
10 April 2018

Università degli studi di Udine

The expressive power of structural operational semantics with explicit assumptions / Miculan, Marino. - STAMPA. -
806(1994), pp. 264-290. ((Intervento presentato al convegno 1st Annual Workshop on Types for Proofs and Programs,
TYPES 1993 tenutosi a Nijmegen nel 1993.

Original

The expressive power of structural operational semantics with explicit assumptions

Publisher:

Published
DOI:10.1007/3-540-58085-9_80

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:

Springer

This is the peer reviewd version of the followng article:

This version is available http://hdl.handle.net/11390/1128033 since 2018-03-12T17:21:24Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/154285947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Expressive Power
of Structural Operational Semantics

with Explicit Assumptions?

Marino Miculan

Dipartimento di Matematica e Informatica
Università di Udine

via Zanon, 6 – I 33100 Udine – Italy
miculan@udmi5400.cineca.it

Abstract. We explore the expressive power of the formalism called Nat-
ural Operational Semantics, NOS, introduced by Burstall and Honsell for
defining the operational semantics of programming languages. This for-
malism is derived from the Natural Semantics of Despeyroux and Kahn.
It arises if we take seriously the possibility of deriving assertions in Natu-
ral Semantics under assumptions, i.e. using hypothetico-general premises
in the sense of Martin-Löf. We investigate to what extent we can re-
duce to hypothetical premises the notions of store and environment of
Plotkin’s Structural Operational Semantics. We use this formalism to
define the semantics of a functional language which features commands,
blocks, procedures, complex declarations, structures and Abstract Data
Types. We give the NOS together with the denotational semantics and
prove the adequacy of the former w.r.t. the latter. We discuss some other
difficulties which arose in the previous treatment of variables in connec-
tion with procedures.
Natural Operational Semantics can be easily encoded in formal systems
based on λ-calculus type-checking, such as the Edinburgh Logical Frame-
work. We briefly investigate this and discuss some of the design choices.

1 Introduction

In order to establish formally properties of programs, we have to represent for-
mally their operational semantics. A very successful style of presenting opera-
tional semantics is the one introduced by Gordon Plotkin and known as Struc-

tural Operational Semantics (SOS) ([21]). The idea behind this approach is that
all computational elaboration and evaluation processes can be construed as log-
ical processes and hence can be reduced to the sole process of formal logical
derivation within a formal system.

For example, the SOS of a functional language is a formal system for inferring
assertions such as ρ ` M → m, where m is the value of the expression M , and

? Work partially supported by Esprit BRA 6453, Types for Proofs and Programs, and
italian MURST 40%, 60% grants.

ρ is the environment in which the evaluation is performed – usually a function
mapping identifiers to values. The intended meaning of this proposition is “in
the environment ρ, the evaluation of M gives m”.

This style of specification does not have many of the defects of other for-
malisms (such as automata and definitional interpreters), since it is syntax-
directed, abstract and easy to understand. It has been proved to be very suc-
cessful in various areas of theoretical computer science. It was studied in depth by
Kahn and many of his coworkers, and it has been used by Milner with the name
of Relational Semantics. Nevertheless, the explicit presence of environments in
propositions has some drawbacks in practical use:

– the abstraction power is limited: a function which maps identifiers to values
amounts to von Neumann’s computer’s memory.

– Modularity is limited. Modularity of semantic descriptions is an ongoing
area of research—see e.g. [17, 24]. Typically, in considering extensions of the
language we may be forced to change the evaluation judgment itself. For
instance, the judgment can take the form ρ ` 〈M, σ〉 → 〈m, σ ′〉 in the case
of expressions with side-effects [21]. Hence, previous rules and derivations
are not any more compatible with the new assertion. However, even simple
extensions which only introduce new kinds of identifiers and denotable ob-
jects (e.g. procedure identifiers and procedures) cause such problems, since
the judgment can take the form: ρ, τ ` M → m.

– The system lacks conciseness: environments appear in all rules but are seldom
used. For instance, in the “+” rule, ρ`N1→n1 ρ`N2→n2

ρ`N1+N2→plus(n1,n2)
, ρ plays no rôle:

it is merely transferred from conclusion to premises (in a top-down proof
development). The environment is effectively used only when we are dealing
with identifiers, that is when we either declare an identifier or evaluate it,

e.g. in the rule ρ`M→m [x7→n]ρ`N→n

ρ`let x=M in N
→ n and the axiom ρ ` x → ρ(x).

– In order to reason formally about properties of the operational semantics,
it is necessary to encode the formal system into some proof-editor/checker.
However, in most of the proof assistants, representation of functions (such
as the environments) can be rather cumbersome, and mechanized reasoning
about these encodings can be very hard.

