂Ω and ν′Tr(E) is the outer unit normal
to Tr(E) ⊂ Rn.

Proof. From [42, Theorem 17.5]

d
ds

P( fs(E),Ω)
∣∣∣∣
s=0

=

∫
Ω∩∂∗E

(div X − νE · (∇X)νE) dHn.

Moreover, [42, Theorem 17.8] and the admissibility of X imply that

d
ds

∫
fs(E)

d̃E0 dx
∣∣∣∣
s=0

=

∫
∂∗E

d̃E0 X · νE dHn =

∫
Ω∩∂∗E

d̃E0 X · νE dHn.

Finally, since Tr(E) is by assumption a set of finite perimeter in ∂Ω ≡ Rn, again using [42,
Theorem 17.8] we get

d
ds

∫
∂Ω

β χ fs(E)dH
n
∣∣∣∣
s=0

=

∫
∂∗Tr(E)

β X′ · ν′Tr(E) dHn−1.

Remark 8.3. Under assumptions (5.1) and β ∈ Lip(∂Ω), if Eλ is a minimizer of Aβ(·, E0, λ),
and if Ω∩∂Eλ is a C2 -manifold with Hn−1 - rectifiable boundary, then the mean curvature HEλ

of Ω ∩ ∂Eλ is equal to −λd̃E0 . Indeed, using the tangential divergence formula for manifolds
with boundary we have∫

Ω∩∂Eλ

(div X − νEλ
· (∇X)νEλ

) dHn =

∫
Ω∩∂Eλ

HEλ
X · νEλ

dHn +

∫
∂∗Tr(Eλ)

X′ · nλ′ dHn−1,

where nλ = (nλ′, nλn+1) is the outer unit conormal to Ω ∩ ∂Eλ at Ω ∩ ∂Eλ ∩ ∂Ω. By minimality

of Eλ, we have d
dsAβ( fs(Eλ), E0, λ)

∣∣∣∣
s=0

= 0, i.e.∫
Ω∩∂Eλ

(HEλ
+ λd̃E0 ) X · νEλ

dHn +

∫
∂∗Tr(Eλ)

X′ · (nλ′ − βν′Tr(Eλ)) dHn−1 = 0.

This implies HEλ
= −λd̃E0 and nλ′ = βν′Tr(Eλ). Notice that from the latter in particular, we get

β = nλ · (ν′Tr(Eλ), 0) = νEλ
· en+1,

accordingly for instance with Theorem 5.3.
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Remark 8.3 motivates the following definition [9, 42].

Definition 8.4 (Distributional mean curvature). Let E ∈ BV(Ω, {0, 1}). The function HE ∈

L1(Ω ∩ ∂∗E;Hn (Ω ∩ ∂∗E)) is called distributional mean curvature of Ω ∩ ∂∗E if for every
X ∈ C1

c (Ω,Rn+1) the generalized tangential divergence formula holds:∫
Ω∩∂∗E

(div X − νE · (∇X)νE) dHn =

∫
Ω∩∂∗E

HE X · νE dHn. (8.2)

Given x ∈ Rn+1 and t > 0 set

vλ(t, x) :=

−λd̃Eλ([λt]−1)(x) if t ≥ 1
λ
,

0 if t ∈ [0, 1
λ
).

Remark 8.5. By Theorem 5.3, Tr(Eλ([λt])) ∈ BV(Rn, {0, 1}).

The next result relates GMM with distributional solutions of (1.1)-(1.2).

Theorem 8.6 (GMM is a distributional solution). Let E0, β satisfy (5.1), |E0 \ E0| = 0,
{E(t)}t≥0 be a GMM starting from E0 obtained along the diverging sequence {λ j} . Suppose
that

Hn (Ω ∩ ∂∗Eλ j ([λ jt]))
w∗
⇀ Hn (Ω ∩ ∂∗E(t)) as j→ +∞ for a.e. t ≥ 0. (8.3)

Then there exist a function v : [0,+∞) ×Ω→ R with∫ +∞

0

∫
Ω∩∂∗E(t)

(v)2 dHn dt ≤ α(n, κ) P(E0), (8.4)

and a (not relabelled) subsequence such that

lim
j→+∞

∫ +∞

0

∫
Ω∩∂∗Eλ j ([λ jt])

φvλ j dHndt =

∫ +∞

0

∫
Ω∩∂∗E(t)

φv dHndt, (8.5)

lim
j→+∞

∫ +∞

0

∫
Ω∩∂∗Eλ j ([λ jt])

vλ j νEλ j ([λ jt]) · Ψ dHndt =

∫ +∞

0

∫
Ω∩∂∗E(t)

v νE(t) · Ψ dHndt (8.6)

for any φ ∈ Cc(Ω), Ψ ∈ Cc([0,+∞) × Ω,Rn+1), where α(n, κ) := 75[(n+1)ωn+1+ωn]b(n)
(κ/2)n+1ωn+1

. Moreover,
{E(t)}t≥0 solves (1.1)-(1.2) with initial datum E0 in the following sense:

(i) for a.e. t ≥ 0 the set Ω ∩ ∂∗E(t) has distributional mean curvature HE(t) = v, and if
1 ≤ n ≤ 6, for every φ ∈ C1

c ([0,+∞) ×Ω) :∫ +∞

0

∫
E(t)

∂tφ dxdt +

∫
E(0)

φ(0, x) dx =

∫ +∞

0

∫
Ω∩∂∗E(t)

φHE(t) dHndt; (8.7)

(ii) if β ∈ Lip(∂Ω) and there exists h ∈ L1
loc([0,+∞)) such that

P(Tr(Eλ j ([λ jt]))) ≤ h(t) for all j ≥ 1 and a.e. t ≥ 0, (8.8)
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then Tr(E(t)) ∈ BV(Rn, {0, 1}) for a.e. t > 0 and∫
Ω∩∂∗E(t)

(
div X − νE(t) · (∇X)νE(t)

)
dHn

=

∫
Ω∩∂∗E(t)

HE(t) X · νE(t) dHn +

∫
∂∗Tr(E(t))

β X′ · ν′Tr(E(t)) dHn−1
(8.9)

for every admissible X ∈ C1
c (Ω,Rn+1).

The need for assumption (8.3) is not surprising; see [41, 45] for conditional results obtained
in other contexts in a similar spirit. We postpone the proof after several auxiliary results.

Proposition 8.7. Assume that E0 and β satisfy (5.1). Then for any λ ≥ 1 and a.e. t ≥ 1/λ
the function vλ(t, ·) is the distributional mean curvature of Eλ([λt]).

Proof. Set E := Eλ([λt]). Remark 8.5 and (8.1) imply that∫
Ω∩∂∗E

(div X − νE · (∇X)νE) dHn =

∫
Ω∩∂∗E

vλ X · νE dHn.

Hence, it suffices to prove vλ(t, ·) ∈ L1(Ω ∩ ∂∗E;Hn Ω ∩ ∂∗E) for a.e. t ∈ [1/λ,+∞) and
since P(E(t),Ω) < +∞, this follows from Lemma 8.9 below.

Remark 8.8. From Definition 8.4, Proposition 8.7 and Lemma 8.9 it follows that

vλ(t, x) = HEλ([λt])(t, x) for a.e. t ≥ 1/λ and Hn -a.e. x ∈ Ω ∩ ∂Eλ([λt]).

This is a discretized version of equation (1.1).

Lemma 8.9 (Uniform L2 -bound of the approximate velocities). Under assumptions (5.1) the
inequality ∫ +∞

0

∫
Ω∩∂Eλ([λt])

(vλ)2 dHndt ≤ α(n, κ)P(E0)

holds.

Proof. The proof is analogous to the proof of [45, Lemma 3.6]. Given ε > 0 and E ∈
BV(Ω, {0, 1}) let

(∂E)+
ε := {x ∈ Rn+1 : dist(x,Ω ∩ ∂E) ≤ ε}.

For t ∈ [ 1
λ
,+∞) and ` ∈ Z such that ` ≤ 1 + [log2(R(n, κ)λ1/2)], where R(n, κ) is given by

(5.2), define
K(`) =

{
x ∈

(
∂Eλ([λt] − 1)

)+

R(n,κ)λ−1/2
: 2` < |vλ(x, t)| ≤ 2`+1

}
.

By Proposition 5.5 Eλ([λt])∆Eλ([λt] − 1) ⊆ ∪`K(`). Take x ∈ K(`) ∩ Ω ∩ ∂Eλ([λt]). Then
B 2`−1

λ

(x) ∩ Eλ([λt] − 1) = ∅ and hence, by Remark 5.4 the following density estimates hold:

|Eλ([λt]) ∩ B 2`−1
λ

(x)| ≥
(
κ

2

)n+1
ωn+1

(
2`−1

λ

)n+1

,

Hn(B 2`−1
λ

(x) ∩Ω ∩ ∂Eλ([λt])) ≤
[
(n + 1)ωn+1 + ωn

] (2`−1

λ

)n

.

(8.10)
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Using 2`−1 ≤ |vλ(y, t)| ≤ 5 · 2`−1 for any y ∈ B 2`−1
λ

(x), from (8.10) we deduce

∫
B 2`−1

λ

(x)∩Ω∩∂Eλ([λt])
(vλ)2 dHn ≤25[(n + 1)ωn+1 + ωn](2`−1)2

(
2`−1

λ

)n

≤
25[(n + 1)ωn+1 + ωn]

(κ/2)n+1ωn+1
λ

∫
B 2`−1

λ

(x)∩(Eλ([λt])∆Eλ([λt]−1))
|vλ| dx.

Application of Besicovitch covering theorem to the collection of balls {B 2`−1
λ

(x) : x ∈ K(`) ∩
∂Eλ([λt])} gives∫

K(`)∩Ω∩∂Eλ([λt])
(vλ)2 dHn ≤

25[(n + 1)ωn+1 + ωn]b(n)
(κ/2)n+1ωn+1

λ

∫
{2`−1≤|vλ |≤2`+2}∩(Eλ([λt])∆Eλ([λt]−1))

|vλ| dx.

Now summing up these inequalities over ` ∈ Z with ` ≤ 1 + [log2(R(n, κ)λ1/2)], and using the
properties of K(`) and the definition of α(n, κ) we get∫

Ω∩∂Eλ([λt])
(vλ)2 dHn ≤ α(n, κ) λ

∫
Eλ([λt])∆Eλ([λt]−1)

|vλ| dx.

Observe that by (7.4) for any t ≥ 1/λ one has∫
Eλ([λt])∆Eλ([λt]−1)

|vλ| dx ≤ Cβ(Eλ([λt] − 1),Ω) − Cβ(Eλ([λt]),Ω).

Thus ∫
Ω∩∂Eλ([λt])

(vλ)2 dHn ≤ α(n, κ) λ
(
Cβ(Eλ([λt] − 1),Ω) − Cβ(Eλ([λt]),Ω)

)
.

Fixing T > 0 and integrating this inequality in t ∈ [0,T ] we get∫ T

0

∫
Ω∩∂Eλ([λt])

(vλ)2 dHndt ≤α(n, κ)
[Tλ]+1∑

k=1

(
Cβ(Eλ(k − 1),Ω) − Cβ(Eλ(k),Ω)

)
≤α(n, κ)Cβ(E0,Ω) ≤ α(n, κ) P(E0),

where we used (3.9). Now letting T → +∞ completes the proof.

Proposition 8.10. Let E0, β satisfy (5.1), λ ≥ 1 and E+ be as in Proposition 6.11. Then

λ

∫ T

1/λ
|Eλ([λt])∆Eλ([λt] − 1)| dt ≤ |E+| +

P(E0)
γ(n, κ)

+
2n+1ωn+1γ(n, κ)b(n)

κc(n, κ)
P(E0) T (8.11)

for any T > 1
λ
. Here b(n), γ(n, κ), c(n, κ) are defined in Section 5.

Proof. Let [λT ] = N. Clearly,

λ

∫ T

1/λ
|Eλ([λt])∆Eλ([λt] − 1)| dt =

N∑
k=1

|Eλ(k)∆Eλ(k − 1)|.
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We recall that Eλ(k) ⊂ E+ for all λ ≥ 1 and k ≥ 0, by Proposition 6.11.
If k = 1, then

|Eλ(1)∆Eλ(0)| ≤ |E+|. (8.12)

Now if k ≥ 2, we write Eλ(k)∆Eλ(k − 1) as a union of Ak and Bk, where

Ak =
{
x ∈ Eλ(k)∆Eλ(k − 1) : dEλ(k−1)(x) > `

}
,

Bk =
{
x ∈ Eλ(k)∆Eλ(k − 1) : dEλ(k−1)(x) ≤ `

}
.

where ` := γ(n,κ)
λ
. By Chebyshev inequality |Ak | can be estimated using (7.4) as

|Ak | ≤
λ

γ(n, κ)

∫
Eλ(k)∆Eλ(k−1)

dEλ(k−1) dx ≤
1

γ(n, κ)

(
Cβ(Eλ(k),Ω) − Cβ(Eλ(k),Ω)

)
.

Hence, by (7.6)

N∑
k=2

|Ak | ≤
1

γ(n, κ)

N∑
k=2

(
Cβ(Eλ(k),Ω) − Cβ(Eλ(k),Ω)

)
≤

P(E0)
γ(n, κ)

.

Moreover, by definition Bk can be covered by the family of balls {B2`(x), x ∈ ∂Eλ(k − 1)}.
Thus, by Besicovitch covering theorem we can find at most countably many balls {B`(x j), x j ∈

∂Eλ(k−1)} covering Ω∩∂Eλ(k−1). Hence, the lower density estimate (5.5) for Eλ(k−1) used
with ` implies

|B2`(x j) ∩ Bk | ≤(2n+1ωn+1`)`n ≤
2n+1ωn+1

c(n, κ)
` P(Eλ(k − 1), B`(x j)),

from which it follows that

N∑
k=2

|Bk | ≤

N∑
k=2

∑
j≥1

|B2`(x j) ∩ Bk | ≤
2n+1ωn+1

c(n, κ)
`

N∑
k=2

∑
j≥1

P(Eλ(k − 1), B`(x j))

≤
2n+1b(n)ωn+1

c(n, κ)
`

N∑
k=2

P(Eλ(k − 1),Ω).

Therefore, using (7.6) and N ≤ λT, we get

N∑
k=2

|Bk | ≤
2n+1b(n)ωn+1γ(n, κ)

κc(n, κ)
P(E0) T. (8.13)

Finally, (8.11) follows from (8.12)-(8.13).

The following error estimate is similar to error estimates shown in [41, 45].

Proposition 8.11 (Error estimate). Let 1 ≤ n ≤ 6. Under assumption (4.3), for every φ ∈
C1

c ([0,+∞) ×Ω) the following error-estimate holds:

lim
j→+∞

∫ +∞

1/λ j

λ j

( ∫
Ω

(χEλ j ([λ jt]) − χEλ j ([λ jt]−1))φ dx −
∫

Ω∩∂Eλ j ([λ jt])
d̃Eλ j ([λ jt]−1) φ dHn

)
dt → 0. (8.14)
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Proof. Let us assume that supp φ ⊂⊂ [0,T ) ×Ωε, Ωε := Rn × (ε,+∞) ⊂ Ω for some ε,T > 0.
Let us take j so large that

4Rλ−1/2
j < ε, (8.15)

where R := R(n, κ) is defined in (5.2).
Given an integer k ≥ 1 set

∆k( j) :=
∫ (k+1)/λ j

k/λ j

λ j

( ∫
Ω

(χEλ j (k) − χEλ j (k−1)) φ dx −
∫

Ω∩∂Eλ j (k)
d̃Eλ j (k−1) φ dHn

)
dt.

We need to estimate∫ T

1/λ j

λ j

( ∫
Ωε

(χEλ j ([λ jt]) − χEλ j ([λ jt]−1)) φ dx −
∫

Ωε∩∂Eλ j ([λ jt])
d̃Eλ j ([λ jt]−1) φ dHn

)
dt =

N j∑
k=1

∆k( j),

where N j = [λ jT ].
First consider ∆1( j). By virtue of Proposition 5.5 and (7.6),

|∆1( j)| =

∣∣∣∣∣∣
∫ 2/λ j

1/λ j

λ j

( ∫
Ωε

(χEλ j (1) − χEλ j (0)) φ dx −
∫

Ωε∩∂Eλ j (1)
d̃Eλ j (0) φ dHn

)
dt

∣∣∣∣∣∣
≤‖φ‖∞

(
|Eλ j (1)∆E0| +

R(n, κ)√
λ j

P(Eλ j (1),Ω)
)

≤‖φ‖∞

(
|Eλ j (1)∆E0| +

R(n, κ)
κ
√
λ j

P(E0)
)
.

(8.16)

Hence, by Lemma 4.6 a), ∆1( j)→ 0 as j→ +∞.

Recall that by Theorem 7.1 there exists a bounded set E+ ⊂ Ω (depending only on E0 and
β ) such that Eλ j (k) ⊆ E+ for all j ≥ 1 and k ≥ 1.

Our aim is now to show that given σ2 := 2n+5
4(n+2) ∈ (1/2, 1), σ1 ∈ (1/2, σ2), there exists an

increasing function w ∈ C([0,∞)) with w(0) = 0, such that for any k ∈ {2, . . . ,N j},

|∆k( j)| ≤C(n)
(
λ−σ2

j ‖∇φ‖∞ + (6w(1/λ j) + C(n)λσ1−σ2
j ) ‖φ‖∞

)
|Eλ j (k)∆Eλ j (k − 1)|

+ ‖φ‖∞C(n, κ, diam(E+))λ−1/4
j

(
Cβ(Eλ j (k − 1),Ω) − Cβ(Eλ j (k),Ω)

)
,

(8.17)

provided j is large enough, where C(n) and C(n, κ, diam(E+)) are universal constants.
We may suppose that Eλ j (k) , ∅ for any k = 2, . . . ,N j. We divide the proof of (8.17) into

four steps, and in the first three steps we deal with the regions of “low-curvature” (assumption
(8.18)). In the final step we estimate the error in the “high-curvature” regions.

Step 1. For every σ1 ∈ (1/2, σ2) there exists an increasing function w ∈ C([0,∞)) with
w(0) = 0 such that, if k ∈ {2, . . . ,N j} and x ∈ Ωε ∩ ∂Eλ j (k) satisfy

dEλ j (k−1)(y) ≤ λ−σ2
j , y ∈ BRλ−1/2

j
(x) ∩ (Eλ j (k)∆Eλ j (k − 1)), (8.18)

then there is νk := νk(x) ∈ Sn such that

|νEλ j (s)(y) − νk | ≤ w(1/λ j), y ∈ Bλ−σ1
j

(x) ∩ ∂Eλ j (s), s = k, k − 1, (8.19)
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provided j is large enough satisfying also (8.15).
Indeed, fix r ∈ (0, λσ1−1/2

j ). By (8.15), the ball Brλ−σ1
j

(x) does not intersect ∂Ω, and hence

P(Eλ j (k), Brλ−σ1
j

(x)) ≤ P(F, Brλ−σ1
j

(x)) + λ j

∫
F∆Eλ j (k)

dEλ j (k−1)dy

for every F ∈ BV(Ω, {0, 1}) with F∆Eλ j (k) ⊂⊂ Brλ−σ1
j

(x). Since dEλ j (k−1)(·) is 1 -Lipschitz, by
virtue of Proposition 5.5 (applied with Eλ j (k − 1) instead of E0 ),

dEλ j (k−1)(y) ≤ dEλ j (k−1)(x) + |x − y| ≤ Rλ−1/2
j + rλ−σ1

j ≤
R + 1

λ1/2
j

, y ∈ F∆Eλ j (k),

whence
λ j

∫
F∆Eλ j (k)

dEλ j (k−1)dy ≤ (R + 1)λ1/2
j |F∆Eλ j (k)|

and
P(Eλ j (k), Brλ−σ1

j
(x)) ≤ P(F, Brλ−σ1

j
(x)) + (R + 1)λ1/2

j |F∆Eλ j (k)|. (8.20)

Let zo ∈ ∂Eλ j (k − 1) be such that |x − zo| = dEλ j (k−1)(x). As k ≥ 2,

P(Eλ j (k − 1), Brλ−σ1
j

(zo)) ≤ P(F, Brλ−σ1
j

(zo)) + (R + 1)λ1/2
j |F∆Eλ j (k − 1)| (8.21)

whenever F ∈ BV(Ω, {0, 1}) satisfies F∆Eλ j (k − 1) ⊂⊂ Brλ−σ1
j

(zo). Set

Eσ1
λ j

(k) :=
Eλ j (k) − x

λ−σ1
j

, Eσ1
λ j

(k − 1) :=
Eλ j (k − 1) − zo

λ−σ1
j

.