A possible solution to these drawbacks is the Natural Operational Semantics

formalism (NOS) introduced in [4] as a refinement of the Natural Semantics orig-
inally proposed by Kahn and his coworkers ([6, 12]). This formalism arises if we
take seriously the possibility of deriving under assumptions assertions in Natural
Semantics, i.e. using hypothetico-general judgments in the sense of Martin-Löf
([19]). It is based in fact on Gentzen’s Natural Deduction style of proof ([8]):
hypothetical premises are used to make assumptions about the values of vari-
ables. In this paper we investigate to what extent we can reduce to hypothetical
premises the fragments of the store and environment of Plotkin’s Structural Op-
erational Semantics. Thus, instead of evaluating an expression within a given
environment, we compute its value under a set of assumptions on the values of
its free variables. In other words, we replace explicit environments with implicit
contextual structures, that is, the hypothetical premises in Natural Deduction.

For example, consider a functional language with two syntactic classes, Expr,
the class of expressions (ranged over by M, N), and Id, the class of identifiers
(ranged over by x, y), the former including the latter. The SOS of this language
is a system for deriving judgments of the form ρ ` M → m. Instead, in the
NOS paradigm the judgments can be simplified to those of the form M ⇒ m,
whose reading is “the value of expression M is m”. There are no more contextual
structures: the predicate is ⇒⊂ Expr × Expr .

These assertions can be inferred using a Natural Deduction style proof sys-
tem, that is a set of rules of the form

(∆1) . . . (∆k)
...

...
M1 ⇒ m1 . . . Mk ⇒ mk

M ⇒ m
(possible side-condition)

where the sets of assertions ∆1, . . .∆k are the discharged assumptions. Therefore,
the evaluation of the expression M to the value m can be represented by the
following derivation in N.D. style:

Γ = {x1 ⇒ n1, . . . , xk ⇒ nk}

�
�

�

@
@

@ D

M ⇒ m

written D : Γ ` M ⇒ m

where the hypotheses Γ = {x1 ⇒ n1, . . . , xk ⇒ nk} (k ≥ 0) can be interpreted
as a set of variable bindings: the value of the variables involved in the evaluation
of M . This derivation can be read as “in every environment which satisfies the
assumptions in Γ , M is evaluated to m.” This means that, given an environment
ρ s.t. ∀(x ⇒ m) ∈ Γ : ρ(x) = m, there is a derivation of ρ ` M → m in the
corresponding SOS proof system. An assumption about the value of a variable
can be discharged when it is valid locally to a subcomputation. For instance,
in the case of local declarations, in order to evaluate let x = N in M , we
can evaluate M assuming that the value of x is the same as that of N . This
extra assumption is not necessary for evaluating let x = N in M , so it can be
discharged. The let rule is the rule in which the whole power of the ND style
appears

(x ⇒ n)
...

N ⇒ n M ⇒ m

let x = N in M ⇒ m

whose reading is “if n is the value of N and, assuming the value of x is n then m
is the value of M , then the value of let x = N in M is m.” (Unfortunately, the
situation is not so simple, since this extra assumption can clash with a previous
assumption on x which is valid globally. This will be discussed in detail in Sect.2.)

This truly N.D. approach has the benefit that all the rules which do not
refer directly to identifiers appear in a simpler form than those in SOS style: no
environment appears. For instance, the rule for the “+” function becomes

N1 ⇒ n1 N2 ⇒ n2

N1 + N2 ⇒ plus(n1, n2)
.

In this paper, we address the following question: what kind of programming
languages can be treated conveniently using this formalism. We are interested
in understanding to what extent we can reduce to assumptions the concepts of
store, environment, binding and similar linear datatypes.

2 Analysis of the NOS style

In this section we try to convey briefly to the reader the main features of opera-
tional semantics in N.D. style. Recall that a N.D. style rule can be viewed as a
concise description of a special kind of rule for deriving sequents, i.e. metapropo-
sitions of the form Γ ` A ([8, 2]):

(∆1) . . . (∆k)
...

...
A1 . . . Ak

A
corresponds to

Γ, ∆1 ` A1 . . . Γ, ∆k ` Ak

Γ ` A

where A, A1, . . . , Ak are propositions and ∆1, . . . , ∆k sets of propositions. Γ
is any set of proposition. This rule means that, in order to prove that A is a
consequence of a given Γ , we have to prove for i = 1 . . . k that Ai is a consequence
of Γ, ∆i. In other words, for proving each Ai we can use some local assumptions
∆i, the global hypotheses Γ always remaining valid. This fact is at the core of
the issues discussed in the following subsections.

2.1 The issue of local variables

Since the NOS rules are N.D. rules, if we have the following deduction D:

Γ, (∆1) Γ, (∆k)
D1 . . . Dk

M1 ⇒ m1 Mk ⇒ mk

M ⇒ m

all the bindings in Γ are available in evaluating Mi, for i = 1 . . . k. As a conse-
quence of this, the let rule showed in Sect.1 above, is incorrect because previous
(global) assumptions on locally defined variables can be used during the sube-
valuation, e.g. as follows:

0 ⇒ 0

1 ⇒ 1 (x ⇒ 0)(1)

let x = 1 in x ⇒ 0

let x = 0 in let x = 1 in x ⇒ 0
(1)