By virtue of (8.20)-(8.21) these sets satisfy

P(Eσ1
λ j

(s), Br(0)) ≤ P(F, Br(0)) + λ1/2−σ1
j (R + 1)|F∆Eσ1

λ j
(s)|

for any r ∈ (0, λσ1−1/2
j ) and F∆Eσ1

λ j
(s) ⊂⊂ Br(0), s = k, k − 1. Hence Eσ1

λ j
(s), s = k, k − 1, is

an ((R + 1)λ1/2−σ1
j , λσ1−1/2

j ) -minimizer of the perimeter (see [42, Section 23]). Since σ1 > 1/2,

λ1/2−σ1
j (R + 1)→ 0 as j→ +∞, and therefore, by compactness [42, Proposition 23.13], up to a

(not relabelled) subsequence,

Eσ1
λ j

(s)→ Eσ1 (s) in L1
loc(Rn+1) as j→ +∞, s = k, k − 1,

where Eσ1 (s), s = k, k − 1, is a local minimizer of the perimeter in Rn+1. Since n ≤ 6, by
virtue of [33, Theorem 17.3] Eσ1 (k) and Eσ1 (k − 1) are half-spaces. Moreover, by hypothesis
(8.18),

dEσ1
λ j

(k−1)(z) ≤ λσ1−σ2
j , z ∈ BRλσ1−1/2

j
(0) ∩

(
Eσ1
λ j

(k)∆Eσ1
λ j

(k − 1)
)
,

and, therefore, Eσ1 (k) = Eσ1 (k − 1), i.e. there exists νk ∈ Sn such that

Eσ1 (k) = Eσ1 (k − 1) = {z ∈ Rn+1 : z · νk < 0}.
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By [42, Theorem 26.6] νEσ1
λ j

(s) → νk uniformly in B1(0) as j → +∞, and the existence of w

and the validity of (8.19) follow.
Besides (8.15), from now on we suppose j to be so large that w(1/λ j) < 1/4.
Step 2. If k ∈ {2, . . . ,N j} and x ∈ Ωε∩∂Eλ j (k) satisfy (8.18), then for any ψ ∈ C1

c (Cρ
ρ(x, ν)),∣∣∣∣ ∫

Cρ
ρ(x,ν)

(χEλ j (k) − χEλ j (k−1))ψdy −
∫

Cρ
ρ(x,ν)∩∂Eλ j (k)

d̃Eλ j (k−1) ψ dHn
∣∣∣∣

≤
(
λ−σ2

j ‖∇ψ‖∞ + 6w(1/λ j) ‖ψ‖∞
) ∫

Cρ
ρ(x,ν)
|χEλ j (k) − χEλ j (k−1)|dy,

(8.22)

where
ρ := λ−σ1

j /2,

ν = νk is as in Step 1, and

Cρ
ρ(x, ν) :=

{
y ∈ Rn+1 : |(y − x) · ν| < ρ,

√
|y − x|2 − |(y − x) · ν|2 < ρ

}
.

For simplicity, suppose x = 0, ν = en+1, and set Cρ
ρ := Cρ

ρ(x, ν). By Theorem 5.3, there exist
f , g ∈ C2(B̂ρ) such that

Cρ
ρ ∩ ∂Eλ j (k) = {(x̂, f (x̂)) : x̂ ∈ B̂ρ} and Cρ

ρ ∩ ∂Eλ j (k − 1) = {(x̂, g(x̂)) : x̂ ∈ B̂ρ},

where B̂ρ is the ball in Rn centered at 0 of radius ρ. Let us show that

| f (x̂) − g(x̂) − d̃Eλ j (k−1)(x̂, f (x̂))| ≤ 2 w(1/λ j)dEλ j (k−1)(x̂, f (x̂)), x̂ ∈ B̂ρ. (8.23)

Since the outer unit normal of ∂Eλ j (s), s = k, k − 1, in Cρ
ρ is “almost close” to en+1, f (x̂) −

g(x̂) and d̃Eλ j (k−1)(x̂, f (x̂)) have the same sign and thus, we may suppose that f (x̂) ≥ g(x̂) and
d̃Eλ j (k−1)(x̂, f (x̂)) = dEλ j (k−1)(x̂, f (x̂)). Let (ŷ, g(ŷ)) ∈ ∂Eλ j (k − 1) be such that

dEλ j (k−1)(x̂, f (x̂)) =

√
|x̂ − ŷ|2 + | f (x̂) − g(ŷ)|2. (8.24)

Denoting by α ∈ (0, π/2) the angle between en+1 and νEλ j (k−1)(ŷ, g(ŷ)), by (8.19) we have

cosα ≥ 1 − 1/2w2(1/λ j) (8.25)

and
dEλ j (k−1)(x̂, f (x̂)) sinα = |x̂ − ŷ|. (8.26)

From this and (8.24) it follows that

dEλ j (k−1)(x̂, f (x̂)) cosα = f (x̂) − g(ŷ). (8.27)

By virtue of (8.19), ‖∇g‖∞ ≤ w(1/λ j), thus by (8.27) and (8.25),

| f (x̂) − g(x̂) − d̃Eλ j (k−1)(x̂, f (x̂))| ≤ | f (x̂) − g(ŷ) − dEλ j (k−1)(x̂, f (x̂))| + |g(ŷ) − g(x̂)|

≤ w(1/λ j)dEλ j (k−1)(x̂, f (x̂)) + ‖∇g‖∞|x̂ − ŷ| ≤ 2w(1/λ j)dEλ j (k−1)(x̂, f (x̂)),
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since |x̂ − ŷ| ≤ dEλ j (k−1)(x̂, f (x̂)) by (8.26) and (8.23) is proven.
Now using w(1/λ j) ≤ 1/4, from (8.23) we deduce

dEλ j (k−1)(x̂, f (x̂)) ≤ 2| f (x̂) − g(x̂)|, (8.28)

thus
| f (x̂) − g(x̂) − d̃Eλ j (k−1)(x̂, f (x̂))| ≤ 4 w(1/λ j)| f (x̂) − g(x̂)|, x̂ ∈ B̂ρ. (8.29)

As in the proof of [45, Corollary 4.2.2], the left-hand-side of (8.22) is represented as

Γ :=
∫

B̂ρ

( ∫ f (x̂)

g(x̂)
ψ(x̂, z)dz − d̃Eλ j (k−1)(x̂, f (x̂))ψ(x̂, f (x̂))

√
1 + |∇ f (x̂)|2

)
dx̂. (8.30)

Now we estimate (8.30) as follows:

|Γ| ≤
∣∣∣∣ ∫

B̂ρ

∫ f (x̂)

g(x̂)

(
ψ(x̂, z) − ψ(x̂, f (x̂)

)
dzdx̂

∣∣∣∣
+

∫
B̂ρ
|ψ(x̂, f (x̂))| | f (x̂) − g(x̂) − d̃Eλ j (k−1)(x̂, f (x̂))|dx̂

+

∫
B̂ρ

dEλ j (k−1)(x̂, f (x̂)) |ψ(x̂, f (x̂))|
(√

1 + |∇ f (x̂)|2 − 1
)

dx̂ =: Γ1 + Γ2 + Γ3.

By the Lipschitz continuity of ψ,

Γ1 ≤‖∇ψ‖∞

∫
B̂ρ

∫ f (x̂)

g(x̂)
|z − f (x̂)|dzdx̂ =

1
2
‖∇ψ‖∞

∫
B̂ρ
| f (x̂) − g(x̂)|2dx̂

≤λ−σ2 ‖∇ψ‖∞

∫
B̂ρ
| f (x̂) − g(x̂)|dx̂,

(8.31)

since by virtue of (8.23) and (8.18),

| f (x̂) − g(x̂)| ≤ (1 + 2w(1/λ j))dEλ j (k−1)(x̂, f (x̂)) ≤ 2λ−σ2
j .

By (8.29),

Γ2 ≤ 4 w(1/λ j) ‖ψ‖∞

∫
B̂ρ
| f (x̂) − g(x̂)| dx̂. (8.32)

Finally, since ‖∇ f ‖∞ ≤ w(1/λ j) by (8.19), from the elementary inequality
√

1 + |a|2 ≤ 1+|a|
and (8.28) we obtain

Γ3 ≤ 2w(1/λ j) ‖ψ‖∞

∫
B̂ρ
| f (x̂) − g(x̂)| dx̂. (8.33)

Now (8.22) follows from the inequality |Γ| ≤ Γ1 + Γ2 + Γ3, (8.31)-(8.33) and the relation∫
B̂ρ
| f (x̂) − g(x̂)| dx̂ =

∫
Cρ
ρ

|χEλ j (k) − χEλ j (k−1)|dy.
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Step 3. Set

O :=
{
Cρ
ρ(x, νk(x)) : x ∈ ∂Eλ j (k) satisfies (8.18)

}
and O :=

⋃
Cρ
ρ(x,νk(x))∈O

Cρ
ρ(x, νk(x)),

where
ρ := λ−σ1

j /2.