An attempt to overcome this problem could be that of using higher-order syn-

tax à la Church. This technique originated with Church’s idea to analyze ∀x.P as
∀(λx.P) where ∀ has a higher order functionality: ∀ : (Term → Prop) → Prop

[5]. It was further used by Martin-Löf [19] and thoroughly expanded in the
Edinburgh Logical Framework [11]. This technique has been proved to work
extremely well for pure functional languages (see [3] for a treatment of this
in the context of λ-calculus and [9, 14] of more general functional languages).
For example, the construct lambda x.M could be compiled to lam (λx.M),
where lam : (Expr → Expr) → Expr . However, higher-order syntax cannot
be used directly in the case of languages with imperative features. In fact, it
easily yields semantic inconsistencies, since it treats identifiers as placeholders
for expressions. This is correct in pure functional languages, but does not hold
in imperative languages. For instance, the application of the λ-abstraction con-
taining a command2 lambda (λx.[x := x + 1]x) to 0 would be reduced to the
evaluation of [0 := 0+1]0, which is meaningless. Furthermore, there is no direct
representation of loops like while b do x := x + 1. See [3] for more difficulties in
handling Hoare’s logic. Another problem is the absence of induction principles
for encodings that employ higher-order syntax.

The difficulty of avoiding the capturing of local variables can be overcome
by making explicit the textual substitution of variables in local evaluations [4].
This is similar to Gentzen’s notion of Eigenvariable [8]. Recall the ∃-Elim rule:

(A′)
...

∃x.A B

B

A′ is obtained from A by replacing all the occurrences
of x with x′, where x′ does not occur neither in any of
A, x, B, nor in any assumption different from A′.

Simlarly, in evaluating let x = N in M , we have to replace all the occurrences
of x in M with a new identifier never used before, say x′, which will be bound
to the value of n. The let rule is definable as follows:

(x′ ⇒ n)
...

N ⇒ n M ′ ⇒ m′

let x = N in M ⇒ m
E(x, M, m)

where E(x, M, m) is a typographic abbreviation for the Eigenvariable Condition:
E(x, M, m) ≡ “M ′, m′ are obtained from M, m respectively by replacing all the
occurrences of x with x′, which does not appears neither in x, M , m nor in any
assumption different from (x′ ⇒ n)”.

This treatment of local variables correctly obeys the standard stack discipline
of languages with static scoping: when we have to define a local variable, we
allocate a new cell (represented by x′, a new variable) where we store the local
value (this is achieved by assuming x′ ⇒ n). This allocation is active only during
the evaluation of M (the derivation tree of M ′ ⇒ m′); then, the cell is disposed
(x′ does not occur in any other place).

2 [·]· : Comm × Expr → Expr applies commands to expressions; see Sect.3.1,4 and [4]

2.2 What informations can assumptions represent?

The structural rules implicit in N.D. systems of monotonicity of hypothesis have
another immediate consequence. We can reduce to assumptions only informa-
tions which can be dealt with using a static scoping discipline. In particular, a
side-effect assignment of pointers which induces variables aliasing (or sharing)
is difficult to encode, since we would necessitate of a vector. In fact, we cannot
retrace all the bindings which are involved on a set of shared variables whenever
one of them changes its value.

However, in languages which do not allow sharing, assignments can be re-
duced to definitions of new variables. Therefore, we focus on this kind of lan-
guages. Namely, those whose semantics can be defined without using both en-
vironment and store. These comprise all purely functional languages, but also
some interesting extensions of these which have genuinely imperative features.
This is in fact our thesis: only languages whose denotational semantics is defin-
able by using only the notion of environment can be conveniently handled using
NOS. In the following we describe some of these languages.

3 The language LP

In this section, we examine a functional language extended with imperative
features as assignments which give it an imperative flavor. Its semantics can
been successfully described by using the NOS paradigm. We give its syntax, its
NOS and denotational semantics (App.A, B, C) and we prove that the former is
adequate w.r.t. the latter. Finally, we will discuss the relation between the NOS
and a SOS description.

3.1 Syntax

LP is an untyped λ-calculus extended by a set of structured commands. These
commands are embedded into expressions using the “modal” operator [on · do·]·.
The expression [on x1 = M1; . . . ; xk = Mk do C]M can be read as:

“execute C in the environment formed only by the bindings x1 = M1; . . . ; xk =
Mk; use resulting values of these identifiers to extend the global environment in
which M has to be evaluated, obtaining the value of the entire expression.”

C cannot have access to “external” variables other than x1 . . . xk, so all possible
side effects are concerned with only these variables. Moreover, the entire on-do
expression above does not have any side effect: all environment changes due to
C’s execution are local to M .

LP allows us to declare and use procedures. For the sake of simplicity, but
w.l.o.g., these procedures will take exactly two arguments. The first argument
is passed by value/result, the second by value [21]. Furthermore, the body of a
procedure cannot access global variables, but only its formal parameters (and
locally defined identifiers, of course). This means that when P (x, M) is executed
within the scope of the declaration proc P (y, z) = C in D, C is executed in the

environment formed by only two bindings: {y ⇒ n, z ⇒ m}, where n, m are the
values of x, M respectively. After C’s execution, the new value of y is copied
back into x. So, P (x, M) can effect only x.