Note that O is a covering for the region O ∩ (Eλ j (k)∆Eλ j (k − 1)) with “low curvature”. By
Besicovitch covering theorem, we can extract a finite subcover {Cρ

ρ(xl, ν(xl))} ⊆ O such that each
point of O ∩ (Eλ j (k)∆Eλ j (k − 1)) belongs to at most b(n) cylinders. Let {ηl} be an associated
partition of unity, i.e.

– ηl ∈ C∞c (Cρ
ρ(xl, ν(xl)), [0, 1]), l = 1, 2, . . . ;

–
∑
l
ηl = 1 in O ∩ (Eλ j (k)∆Eλ j (k − 1)).

By (8.22) we have

∆low
k :=

∣∣∣∣ ∫
O

(χEλ j (k) − χEλ j (k−1))φdx −
∫

O∩∂Eλ j (k)

φd̃Eλ j (k−1) dHn
∣∣∣∣

≤
∑

l

∣∣∣∣ ∫
Cρ
ρ(xl,ν(xl))

(χEλ j (k) − χEλ j (k−1)) φηl dx −
∫

Cρ
ρ(xl,ν(xl))∩∂Eλ j(k)

d̃Eλ j (k−1) φηl dHn
∣∣∣∣

≤
∑

l

(
λ−σ2

j ‖∇(ηlφ)‖∞ + 6w(1/λ j)‖φ‖∞
) ∫

Cρ
ρ(xl,ν(xl))

|χEλ j (k) − χEλ j (k−1)|dy.

Since ‖∇(φηl)‖∞ ≤ ‖∇φ‖∞ + C(n)‖φ‖∞/ρ and ‖φηl‖∞ ≤ ‖φ‖∞, by the property of the covering,

∆low
k ≤ b(n)

(
λ−σ2

j ‖∇φ‖∞ + (6w(1/λ j) + C(n) λσ1−σ2
j )‖φ‖∞

)
|Eλ j (k)∆Eλ j (k − 1)|. (8.34)

Step 4. Now we estimate the error in Ωε \ O. By Proposition 5.5 (applied with Eλ j (k − 1)
instead of E0 ), (Ωε \ O) ∩ (Eλ j (k)∆Eλ j (k − 1)) can be covered by the family of balls

B := {Br(x) : x ∈ Ωε ∩ ∂Eλ j (k − 1)}, r := Rλ−1/2
j .

By Besicovitch covering theorem we can extract a finite collection {Br(xi)} ⊂ B such that each
point of Ωε ∩ (Eλ j (k)∆Eλ j (k − 1)) is covered with at most b(n) elements of {Br(xi)}. First we
handle the error in each Br(xi). By the definition, there exists yo ∈ BRλ−1/2

j
(xi)∩ (Eλ j (k)∆Eλ j (k −

1)) such that dEλ j (k−1)(yo) ≥ λ−σ2
j . Then clearly,

dEλ j (k−1)(z) ≥ λ−σ2
j /2, z ∈ Bλ−σ2

j /2(yo).

Note that if yo ∈ Eλ j (k) \ Eλ j (k − 1), then Eλ j (k − 1) ∩ Bλ−σ2
j /2(yo) = ∅, and by Remark 5.4 a),

|(Eλ j (k) \ Eλ j (k − 1)) ∩ Bλ−σ2
j /2(yo)| = |Eλ j (k) ∩ Bλ−σ2

j /2(yo)| ≥ (κ/4)n+1ωn+1λ
−σ2(n+1)
j ,

and if yo ∈ Eλ j (k − 1) \ Eλ j (k), then Bλ−σ2
j /2(yo) ⊂ Eλ j (k − 1), and by Remark 5.4 b),

|(Eλ j (k − 1) \ Eλ j (k)) ∩ Bλ−σ2
j /2(yo)| = |Bλ−σ2

j /2(yo) \ Eλ j (k)| ≥ (κ/4)n+1ωn+1λ
−σ2(n+1)
j ,
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hence, by the choice of σ2,∫
B
λ
−σ2
j /2

(yo)∩(Eλ j (k)∆Eλ j (k−1))
dEλ j (k−1) dz ≥

(
κ

4

)n+1 ωn+1

2λσ2(n+2)
j

=

(
κ

4

)n+1 ωn+1

2
λ
−

n+5/2
2

j .

The definition of r and this inequality imply∫
Br(xi)
|χEλ j (k) − χEλ j (k−1)| dx ≤ ωn+1

(
Rλ−1/2

j

)n+1

≤

(
4R
κ

)n+1

2λ3/4
j

∫
B
λ
−σ2
j /2

(y)∩(Eλ j (k)∆Eλ j (k−1))
dEλ j (k−1) dz

≤

(
4R
κ

)n+1

2λ3/4
j

∫
Br(xi)∩(Eλ j (k)∆Eλ j (k−1))

dEλ j (k−1) dz,

(8.35)

where we used Bλ−σ2
j /2(yo) ⊆ Br(xi).

Since Aβ(Eλ j (k), Eλ j (k − 1), λ j) ≤ Aβ(Eλ j (k) \ Br(xi), Eλ j (k − 1), λ j), Br(xi) ⊂⊂ Ω and
Eλ j (k) ⊆ E+, we have

P(Eλ j (k), Br(xi)) ≤ C(n, diam(E+))(Rλ−1/2
j )n,

whence, by Proposition 5.5,∫
Br(xi)∩∂Eλ j (k)

dEλ j (k−1) dHn ≤ C(n, diam(E+))(Rλ−1/2
j )n+1

≤
C(n, diam(E+))

ωn+1

(
4R
κ

)n+1

2λ3/4
j

∫
Br(xi)∩(Eλ j (k)∆Eλ j (k−1))

dEλ j (k−1) dz.
(8.36)

From (8.35) and (8.36) we get∣∣∣∣∣∣
∫

Br(xi)
(χEλ j (k) − χEλ j (k−1))φ dy −

∫
Br(xi)∩∂Eλ j (k)

d̃Eλ j (k−1)φ dHn

∣∣∣∣∣∣
≤‖φ‖∞C(n, κ, diam(E+))λ3/4

j

∫
Br(xi)∩(Eλ j (k)∆Eλ j (k−1))

dEλ j (k−1) dz.
(8.37)

Inequality (8.37) and the property of the covering yield

∆
high
k :=

∣∣∣∣∣∣
∫

Ωε\O
(χEλ j (k) − χEλ j (k−1))φ dy −

∫
(Ωε\O)∩∂Eλ j (k)

d̃Eλ j (k−1) φ dHn

∣∣∣∣∣∣
≤b(n)‖φ‖∞C(n, κ, diam(E+))λ3/4

j

∫
Eλ j (k)∆Eλ j (k−1)

dEλ j (k−1) dz.

By (7.4)

λ3/4
j

∫
Eλ j (k)∆Eλ j (k−1)

dEλ j (k−1) dz ≤ λ−1/4
(
Cβ(Eλ j (k − 1),Ω) − Cβ(Eλ j (k),Ω)

)
,
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and thus we have also

∆
high
k ≤b(n)‖φ‖∞C(n, κ, diam(E+))λ−1/4

j

(
Cβ(Eλ j (k − 1),Ω) − Cβ(Eλ j (k),Ω)

)
. (8.38)

Now (8.17) follows from the inequality |∆k( j)| ≤ ∆low
k + ∆

high
k , (8.34) and (8.38).

Since N j ≤ Tλ j < +∞, by Proposition 8.10,

N j∑
k=2

|Eλ j (k)∆Eλ j (k − 1)| ≤ C(n, κ, P(E0),T )

and by (7.6),
N j∑

k=2

(
Cβ(Eλ j (k − 1),Ω) − Cβ(Eλ j (k),Ω)

)
≤ P(E0).

Hence, from (8.17) we deduce

N j∑
k=2

|∆k( j)| ≤C(n, κ, P(E0),T )
(
λ−σ2

j ‖∇φ‖∞ + (w(1/λ j) + λσ1−σ2
j ) ‖φ‖∞

)
+ ‖φ‖∞C(n, κ, diam(E+)) λ−1/4

j P(E0).

(8.39)

Now the error estimate (8.14) follows from (8.16) and (8.39).

Proof of Theorem 8.6. Lemma 8.9, (8.3) and [36, Theorem 4.4.2] imply that there exist a (not
relabelled) subsequence and a function v : [0,+∞)×Ω→ R satisfying (8.4)-(8.6). In particular,
from (8.4) it follows that HE(t) := v(t, ·)

∣∣∣
Ω∩∂∗E(t) ∈ L2(Ω ∩ ∂∗E(t),Hn (Ω ∩ ∂∗E(t))) for a.e.

t > 0. Let us prove that HE(t) is the distributional mean curvature of E(t) for a.e. t ≥ 0. Fixing
t ≥ 0, by the divergence formula (2.3) for any φ ∈ C1

c (Rn+1,Rn+1) one has∫
Eλ j ([λ jt])

div φdx −
∫

Ω∩∂∗Eλ j ([λ jt])
φ · νEλ j ([λ jt]) dHn =

∫
∂Ω∩∂∗Eλ j ([λ jt])

φn+1dHn.

Hence, from (7.1) and (7.3) we get∫
E(t)

div φdx −
∫

Ω∩∂∗E(t)
φ · νE(t) dHn = lim

j→+∞

∫
Tr(Eλ j ([λ jt]))

φn+1dHn. (8.40)

The left-hand-side of (8.40) is
∫

Tr(E(t)) φn+1dHn, therefore,

Hn Tr(Eλ j ([λ jt]))
w∗
⇀ Hn Tr(E(t)) as j→ +∞. (8.41)

Combining this with (8.3) we get

Hn ∂∗Eλ j ([λ jt])
w∗
⇀ Hn ∂∗E(t) as j→ +∞ for a.e. t ≥ 0.