The restriction on global access forbids sharing of identifiers, so there is no
need for a store. This does not drastically reduce the expressiveness of the im-
perative language. Donahue has shown that in this case, the call-by-value/result
is a “good” simulation of the usual call-by-reference [7].

In [4] a different definition of procedure is given. There, procedures param-
eters are passed only by value, but procedures can have access to global vari-
ables. However, there is a problem with this approach, since the N.D. treat-
ment of procedures does not immediately lend itself to support side effects
on global variables. That approach does not work; for instance, the expression
[on x = 0 do proc P (z) = (x := z) in x := 1; P (nil)]x would be evaluated to
1 instead of nil. This is due to the fact that the assignment made by P (nil) on
the global variable x is local to the environment of the procedure itself. In fact,
executions of such procedures leave the global environment unchanged.

3.2 Natural Operational Semantics

The complete NOS formal system for LP consists of 67 rules; see App.B.1.
In order to deal with λ-closures, command checking and execution, procedure

checking and bookkeeping, we need to introduce some new constructors besides
those of Sect.3.1 and new predicates besides ⇒. As in [4], the use of these new
constructors is reserved: a programmer cannot directly utilize these constructors
to write down a program. Below we list the constructors and predicates, and we
briefly describe the most important ones. For their formal meaning, see Theor.3.

Constructor Functionality
[/] : Expr × Id × Expr →Expr

· : Expr × Expr →Expr

[|] : Declarations × Commands × Expr→Expr

[/]c : Commands × Id × Commands →Commands

lambda : Id × Id × Commands →Procedures

[/]pe : Procedures × ProcId × Expr →Expr

[/]pc : Procedures × ProcId × Commands→Commands

Judgment Type
⇒ ⊂ Expr × Expr

value ⊂ Expr

closed ⊂ Expr

closedp ⊂ ProcId

Judgment Type
⇒p ⊂ ProcId × Procedures

freee ⊂ Expr × IdSet

freec ⊂ Commands × IdSet

> ⊂ Declarations × IdSet

where Procedures is a new syntactic class defined as q ::= lambda x, y.C, and
IdSet is the subset of Expr defined as l ::= nil | x | l1 :: l2

The intuitive meaning of [n/x]M is “the expression obtained from M by
replacing all free occurrences of x with n.” Just as for the let discussed in Sect.2,

in order to evaluate [n/x]M we have to evaluate M under the assumption that
the value of x is n, and hence any previous assumption on x must be ignored.
This is implemented by the substitution rule, no.1, which is very similar to the
let rule of Sect.2. This rule is the core of the evaluation system. Many other
evaluation rules, e.g. the one for let, are reduced to the substitution evaluation
(rule no.3). In NOS, to each sort of identifiers and substitution operators (e.g.
Id and [/] , ProcId and [/]pe , Id and [/]c , etc.) there corresponds a specific
substitution rule, similar in shape to rule no.1. In fact, this mechanism is used
whenever one has to deal with standard static scoping. One can even think of
these rules as a polymorphic variant of the same set of rules. Of course, minor
adjustments have to be accounted for (rules no.24, 33, 29) (see [4, 15]).

The operator [/] is also used to record local environments in values of
lambda-abstractions, i.e. the closures. An expression like lambdax.M is evalu-
ated into [n1/x1] . . . [nk/xk]lambda x.M , where x1, . . . , xk are all the free iden-
tifiers of M but x, and n1, . . . , nk are their respective values. The construction of
closures is performed by rules no.4 and no.5; its application by rules no.7, no.8

The intuitive meaning of [R|C]M is the same as of [on R do C]M . This
expression is introduced in order to apply the declaration R until it is empty
(rule no.16); then, the command C is executed.

The judgment value encodes the assertion that an expression is a value, and
so it cannot be further reduced nor its meaning is affected by a substitution.

The judgments closed, closedp are used during closure construction, in order
to determine the bindings that we have to record (rules no.4, no.5, no.31). In-
formally, we can derive closed M if and only if M has no free variables. These
judgments belong to static semantics: their rules do not use evaluation rules.

The judgments free, freec, > are used to check that command expressions
[on D do C]M and procedures do not access global variable. Informally, we can
infer Γ ` free M l if and only if all the free variables of M appear at the leaves
of the tree l (see Theor.3). On the other hand, > collects the variables defined
by a declaration D into a set (represented by a tree of identifiers).

The judgment ⇒p is used for bookkeeping the bindings between procedure
identifiers and procedural abstraction (see rules no.28, no.30).

3.3 Denotational Semantics

In appendix C.1 we sketch the denotational semantics for the language LP . Do-
mains are introduced to represent all the entities we have defined. This semantics
is self-explanatory. We follow the usual syntax ([23]); λ denotes the strict ab-

straction: for each meta-expression M with free variable x on pointed domain D,
(λx.M)⊥ = ⊥. Furthermore, λ is the double-strict abstraction: for each meta-
expression M 6= ⊥ with free variable x on pointed domain D with both ⊥ and
>, (λx.M)⊥ = ⊥, (λx.M)> = >.

Moreover we use the standard domains without giving their definition. The
domains used are Unit (the set composed by only one point), T (the boolean set
composed by two points, true and false), N (the set of natural numbers).

3.4 Adequacy

In this section we will show that the NOS description of LP appearing in ap-
pendix B.1 is adequate w.r.t. the denotational semantics; that is, we will give
soundness and completeness results of one semantics w.r.t. the other. Due to
lack of space, we will only sketch the proofs; for further details see [15].

Definition 1. A set of formulæ Γ is a canonical hypothesis if

– it contains only formulæ like “x ⇒ n, P ⇒p q, closed(x), closedp(P)”;

– if x ⇒ n, x ⇒ m ∈ Γ then m and n are syntactically the same expression;
– if P ⇒p q, P ⇒p q′ ∈ Γ then q and q′ are syntactically the same procedure;

where x ∈ Id , P ∈ ProcId and m, n ∈ Expr , q, q′ ∈ Procedures.

In the rest of section, Γ will denote a generic canonical hypothesis. Let G be
a formula; with Γ ` G we denote the N.D. derivation of G, whose undischarged
assumptions are in Γ .

Definition 2. Let M ∈ Expr , R ∈ Declarations, Γ a canonical hypothesis; then
1. the set of free identifiers of M is denoted by FV(M) ⊂ Id ∪ ProcId . FV is
naturally extended to Commands, bearing in mind that FV(x := M) = FV(M);
2. the set of variables defined by R is DV(M) ⊂ Id , defined as DV(x1 =
M1; . . . ; xk = Mk) = {x1, . . . , xk};

3. the set of Γ -closed identifiers C(Γ) is C(Γ)
def
= {x ∈ Id | closed(x) ∈ Γ}∪{P ∈

ProcId | closedp(P) ∈ Γ};
4. the closure of Γ is Γ = Γ ∪ {closed(x) | (y ⇒ n) ∈ Γ, x ∈ FV(n)} ∪
{closedp(P) | (y ⇒ n) ∈ Γ, P ∈ FV(n)};
5. Γ is a well-formed hypothesis, wfh, if Γ = Γ .

Theorem 3. ∀Γ, ∀M, m ∈ Expr∀C ∈ Commands, ∀l ∈ IdSet :
1. Γ ` closed M ⇐⇒ FV(M) ⊆ C(Γ)
2. Γ ` free m l ⇐⇒ FV(m) ∩ Id ⊆ leaves(l) ∧ FV(m) ∩ ProcId ⊆ C(Γ)

Γ ` free C l ⇐⇒ FV(C) ∩ Id ⊆ leaves(l) ∧ FV(C) ∩ ProcId ⊆ C(Γ)
where leaves(nil) = ∅, leaves(x) = {x}, leaves(l1 :: l2) = leaves(l1) ∪ leaves(l2)

3. Γ ` value m =⇒ Γ ` closed m

Proof. By induction on the derivations and on the syntax of M, m, C. ut

Note that not all closed expressions are values; e.g., ((lambda x.x) 0).

Definition 4. Let I ⊆ Id ∪ ProcId and let ρ, ρ′ ∈ E. We say that ρ and ρ′

agree on I (ρ ≡I ρ′) if ∀x ∈ I ∩ Id : (access [[x]] ρ = access [[x]] ρ′) and
∀P ∈ I ∩ ProcId : (procaccess [[P]] ρ = procaccess [[P]] ρ′).

Note that all ρ, ρ′ agree on the empty set, that is ∀ρ, ρ′ ∈ E : ρ ≡∅ ρ′.

Theorem 5. ∀m ∈ Expr , ∀R ∈ Declarations, ∀ρ, ρ′ ∈ E :
1. ρ ≡FV(m) ρ′ ⇒ E [[m]]ρ = E [[m]]ρ′

2. ρ ≡FV(C) ρ′ ⇒ C[[C]]ρ = C[[C]]ρ′

3. ρ ≡FV(R) ρ′ ⇒ D[[R]]ρ = D[[R]]ρ′

Proof. By simultaneous induction on the syntax of m, C, R. ut

Theorem 6. ∀Γ, ∀ρ, ρ′ ∈ E, ∀m ∈ Expr , ∀l ∈ IdSet :
1. ρ ≡C(Γ) ρ′ ∧ Γ ` closed m =⇒ E [[m]]ρ = E [[m]]ρ′

2. ρ ≡leaves(l) ρ′ ∧ Γ ` free C l =⇒ C[[C]]ρ = C[[C]]ρ′

3. ρ ≡C(Γ) ρ′ ∧ Γ ` value m =⇒ E [[m]]ρ = E [[m]]ρ′

Proof. Follows from Theor.3, Theor.5. ut

Corollary 7. Γ ` value m ∧ C(Γ) = ∅ =⇒ ∀ρ, ρ′ ∈ E : E [[m]]ρ = E [[m]]ρ′

Definition 8. We say that ρ ∈ E satisfies Γ (ρ |= Γ) if ∀(x ⇒ n) ∈ Γ :
access [[x]] ρ = E [[n]]ρ, and ∀(P ⇒ q) ∈ Γ : procaccess [[x]] ρ = Q[[q]]ρ.