Take η ∈ C1
c ([0,+∞)) and an admissible X ∈ C1

c (Ω,Rn+1). By (8.3) and [45, formula (4.2)]
for a.e. t ≥ 0 and for every F ∈ Cc(Rn+1 × Rn+1) one has

lim
j→+∞

∫
Ω∩∂∗Eλ j ([λ jt])

F(x, νEλ j ([λ jt])(x)) dHn =

∫
Ω∩∂∗E(t)

F(x, νE(t)(x)) dHn. (8.42)
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In particular, taking F ∈ Cc(Ω×Rn+1) such that F(x, ξ) = div X(x)−ξ ·∇X(x)ξ in Ω×{|ξ| ≤ 2},
by the dominated convergence theorem, (8.2) and (8.6), for Ψ(t, x) = η(t)X(x) we establish∫ +∞

0
η(t)

∫
Ω∩∂∗E(t)

F(x, νE(t)(x))dHndt = lim
j→+∞

∫ +∞

0

∫
Ω∩∂∗Eλ j ([λ jt])

η(t)F(x, νEλ j ([λ jt]))dH
ndt

= lim
j→+∞

∫ +∞

0

∫
Ω∩∂∗Eλ j ([λ jt])

vλ jνEλ j ([λ jt]) · Ψ(t, x)dHndt

=

∫ +∞

0

∫
Ω∩∂∗E(t)

vνE(t) · Ψ(t, x)dHndt =

∫ +∞

0
η(t)

∫
Ω∩∂∗E(t)

HE(t)νE(t) · X dHndt.

Since η ∈ C1
c ([0,+∞)) is arbitrary, for a.e. t ≥ 0 we get∫

Ω∩∂∗E(t)
(div X − νE(t) · (∇X)νE(t))dHn =

∫
Ω∩∂∗E(t)

HE(t)νE(t) · X dHn,

hence HE(t) is the generalized mean curvature of Ω ∩ ∂∗E(t).
Let us show (8.7). Take φ ∈ C1

c ([0,+∞) ×Ω). By a change of variables we have∫ +∞

1/λ j

[ ∫
Eλ j ([λ jt])

φdx−
∫

Eλ j ([λ jt]−1)
φdx

]
dt

=

∫ +∞

1/λ j

∫
Eλ j ([λ jt])

(φ(t, x) − φ(t + 1/λ j, x))dxdt −
1
λ j

∫
E(0)

φ(x, 0) dx.

Since E(0) = E0 , from (7.13) we get

lim
j→+∞

∫ +∞

1/λ j

λ j

[ ∫
Eλ j ([λ jt])

φdx −
∫

Eλ j ([λ jt]−1)
φdx

]
dt = −

∫ +∞

0

∫
E(t)

∂φ

∂t
(t, x) dxdt −

∫
E0

φ(x, 0)dx.

Therefore, (8.14), (8.5) and the definition of HE(t) imply∫ +∞

0

∫
E(t)

∂tφ dxdt +

∫
E0

φ(x, 0)dx = lim
j→+∞

∫ +∞

0

∫
Ω∩∂Eλ j ([λ jt])

vλ jφ dHndt

=

∫ +∞

0

∫
Ω∩∂∗E(t)

HE(t)φ dHndt.

(ii) Take an admissible X ∈ C1
c (Ω,Rn+1) and η ∈ C1

c ([0,+∞)). From (8.1)∫ +∞

0
η(t)

∫
Ω∩∂∗Eλ j ([λ jt])

(
div X − νEλ j ([λ jt]) · (∇X)νEλ j ([λ jt])

)
dHndt

−

∫ +∞

0
η(t)

∫
Ω∩∂∗Eλ j ([λ jt])

vλ j X · νEλ j ([λ jt]) dHndt

=

∫ +∞

0
η(t)

∫
∂∗Tr(Eλ j ([λ jt]))

β X′ · ν′Tr(Eλ j ([λ jt])) dHn−1.

(8.43)

Let {λ jl }l≥1 be any subsequence of {λ j}. By the uniform bound (8.8) on the perimeters and by
compactness there exists a further subsequence {λ jlk }k≥1 of {λ jl }l≥1 and a set F̂ ∈ BV(Rn, {0, 1})
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such that Tr(E jlk ([ jlk t]))→ F̂ in L1(Rn) and4

ν′Tr(Eλ jlk
([λ jlk

t]))H
n−1 ∂∗Tr(Eλ jlk

([λ jlk t]))
w∗
⇀ ν′

F̂
Hn−1 ∂∗F̂ as k → +∞

for a.e. t ≥ 0. By (8.41) for every φ ∈ Cc(Rn) we have∫
Tr(E(t))

φ dHn = lim
k→+∞

∫
Tr(Eλ jlk

([λ jlk
t]))
φ dHn =

∫
F̂
φ dHn.

Whence, F̂ = Tr(E(t)). Therefore

ν′Tr(Eλ j ([λ jt]))H
n−1 ∂∗Tr(Eλ j ([λ jt]))

w∗
⇀ ν′Tr(E(t))H

n−1 ∂∗TrE(t) as j→ +∞.

Now taking limit in (8.43), using (8.42), (8.6) and applying the dominated convergence theorem
on the right-hand-side we get (8.9).

Appendix A. Existence of minimizers for functionals of the form Cβ +V

In this appendix we prove an existence result for minimum problems of type

inf
E∈BV(Ω,{0,1})

Gβ(E), Gβ(E) := Cβ(E,Ω) +V(E), (A.1)

where V : BV(Ω, {0, 1}) → (−∞,+∞]. Since Cβ(·,Ω) is finite in BV(Ω, {0, 1}), the functional
Gβ is well-defined in BV(Ω, {0, 1}). We study (A.1) under the following hypotheses on V :

Hypothesis A.1. (a) V is bounded from below in BV(Ω, {0, 1}) and there exists a cylinder
CK

r ⊂ Ω, K > 1 such that V(CK
r ) < +∞;

(b) V(E) ≥ V(E ∩Cl
ρ) for any E ∈ BV(Ω, {0, 1}), ρ ∈ (r,+∞], and l ∈ (K − 1,K + 1);

(c) V(E) ≥ V(E \ (CK
ρ1
\CK

ρ2
)) for any E ∈ BV(Ω, {0, 1}) and r < ρ2 < ρ1 < +∞;

(d) V is L1(Ω) -lower semicontinuous in BV(Ω, {0, 1}).

Example A.2. Besides (4.8) the following functionals V : BV(Ω, {0, 1}) → (−∞,+∞] satisfy
Hypothesis A.1:

1) given f ∈ L1
loc(Ω) with f ≥ 0 a.e. in Ω \Cl

r for some r, l > 0,

V(E) =

∫
E

f dx.

In particular, we may take f = λd̃E0 with ∅ , E0 ∈ BV(Ω, {0, 1}) and E0 ⊂ Ch
r so that

by (4.2) Gβ coincides with Aβ(·, E0, λ) +
∫

E0
d̃E0 dx.

2) Given a bounded set E0 ∈ BV(Ω, {0, 1}), V(E) = |E∆E0|
p, p > 0.

4Arguing, for example, as in (7.15).
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Given V satisfying Hypothesis A.1 set

a := κ−1
(
sup
R>r

inf
E∈BV(CK

R ,{0,1})
Gβ(E) − infV

)
.

Clearly, κa ≤ Gβ(CK
r ) − infV, hence inf Gβ < +∞.

In view of the previous observation, once we prove the next theorem, the proof of Theorem
4.1 follows.

Theorem A.3 (Existence of minimizers and uniform bound). Suppose that Hypothesis A.1
holds. Suppose also β ∈ L∞(∂Ω) and there exists κ ∈ (0, 1

2 ] such that −1 ≤ β ≤ 1−2κ Hn -a.e
on ∂Ω. Then the minimum problem

inf
E∈BV(Ω,{0,1})

Gβ(E)

has a solution. Moreover, any minimizer is contained in CK
R0
, where5

R0 := r + 1 + max
{
8n2+n+1

a
n+1

n , 4µ(κ, n)
}

(A.2)

and µ(κ, n) is defined in Section 4.1.

Remark A.4. In case of Example A.2 1) with f = λd̃E0 for some CK
r ⊇ E0,

κa ≤ κ sup
R>r

inf
E∈BV(CK

R ,{0,1})
Aβ(E, E0, λ) ≤ κAβ(E0, E0, λ) = κCβ(E0,Ω) ≤ κP(E0).

Hence, R0 ≤ R0, where R0 is defined in (4.4). The same is true if V is as in (4.8).

The assumption on β and the L1(Ω) -lower semicontinuity of Cβ(·,Ω) (Lemma 3.5) imply
the L1(Ω) -lower semicontinuity of Gβ. Moreover, the coercivity (3.9) of Cβ(·,Ω), Hypothesis
A.1 (a) and (3.11) imply the coercivity of Gβ :

Gβ(E) ≥ κP(E) + infV ∀E ∈ BV(Ω, {0, 1}). (A.3)

The main problem in the proof of existence of minimizers of Gβ is the lack of compactness
due to the unboundedness of Ω. However, for every R > 0 inequality (A.3), the compact-
ness theorem in BV(CK

R , {0, 1}) (see for instance [7, Theorems 3.23 and 3.39]) and the lower
semicontinuity of Gβ imply that there exists a solution ER ∈ BV(CK

R , {0, 1}) of

inf
E∈BV(CK

R ,{0,1})
Gβ(E).

To prove Theorem A.3 we mainly follow [17, Section 4], where the existence of volume
preserving minimizers of Cβ(·,Ω) has been shown. We need two preliminary lemmas. As in
[17, Section 3] first we show that one can choose a minimizing sequence consisting of bounded
sets.