This is another place where the conciseness of the N.D. formalism comes into
play. The domain of environments satisfying a given Γ can be much larger than
the set of variables which occur on the left of assumptions in Γ .

Theorem 9. ∀M, m, ∀Γ wfh, ∀ρ : ρ |= Γ ∧ Γ ` M ⇒ m =⇒ E [[M]]ρ = E [[m]]ρ

Proof. By induction on the structure of derivation, using the previous results.ut

Corollary 10 Soundness of NOS wrt DS. ∀M, m ∈ Expr :` M ⇒ m =⇒
E [[M]] = E [[m]]

Proof. Put Γ = ∅ in Theor.9, and notice that ∅ is a wfh and ∀ρ ∈ E : ρ |= ∅. ut

A completeness result is something like an “inverse” of Corollary 10. However,
a literal converse of Corollary 10 cannot hold: for M = m = (lambda x.x0) it
is E [[M]] = E [[m]] but of course 6` M ⇒ m. In fact, only some expressions can
appear as values (see Theor.3). We need a new definition:

Definition 11. Let M ∈ Expr . An hypothesis Γ is suitable for M (M -suit(Γ)),
if ∀x, P ∈ FV(M)∃(x ⇒ n), (P ⇒p q) ∈ Γ such that FV(n), FV(q) ⊆ C(Γ).

A hypothesis is suitable for M if it contains enough bindings to evaluate M .

Theorem 12 Completeness of NOS wrt DS. ∀M ∈ Expr , ∀Γ wfh, ∀ρ ∈ E:

if E [[M]]ρ 6= ⊥,>, M -suit(Γ) and ρ |= Γ , then ∃m ∈ Expr : Γ ` M ⇒ m.

Proof. The difficulty in the proof is this: given an expression M whose meaning,
in a given environment, is a proper point of V, and a suitable hypothesis Γ , we
have to build up a deduction Γ ` M ⇒ m, for some m.3 This cannot be done by
induction on the syntactic structure of M , since our language is higher order; in
fact, the evaluation of M can use M itself, and not only its subterms (see e.g.
rule no.21). Nevertheless, the theorem can be proved by using the technique of
inclusive predicates, developed by Milner and Plotkin [22]. ut

3 By Theor.9, this m has the same meaning as M

3.5 Adequacy w.r.t. the Structural Operational Semantics

In the previous subsection we have proved the adequacy of the NOS specifica-
tion of LP w.r.t. the denotational semantics. Actually, the same adequacy can
be proved w.r.t. a Structural Operational Semantics (à la Plotkin, [21]). One
can define a complete “input-output” SOS system for LP , that is a system for
deriving two kinds of judgments: evaluation of expressions, ρ `SOS M → m,
and execution of commands, ρ `SOS C → ρ′ where ρ, ρ′ are finite environments,
i.e. they are defined on a finite number of identifiers, and m is a value. In such
a SOS system, there is no problem in handling substitutions, since we merely
update the environment function in the subderivation:

ρ[x 7→ n] `SOS M → m

ρ `SOS [n/x]M → m

Of course, this is not a linearized N.D. style system since we may delete a pre-
vious binding on x from the environment. These systems are equivalent, that is,
∀ρ finite environment, ∀Γ, ∀M, m ∈ Expr :
1. if ∀(x ⇒ n) ∈ Γ : ρ(x) = n and Γ ` M ⇒ m, then ρ `SOS M → m
2. if ρ `SOS M → m and ∀x ∈ FV(M) : (x ⇒ ρ(x)) ∈ Γ , then Γ ` M ⇒ m.
This is provable using techniques similar to those of previous subsection. More-
over, the completeness result (2) does not require the technique of inclusive pred-
icates, but only a simpler structural induction on the derivation ρ `SOS M → m.

4 Some remarks about language design

LP is quite different from the language considered in [4]. There are several rea-
sons for these changes. In some cases these are motivated by the desire to have
a natural soundness result (see section 3.1 for remarks concerning procedures).

In our language, commands are embedded into expressions by the on-do
construct. A simpler formalism for applying directly commands to expressions
is used in [4], i.e. the “modal” operator [] : Commands × Expr → Expr , so
that [C]M is an expression if M ∈ Expr , C ∈ Commands. Informally, the value
of [C]M is the value of M after the execution of C; C can affect any variable
which is defined before its execution. Furthermore, as all expressions, [C]M has
no side-effects, that is evaluating [C]M does not change the global environment
any more than evaluating 0 or nil. C affects only the local environment which
is used to evaluate M , but its side effects are not “filtered” by a declaration of
accessible variables. In order to appreciate the difference in notation between
the two approaches compare the following semantically equivalent expressions:

in the system of [4]: let x = 0 in [x := nil]x; in LP : [on x = 0 do x := nil]x

At first it seems that the latter is more complex and nothing has been gained.
But the former expression might lead us to think that we can define functions
with local state variables and more interesting expressions objects, but this is not
the case! For instance, we can try to model a bank account defining a function
withdraw which takes the amount to be withdrawn (an example taken from [1]):

let bal = 100; withdraw = lambda a.[bal:=bal-a]bal in

let remaining = (withdraw 50) in

(withdraw 30)

The system in [4] will evaluate it to 70 instead 20: the first withdraw has no
effect. The reason is that in the closure of withdraw, bal is bound to 100, and
this binding is reapplied to the local environment whenever withdraw is applied;
this “reinitializes” bal to 100 each time (see rules no.5, no.6, no.8). Therefore,
an application of withdraw cannot affect any following application.

Thus, [4]’s system may lead to misunderstanding the meaning of some ex-
pressions. We decide to avoid this by writing explicitly the variables which a
command can affect, and making explicit that such variables are always reini-
tialized whenever the command is executed. By writing [on x1 = M1; . . . ; xk =
Mk doC]M we immediately know that, before C is executed, the “interface vari-
ables” x1 . . . xk are initialized. Therefore, an obscure program, like the withdraw
one, cannot be written in LP :the withdraw function should be declared as

let withdraw = lambda a.[on bal = 100 do bal:=bal-a]bal in ...

and hence its meaning is clearer. This aspect is however a major problem: neither
in [4] system nor in LP the withdraw function with the intended meaning of [1]
can be written. We’ll elaborate on this in Sect.7.

5 Some extensions of LP

In this section we briefly describe some further extensions of LP concerning
complex declarations, structures and imperative modules. Their semantics can
be expressed without stores because there is no variable sharing. See appendix A,
B and C for their syntax, NOS and DS respectively. We deal with each extension
by itself, by simply adding new rules to the formal system without altering the
previous ones. This illustrates modularity of NOS which allows us to add new
rules for new constructs without changing the previous ones. For each extension,
one can prove adequacy of NOS w.r.t. the denotational semantics ([15]), just by
discussing only the new cases due to the extra rules.

5.1 Complex Declarations

LD is obtained from LP by adding expressions of the form letR inM where R is a
complex declaration like in Standard ML ([16]). In spite of the syntactic simplic-
ity of these extensions, it appears to be unavoidable to define an entire evaluation
system for declarations (rules no.72–88). The value of complex declarations are
finite sets of bindings, represented by expressions called syntactic environments;
they are trees whose leaves are of the form x 7→ n where 7→: Id×Expr → Expr is
a new local constructor. We need to introduce furthermore several constructors
and a judgment for applying such syntactic environments to expressions and dec-
larations ({ } , { }d) and for inferring expression closures (〈 〉 ,�). Informally,

one can derive Γ ` R � I iff all expressions contained in R are closed in Γ and
I is the set of identifiers defined by R. On the other hand, Γ ` closed 〈I〉M
iff all free variables in M but the ones in I are closed in Γ . Once the rules will
be laid down, these fact will be formally provable. Using this set of rules, we
can define precisely when a complex let is closed without using any evaluation,
since closed is a property belonging to static semantics. An adequacy theorem
similar to Theor.3 can be proved for the system given in Sect.B.2. In [4] there
is a simpler approach; it uses the complex declaration evaluation in order to
determine the set of defined identifiers. This approach is not complete: there are
closed expression whose closed property cannot be inferred in [4]’s system (e.g.
let o = (lambda x.xx); z = (oo) in z).

5.2 Structures and signatures

LMF
extends LP by adding a module system like that of Standard ML ([16]),

where a module is “an environment turned into a manipulable object”. Like
SML, a module (here called structure) has a signature, and we can do signa-

ture matching in order to “cast” structures. However, there are some differences
between SML and LMF

. First, in LMF
structures and signatures are indeed ex-

pression. Therefore, they may be associated to identifiers with simple lets, with-
out using special constructs. These lets can appear anywhere in expressions,
not only at top level. Structures and signatures can be manipulated by common
functions; however, there are not functors since the sharing specification is not
implemented. The NOS should be self-explanatory.

5.3 Imperative modules (Abstract Data Types)

The extension LMI
introduces modules à la Morris ([18]). In this formulation, a

module is very close to an Abstract Data Type: it contains
1. a set of local variables, recording the state of the module; they are not acces-
sible from outside the module;
2. some code for the initialization of the local variables above;
3. a set of procedures and functions which operate on these local variables and
are the only part accessible from outside the module (the interface).

From outside a module we can only evaluate its functions, which do not
produce side-effects, and execute its procedures, which can modify the state of
the module (the value of local variables). In order to illustrate the idea, but
w.l.o.g., we discuss only modules with exactly one local variable, one procedure
with one argument (passed by value) and one function.