5One could refine the expression of R0 using the isoperimetric inequality [24], but we do not need this here.
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Lemma A.5 (Truncations with horizontal hyperplanes and vertical cylinders ). Suppose that
Hypothesis A.1 holds. Then

inf
E∈BV(Ω,{0,1})

Gβ(E) = inf
R>0

inf
E∈BV(CK

R ,{0,1})
Gβ(E). (A.4)

Proof. We need two intermediate steps. The first step concerns truncations with horizontal hy-
perplanes.

Step 1. We have
inf

E∈BV(Ω,{0,1})
Gβ(E) = inf

E∈BV(ΩK ,{0,1})
Gβ(E). (A.5)

Indeed, it suffices to show that if E \ΩK− 1
4
, ∅, then

Gβ(E) ≥ Gβ
(
E ∩ΩK− 1

2

)
.

Clearly, E and E ∩ΩK− 1
2

have the same trace on ∂Ω and thus∫
∂Ω

[1 + β] χE dHn =

∫
∂Ω

[1 + β] χE∩ΩK− 1
2

dHn.

From the comparison theorem of [6, page 216] we have

P(E) > P
(
E ∩ΩK− 1

2

)
.

By Hypothesis A.1 (b) we have also

V(E) ≥ V(E ∩ΩK− 1
2
),

therefore from the definition of Gβ we get even the strict inequality

Gβ(E) > Gβ(E ∩ΩK− 1
2
). (A.6)

The second step is more delicate and concerns truncations with the lateral boundary of verti-
cal cylinders.

Step 2. For any ε ∈ (0, 1) there exists Rε > r and Eε ∈ BV(CK
Rε
, {0, 1}) such that

Gβ(Eε) ≤ inf
E∈BV(ΩK ,{0,1})

Gβ(E) + ε.

Indeed, according to Step 1 and Hypothesis A.1 (a), given ε > 0 there exists Fε ∈ BV(ΩK , {0, 1})
with Fε ⊂ ΩK− 1

4
such that

Gβ(Fε) < inf
E∈BV(Ω,{0,1})

Gβ(E) +
ε

2
< +∞.

Since |Fε| < +∞, for sufficiently large R > r one has

|Fε ∩ (CK
R+1 \CK

R )| =
∫ R+1

R
Hn(Fε ∩ ∂CK

ρ ) dρ <
ε

2
.

Hence there exists Rε ∈ (R,R + 1) such that

Hn(Fε ∩ ∂CK
Rε

)
≤
ε

2
, Hn(Ω ∩ ∂∗Fε ∩ ∂CK

Rε

)
= 0.
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Now, let Eε := Fε ∩CK
Rε
. Since Hn(Ω ∩ ∂∗Fε ∩ ∂CK

Rε

)
= 0, we have

P(Eε,Ω) =P(Eε,ΩK) = P(Fε,ΩK) +Hn(Fε ∩ ∂CK
Rε

)
− P

(
Fε,ΩK \CK

Rε

)
=P(Fε,Ω) +Hn(Fε ∩ ∂CK

Rε

)
− P

(
Fε,ΩK \CK

Rε

)
.

(A.7)

By Hypothesis A.1 (a), V(Fε) ≥ V(Eε), thus employing (A.7) we get

Gβ(Fε) ≥Gβ(Eε) −Hn(Fε ∩ ∂CK
Rε ) + P(Fε,ΩK \CK

Rε
) −

∫
∂Ω

β χFε\CK
Rε

dHn.

By Lemma 3.1 applied with E = Fε and A = ΩK \CK
Rε
, we have

P(Fε,ΩK \CK
Rε

) −
∫
∂Ω

β χFε\CK
Rε

dHn ≥ 0.

Consequently, from the choice of Fε and Rε we get

Gβ(Eε) ≤Gβ(Fε) +Hn(Fε ∩ ∂CK
Rε ) < inf

E∈BV(Ω,{0,1})
Gβ(E) + ε.

This concludes the proof of Step 2.
Now, observe that

inf
E∈BV(Ω,{0,1})

Gβ(E) ≤ inf
R>0

inf
E∈BV(CK

R ,{0,1})
Gβ(E).

On the other hand, since the mapping

R ∈ (0,+∞) 7→ inf
E∈BV(CK

R ,{0,1})
Gβ(E)

is nonincreasing, Step 2 implies

inf
E∈BV(Ω,{0,1})

Gβ(E) ≥ inf
R>0

inf
E∈BV(CK

R ,{0,1})
Gβ(E),

therefore (A.4) follows.

As in [17, Lemma 3] the following lemma holds.

Lemma A.6 (Good choice of a radius). Suppose that β satisfies (4.3) and Hypothesis A.1
holds. Let ER be a minimizer of Gβ in BV(CK

R , {0, 1}). Then for any R > R0 there exists
tR ∈ [r + 1,R0] such that

Hn(ER ∩ ∂CK
tR ) = 0.

Hence

P(ER,Ω) = P
(
ER \CK

tR ,Ω
)

+ P
(
ER ∩CK

tR ,Ω
)
. (A.8)

Proof. The idea of the proof is to cut the ER with vertical cylinders, similarly to [17, Lemma 5]
where cuts with horizontal hyperplanes are performed.
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For R > R0 by the isoperimetric-type inequality [23, Theorem VI], (A.3), the minimality of
ER and by the definition of a we have

|ER|
n

n+1 ≤P(ER) ≤
Gβ(ER) − infV

κ
=

1
κ

(
inf

E∈BV(CK
R ,{0,1})

Gβ(E) + infV
)
≤ a.

Thus, for any 0 < a < b one has

|ER ∩ (CK
b \CK

a )| ≤ a
n+1

n . (A.9)

Take r + 1 < r1 < r2 < r3 < R0 such that

Hn(Ω ∩ ∂∗ER ∩ ∂CK
ri

) = 0, i = 1, 2, 3,

and set
v1 = |ER ∩ (CK

r2
\CK

r1
)|, v2 = |ER ∩ (CK

r3
\CK

r2
)|,

m = max
i=1,2,3

Hn(ER ∩ ∂CK
ri

).

Step 1. We claim that
min{v1, v2} ≤ µm

n+1
n , (A.10)

where µ := µ(κ, n) > 0.
It suffices to prove that

v
n

n+1
1 + v

n
n+1
2 ≤ 2µ

n
n+1 m.

We have

v
n

n+1
1 ≤P

(
ER ∩ (CK

r2
\CK

r1
)
)
≤ P(ER,CK

r2
\CK

r1
) +Hn(ER ∩ ∂CK

r1
)

+Hn(ER ∩ ∂CK
r2

) +

∫
∂Ω

χER∩(CK
r2 \C

K
r1 ) dHn

≤P(ER,CK
r2
\CK

r1
) +

∫
∂Ω

χER∩(CK
r2 \C

K
r1 ) dHn + 2m.

Similarly,

v
n

n+1
2 ≤P(ER,CK

r3
\CK

r2
) +

∫
∂Ω

χER∩(CK
r3 \C

K
r2 ) dHn + 2m.

Hence
v

n
n+1
1 + v

n
n+1
2 ≤ P(ER,CK

r3
\CK

r1
) +

∫
∂Ω

χER∩(CK
r3 \C

K
r1 ) dHn + 4m. (A.11)

Comparing ER \ (CK
r3
\ CK

r1
)) with ER, we get Gβ(ER) ≤ Gβ(ER \ (CK

r3
\ CK

r1
)), therefore from

Hypothesis A.1 (c) we obtain

P(ER) ≤P
(
ER \ (CK

r3
\CK

r1
)
)

+

∫
∂Ω

[1 + β] χER∩(CK
r3 \C

K
r1 ) dHn. (A.12)
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Inserting in (A.12) the identity

P(ER \ (CK
r3
\CK

r1
)) =P(ER) +Hn(ER ∩ ∂CK

r1
) +Hn(ER ∩ ∂CK

r3
)

− P(ER,CK
r3
\CK

r1
) −

∫
∂Ω

χER∩(CK
r3 \C

K
r1 ) dHn,

we get

P(ER,CK
r3
\CK

r1
) −

∫
∂Ω

β χER∩(CK
r3 \C

K
r1 ) dHn ≤ 2m. (A.13)

By Lemma 3.1 applied with A = CK
r3
\ CK

r1
and E = ER, the left-hand-side of (A.13) is not less

than

κP(ER,CK
r3
\CK

r1
) + κ

∫
∂Ω

χER∩(CK
r3 \C

K
r1 ) dHn,

hence
P
(
ER,CK

r3
\CK

r1

)
+

∫
∂Ω

χER∩(CK
r3 \C

K
r1 ) dHn ≤

2m
κ
.

Then from (A.11) it follows that

v
n

n+1
1 + v

n
n+1
2 ≤

(
2m
κ

+ 4m
)

= 2µ
n

n+1 m.

This finishes the proof of Step 1.
Before going to Step 2 we need some preliminaries. Choose any R ≥ R0. Let a0 = r + 1,

b0 = R0. Given r + 1 ≤ ak ≤ bk ≤ R0, k ∈ N, define

vk = |ER ∩ (CK
bk
\CK

ak
)|.

By (A.6) ER \ΩK− 1
4

= ∅, hence

|ER ∩ (CK
b \CK

a )| =

b∫
a

Hn(ER ∩ ∂CK
ρ ) dρ, 0 ≤ a < b.

Therefore, for hk = bk−ak
4 it is possible to find rk,1 ∈ (ak, ak + hk), rk,2 ∈ ( ak+bk

2 −
hk
2 ,

ak+bk
2 + hk

2 )
and rk,3 ∈ (bk − hk, bk) such that

Hn(ER ∩ ∂CK
rk,i

) ≤
vk

hk
, Hn(Ω ∩ ∂∗ER ∩ ∂CK

rk,i
) = 0 for i = 1, 2, 3 . (A.14)

We choose

(ak+1, bk+1) =

(rk,1, rk,2) if |ER ∩ (CK
rk,1
\CK

rk,2
)| ≤ |ER ∩ (CK

rk,2
\CK

rk,3
)|,

(rk,2, rk,3) if |ER ∩ (CK
rk,1
\CK

rk,2
)| > |ER ∩ (CK

rk,2
\CK

rk,3
)|.

Let
mk = max

i=1,2,3
Hn(ER ∩ ∂CK

rk,i
).
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Step 2. Using the definition of R0 we show that

mk ≤

(
1
2

)( n+1
n )k

. (A.15)

Indeed, according to (A.10), (A.14) and the definition of (ak, bk) one has

vk+1 ≤ µm
n+1

n
k , mk ≤

vk

hk
.

By construction, bk+1 − ak+1 ≥
bk−ak

8 , i.e. hk+1 ≥
hk
8 . By induction one can check that

mk ≤

8
k∑

j=1
jα j

(
µ

h0

) k∑
j=1
α j

v0

h0


1/αk

, (A.16)

where α := n
n+1 . Note that

k∑
j=1

jα j ≤ α
∑
j≥1

jα j−1 =
α

(1 − α)2 = n(n + 1).

Since h0 =
R0−r−1

4 and v0 ≤ a
n+1

n by (A.9), the choice of R0 in (A.2) implies 8n(n+1) v0/h0 ≤

1/2. Moreover
(
µ
h0

) k∑
j=1
α j

≤ 1, since µ
h0

=
4µ

R0−r−1 ≤ 1. Now (A.15) follows from these estimates
and (A.16).

Step 3. Let ik ∈ {1, 2, 3} be such that mk = Hn(ER ∩ ∂CK
rk,ik

). Since ak ≤ rk,ik ≤ bk, {ak}

is nondecreasing and {bk} is nonincreasing, there exists tR ∈ [r + 1,R0] such that rk,ik → tR
(possibly up to a subsequence). Then, by Step 2,

Hn(ER ∩ ∂CK
tR ) = lim

k→+∞
mk = 0,

which concludes the proof of the lemma.

Proof of Theorem A.3. Let us prove the existence of a minimizer of Gβ. For R > R0 let
tR ∈ [r + 1,R0] be as in Lemma A.6. Then from (A.8) and V(ER) ≥ V(ER ∩CK

tR ) we get

Gβ(ER) ≥ Gβ(ER ∩CK
tR ) + P

(
ER \CK

tR ,Ω
)
−

∫
∂Ω

βχER\CK
tR

dHn. (A.17)

By (3.9) and the isoperimetric-type inequality

P
(
ER \CK

tR ,Ω
)
−

∫
∂Ω

β χER\CK
tR

dHn ≥ κP
(
ER \CK

tR

)
≥ κ

∣∣∣ER \CK
tR

∣∣∣ n
n+1 . (A.18)

Thus from (A.17)
Gβ(ER) ≥ Gβ(ER ∩CK

tR ).

Hence, FR := ER ∩CK
tR ⊆ CK

R0
satisfies

min
E∈BV(CK

R ,{0,1})
Gβ(E) = Gβ(FR).
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From (3.9) and the minimality of FR we get

κP(FR) ≤ Cβ(FR,Ω) ≤ Gβ(FR) − infV ≤ κa,

and thus, by compactness there exists E ∈ BV(CK
R0
, {0, 1}) such that (up to a subsequence)

FR → E in L1(Ω) as R → +∞. From the L1(Ω) -lower semicontinuity of Gβ and from (A.4)
we conclude that E is a minimizer of Gβ.

Now we prove that any minimizer E of Gβ satisfies E ⊆ CK
R0
. Arguing as in the proof of

(A.6) one can show that E ⊆ ΩK− 1
4
.

Claim. There exists R > r + 1 (possibly depending on V and r ) such that E ⊆ CK
R .

For any ρ > 1 such that Hn(Ω ∩ ∂∗E ∩ ∂CK
ρ ) = 0, by the minimality of E we have

Gβ(E) ≤ Gβ(E ∩CK
ρ ), i.e.

P(E,ΩK \CK
ρ ) −

∫
∂Ω

βχE\CK
ρ

dHn ≤ Hn(E ∩ ∂CK
ρ ). (A.19)

By Lemma 3.1

P(E,ΩK \CK
ρ ) −

∫
∂Ω

βχE\CK
ρ

dHn ≥ κ
(
P(E,ΩK \CK

ρ ) +

∫
∂Ω

χE\CK
ρ

dHn
)
. (A.20)

Moreover, by the isoperimetric-type inequality,

|E \CK
ρ |

n
n+1 ≤ P(E,ΩK \CK

ρ ) +Hn(E ∩ ∂CK
ρ ) +

∫
∂Ω

χE\CK
ρ E dHn.

therefore, (A.19) and (A.20) imply

|E \CK
ρ |

n
n+1 ≤

κ + 1
κ
Hn(E ∩ ∂CK

ρ ). (A.21)

Set m(ρ) = |E \ CK
ρ |. Clearly, m : (1,+∞) → [0, |E|]. Moreover, m is absolutely continuous,

nonincreasing, lim
ρ→+∞

m(ρ) = 0 and Hn(E ∩ ∂CK
ρ ) = −m′(ρ) for a.e. ρ > r + 1. By (A.21)

−m′(ρ) ≥ κ+1
κ

(n + 1)m(ρ)
n

n+1 . If E is unbounded, then m(ρ) > 0 for any ρ > r + 1, and thus,
for any ρ1, ρ2 > r + 1, ρ1 < ρ2 we have

m(ρ1)
1

n+1 − m(ρ2)
1

n+1 ≥
κ + 1
κ

(ρ2 − ρ1).

Now letting ρ2 → +∞ we obtain m(ρ1) = +∞, a contradiction. Consequently, there exists
R > r + 1 such that m(R) = 0, i.e. E ⊆ CK

R .
From the claim it follows that E is a minimizer of Gβ also in BV(CK

R , {0, 1}). By Lemma
A.6 we can find tR ∈ [r + 1,R0] such that Hn(E ∩ ∂CK

tR ) = 0. Then using V(E) ≥ V(E ∩CK
tR ),

the relations (A.17) - (A.18) applied with E in place of ER imply

Gβ(E) ≥ Gβ(E ∩CK
tR ) + κ

∣∣∣E \CK
tR

∣∣∣ n
n+1 .

Therefore, the minimality of E yields
∣∣∣E\CK

tR

∣∣∣ = 0, i.e. E ⊆ CK
tR . Since tR ≤ R0, the conclusion

follows.
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Appendix B. Local well-posedness

In this appendix we sketch the proof of short time existence and uniqueness of smooth hy-
persurfaces moving with normal velocity equal to their mean curvature in Ω and meeting the
boundary ∂Ω at a prescribed (not necessarily constant) angle. The following theorem is a gen-
eralization of [38, Theorem 1], where short time existence and uniqueness have been proven for
constant β.

Theorem B.1 (Short time existence and uniqueness). Let β ∈ C1+α(∂Ω), ‖β‖∞ ≤ 1− 2κ, κ ∈
(0, 1

2 ] and E0 ⊂ Ω be a bounded open set such that Γ0 = Ω ∩ ∂E0 is a C3+α -hypersurface, α ∈
(0, 1). Assume that U ⊂ Rn is a bounded open set with C3+α -boundary, p0 ∈ C3+α(U,Rn+1)
is a parametrization of Γ0 such that p0

n+1 > 0 in U, p0
n+1 = 0 on ∂U, and

−en+1 + β(p0)ν0 = Dp0[n0] on ∂U, (B.1)

where n0 = (n0
1, . . . , n

0
n) is the outward unit normal to ∂U, ν0 = ν(p0) is the outward unit

normal to Γ0 at p0 and Dp0[n0] =
n∑

j=1
n0

j p0
σ j
. Then there exists T0 = T0(‖β‖C1+α , ‖p0‖C3+α ) > 0,

a unique family of bounded open sets {E(t) ⊂ Ω : t ∈ [0,T0]} with a parametrization p ∈
C1+α/2,2+α([0,T0] ×U,Rn+1) of Γ(t) = Ω ∩ ∂E(t) solving the parabolic system

pt = trace((Dp · (Dp)T )−1D2 p) in (0,T0) ×U, (B.2)

where (Dp · (Dp)T )i j = pσi · pσ j and (D2 p)i j = pσiσ j , coupled with the initial condition
p(0, ·) = p0, the boundary conditionspn+1(t, ·) = 0 on ∂U for any t ∈ [0,T0],

en+1 · ν(p(t, ·)) = β(p(t, ·)) on ∂U for any t ∈ [0,T0],
(B.3)

and the orthogonality conditions

Dp0[n0] · τ0i = 0 on [0,T0] × ∂U for every i = 1, . . . , n − 1, (B.4)

where ν(p(t, ·)) is the outward unit normal to Γ(t) at p(t, ·) and τ01, . . . , τ0n−1 ∈ Rn × {0} is a
basis for the tangent space to Γ0 ∩ ∂Ω at p0.

Remark B.2. Assumption (B.1) on p0 is not restrictive. Indeed, if q : ∂U → Γ0 ∩ ∂Ω is a
C3+α parametrization of the contact set, we may extend it to a sufficiently small tubular neigh-
borhood S := {x ∈ U : dist(x, ∂U) < ε} of ∂U in U with the properties that q is a C3+α

diffeomorphism, q(S ) ⊂ Γ0 and

q(σ) = q(ς) + |σ − ς|(en+1 − β(q(ς))ν0(q(ς))) + O(|σ − ς|2),

where ς is the projection of σ ∈ S on ∂U. Since σ = ς − |σ − ς|n0(ς), it follows

∇q(ς) n0(ς) = −en+1 + β(q(ς))ν0(q(ς)),

which is (B.1). Now we may arbitrarily extend q to a C3+α diffeomorphism in U such that
q(U) = Γ0.
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Remark B.3. The unit normal to Γ(t) at the point p(t, σ1, . . . , σn) ∈ Γ(t) can be written with
an abuse of notation ν = ν(p(t, σ1, . . . , σn)) = ν̃

|ν̃|
, where

ν̃ := ν̃(pσ) = det



e1 e2 . . . en en+1
pσ1

pσ2

...
pσn


.

Proof of Theorem B.1. The idea of the proof is standard: first we linearize the equation around
the initial condition, then prove existence for the linearized system and finally we use a fixed
point argument.

Step 1. Let us linearize system (B.2) fixing some t0 > 0. Let X(t0) ⊂ C1+α/2,2+α([0, t0] ×
U,Rn+1) be the nonempty convex set consisting of all functions w ∈ C1+α/2,2+α([0, t0]×U,Rn+1)
such that

1) w(0, ·) = p0,

2) wn+1(t, ·) = 0 on ∂U for any t ∈ [0, t0],

3)
n∑

j=1
n0

jwσ j · τ0i = 0 on [0, t0] × ∂U for every i = 1, . . . , n − 1.

For w ∈ X(t0) set f (t,w) := trace
[(

(Dw · (Dw)T )−1 − (Dp0 · (Dp0)T )−1)D2w
]
. Then (B.2) is

equivalent to
wt = trace

[
(Dp0 · (Dp0)T )−1D2w

]
+ f (t,w).

Notice that
| f (t,w)| ≤ c(‖p0‖C1(U))‖w‖C0,2([0,t0]×U)‖w − p0‖C0,1([0,t0]×U),

where c(‖p0‖C1(U)) > 0. Now we linearize the contact angle condition. Since we have en+1 ·

ν(p0) = β(p0), from Remark B.3 it follows that

en+1 ·
(
ν̃(wσ) − ν̃(p0

σ)
)

= β(w)|ν̃(wσ)| − β(p0)|ν̃(p0
σ)|. (B.5)

Let H1(t,w) := ν̃(wσ) − ν̃(p0
σ) − Dν̃(p0

σ)[wσ − p0
σ] , where

Dν̃ =


Dpσ1

ν̃1 Dpσ2
ν̃1 . . . Dpσn

ν̃1

Dpσ1
ν̃2 Dpσ2

ν̃2 . . . Dpσn
ν̃2

...
... . . .

...
Dpσ1

ν̃n+1 Dpσ2
ν̃n+1 . . . Dpσn

ν̃n+1

 , qσ =


qσ1

qσ2

...
qσn

 =


(q1)σ1 . . . (qn+1)σ1

(q1)σ2 . . . (qn+1)σ2

. . .
... . . .

(q1)σn . . . (qn+1)σn


and

Dν̃[qσ] =



n∑
i=1

Dpσi
ν̃1 · qσi

n∑
i=1

Dpσi
ν̃2 · qσi

...
n∑

i=1
Dpσi

ν̃n+1 · qσi


=



n∑
i=1

n+1∑
j=1

D(p j)σi
ν̃1 · (q j)σi

n∑
i=1

n+1∑
j=1

D(p j)σi
ν̃2 · (q j)σi

...
n∑

i=1

n+1∑
j=1

D(p j)σi
ν̃n+1 · (q j)σi


.
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Clearly, |H1(t,w)| = O
(
‖w − p0‖2

C0,1([0,t0]×U)

)
. Moreover,

|ν̃(wσ)| = |ν̃(p0
σ)| + ν(p0) · Dν̃(p0

σ)[wσ − p0
σ] + H2(t,w)

with |H2(t,w)| = O
(
‖w − p0‖2

C0,1([0,t0]×U)

)
. Finally, since β ∈ C1+α(∂Ω) we have

β(w)|ν̃(wσ)| − β(p0)|ν̃(p0
σ)| = β(p0)ν(p0) · Dν̃(p0

σ)[wσ − p0
σ] + H3(t,w),

where H3(t,w) = O
(
‖w − p0‖2

C0,1([0,t0]×U)

)
. Thus, (B.5) is equivalent to

(en+1 − β(p0)ν(p0)) · Dν̃(p0
σ)[wσ] = (en+1 − β(p0)ν(p0)) · Dν̃(p0

σ)[p0
σ] + H4(t,w),

where H4(t,w) = O
(
‖w − p0‖2

C0,1([0,t0]×U)

)
.

Thus we have the following linear parabolic system of equations

L(σ, ∂t, ∂σ)w = f in (0, t0) ×U

subject to the boundary conditions Bβ(ς, ∂σ)w = F(t, ς) on [0, t0] × ∂U, where

F(t, ς) =

0, (en+1 − β(p0)ν(p0)) · Dν̃(p0
σ)[p0

σ] + H4(t,w), 0, . . . , 0︸     ︷︷     ︸
(n−1)−times


T

and, under the notation {g0}
i j = {p0

σi
· p0

σ j
}−1, ν̃0 = ν̃(p0

σ), β0 = β(p0) the (n + 1) × (n + 1) -
matrices L(σ, t, ξ, ζ) and Bβ(ς, ξ), ξ ∈ Rn, ζ ∈ C are defined as follows:

L(σ, ζ, ξ) := diag

ζ − n∑
i, j=1

gi j
0 ξiξ j, ζ −

n∑
i, j=1

gi j
0 ξiξ j, . . . , ζ −

n∑
i, j=1

gi j
0 ξiξ j

 ,

Bβ(ς, ξ) :=



0 . . . 1
n+1∑
k=1

n∑
i=1

(−δk,n+1 − β0ν
k
0)D(p1)σi

ν̃k
0ξi . . .

n+1∑
k=1

n∑
i=1

(−δk,n+1 − β0ν
k
0)D(pn+1)σi

ν̃k
0ξi

τ0
1
1

n∑
i=1

n0
i ξi . . . τ0

n+1
1

n∑
i=1

n0
i ξi

...
...

...

τ0
1
n−1

n∑
i=1

n0
i ξi . . . τ0

n+1
n−1

n∑
i=1

n0
i ξi


,

where the first row must be intended as [0, . . . , 0, 1].
Step 2. Now we check the compatibility conditions [50]. Take any ς ∈ ∂U and let θ be in

the tangent space of ∂U at ς. Let λ0 := λ0(ς, ζ, θ) be a solution of the quadratic equation

h(λ; ς, ζ, θ) := ζ +

n∑
i, j=1

gi j
0 θiθ j − 2λ

n∑
i, j=1

gi j
0 θin0

j + λ2
n∑

i, j=1

gi j
0 n0

i n0
j = 0

in λ ∈ C with positive imaginary part. Notice that detL = (h(λ; ς, ζ, θ))n+1 and

L̂ = (detL)L−1 = diag((h(λ; ς, ζ, θ))n, . . . , (h(λ; ς, ζ, θ))n).
53



In order to prove the compatibility conditions we should prove that the rows of the matrix

Bβ(ς, i(θ − λn0))L̂(x, ζ, i(θ − λn0))

are linearly independent modulo the polynomial (λ − λ0)n+1 whenever <(ζ) ≥ 0, |ζ | > 0.
According to the definitions of L and Bβ one checks [38] that the compatibility conditions are
equivalent to the conditions

c1en+1 + c2ν̃(p0) +

n−1∑
i=1

ci+2τ0i = 0 ⇐⇒ c1 = c2 = . . . = cn+1 = 0.

Since a basis of the tangent space {τ0i}
n−1
i=1 of Γ0 ∩ ∂Ω belongs to the horizontal subspace

of Rn+1 and ν̃(p0) is normal to Γ0 ∩ ∂Ω at p0 we have c3 = . . . = cn+1 = 0. Moreover,
since |β| ≤ 1 − 2κ, and Γ0 satisfies the contact angle condition, en+1 and ν̃(p0) are linearly
independent, i.e. c1 = c2 = 0.

Step 3. By [50, Theorem 4.9] since ∂U ∈ C3+α, β ∈ C1+α(∂Ω) and the compatibility
conditions hold, for any f̃ , F̃ ∈ C0,α([0, t0] × U), p0 ∈ C3+α(U) there exists a unique solution
w ∈ C1+α/2,2+α([0, t0] ×U) such that

wt = tr((Dp0 · (Dp0)t)−1D2w) + f̃ ,

w(0, ·) = p0,

wn+1(t, ·) = 0 on ∂U for any t ∈ [0, t0],

(en+1 − β(p0)ν(p0)) · Dν̃(p0)[wσ] = (en+1 − β(p0)ν(p0)) · Dν̃(p0)[p0
σ] + F̃(t, x) on [0, t0] × ∂U, n∑

j=1

n0
jwσ j

 · τ0i = 0 on [0, t0] × ∂U and i = 1, . . . , n − 1.

Step 4. Finally, mimicking [28] we can prove the existence of and uniqueness of a solution to
(B.2)-(B.4) in a time interval [0,T0] for some sufficiently small T0 > 0 depending on ‖β‖C1+α

and ‖p0‖C3+α .

We call E(t) the smooth flow starting from E0.

Proposition B.4 (Comparison for strong solutions). Let βi ∈ (−1, 1), E(i)
0 ⊂ Ω be bounded

sets such that Ω ∩ ∂E(i)
0 are C3+α hypersurfaces, and the smooth flows E(i)(t) starting from

E(i)
0 exist in [0,T0], i = 1, 2. If β1 ≤ β2 and dist(Ω ∩ ∂E(1)

0 ,Ω ∩ ∂E(2)
0 ) > 0, then dist(Ω ∩

∂E(1)(t),Ω ∩ ∂E(2)(t)) > 0 for all t ∈ [0,T0].

Proof. The proof is an adaptation of the classical one (see for instance [10]).
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[22] P.-G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls,

Waves, Springer, New York, 2004.
[23] E. D. Giorgi, Su una teoria generale della misura (r − 1) -dimensionale in uno spazio ad r dimensioni, Ann. Mat.

Pura Appl. 36 (1954) 191–213. doi:10.1007/BF02412838.
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