As for the previous languages, we do not need a representation of the store in
defining the semantics of this kind of module ([7]). The rules for the specification
of the imperative modules are certainly the most complex of those discussed in
this paper. They are based on the principle of distributing as much as possible
under the form of hypothetical assumption in deductions. In a module there are
three informations: the state, the procedure and the function. Actually, only the
state is subject to changes upon execution of the module procedure. We split

these three informations and record them using three different judgments (see
rule no.114). The predicates of these assumptions are the following:
⇒m⊂ ModId × (Expr ×ModId) ⇒mp⊂ (ModId × ProcId)×Q

⇒mf⊂ (ModId × Id)× Expr

We use a lot of syntactic sugar; for instance, we write T.P ⇒mp λx, y.C instead
of ⇒mp ((T, P), lambda x, y.C).

When the state of a module changes (by executing its procedure), we have to
substitute only the assumption involving ⇒m; the other two remain the same.
Thus, while the procedure and the function are left associated to the original
module identifier, the state becomes associated to a new ModId, and this substi-
tution affects a part of the declaration to be evaluated (see rules no.116 no.115).
The link between the new state and the procedures is maintained by the module
identifier which appears on right of ⇒m assumption: it is merely copied from
the old assumption into the new one (rule no.116).

When a module procedure has to be executed (T.P (M)), first we look for
the state of the module T , by requiring T ⇒m (p, T ′). Here we find the original
module identifier, T ′. The invoked procedure is then associated to this identifier
in the assumption T ′.P ⇒mp lambda x, y.C. After having bound x and y re-
spectively to module variable value (p) and actual parameter (m), we execute C
and get back the new value of the state variable. Finally, we substitute T with
the new module state.

Function evaluation is similar to procedure call, but simpler (rule no.117).

We can successfully implement the bank account examined in Sect.4 by using
this kind of modules, e.g. as follows:

module account is

bal = 100;

proc withdraw(amount) = bal := bal - amount;

func balance = bal

in ...

Now we can withdraw an amount A by executing account.withdraw(A), and
know how much money we have left by evaluating account.balance.

However, even this notion of module is too weak to adequately model “func-
tions with local state” as are necessary, for instance, in realizing memoized
functions. In fact, as soon as an instance of a module is packaged within a λ
abstraction, its connection with its parent (definition) is severed.

6 Encoding NOS in the Edinburgh LF

From a logician’s point of view, the Natural Operational Semantics of a language
is just a formal logical system in Natural Deduction style. Therefore, it can be
easily encoded in interactive proof-checkers based on type-checking of typed λ-
calculus, such as the Edinburgh Logical Framework (LF, [11]). This was actually
one of the main motivations for introducing and investigating the systems of this

paper. A first outline about this can be found in [4]. In [15] a complete encoding
of the NOS of the while subset of LP appears.

The LF encoding of NOS has several significant consequences. When we
encode the operational semantics in LF, we have to discuss details that are
normally left out or too often taken for granted or even “swept under the rug”.
For instance, the complex side-condition of rule no.1 requires that “x is a new
identifier”, but we do not give a formal definition of this. When we encode NOS
in LF, this condition has to be expressed formally and unambiguously. This
is achieved by introducing two auxiliary judgments in,notin : (Term Id) →
∏

S:Sorts(Term S) → Type where Sorts : Type is the type of syntactic classes
and Term : Sorts → Type. The intuitive meaning of (in x S p) is “the identifier
x appears in the phrase p which belongs to the syntactic class S”; dually for
notin. The rules for these judgments are given on the syntax of phrases in the
obvious way—see [4, 15]. Thus, the complete substitution rule no.1 is as follows,
where Id ,Expr : Sorts:

M, m : Id→Expr
value n

∀w : Id

(notin x Id w)
...

notin x Expr (M w)

∀x′ : Id

∀w : Id
in w Id x

notin w Id x′

∀w : Id
in w Expr (M x)

notin w Id x′

∀w : Id
in w Expr (m x)

notin w Id x′

x′ ⇒ n

...
(M x′) ⇒ (m x′)

[n/x](M x) ⇒ (m x)

The middle subderivation requires that x does not occur in the expression
context M . Evaluation is performed in the right-hand subderivation; here, x is
replaced by x′ assuming x′ does not occur in any of x, (M x), (m x). This is
achieved by the three discharged rules about in, notin. The full power of LF is
exploited: rules are treated just as any other judgment.

We can use this encoding with proof editors based on LF, such as LEGO
([13]), and logic programming languages based on LF, such as Elf ([20]). LEGO
can be successfully used to develop derivations (= computation traces) and to
verify properties about the semantics themselves, e.g. equivalence between con-
structs. During the phase of operational semantics developing, we can try our
rules and look for inconsistencies. Thus, we have immediately a powerful tool
for semantic development and consistency checking.

On the other hand, logic programming languages such as Elf can be used to
get an interpreter prototype for free: immediately after we have encoded in Elf
the LF representation, we can ask queries like ?- True(eval M V). where M
is (the encoding of) an expression. In resolving this goal, Elf instantiates V to
M ’s value, and develops a term which represent the deduction ` M ⇒ V , that
is the computation trace of the evaluation of M .

In these systems we can prove several meta-results about semantics. In [15]
the equivalence between two different NOS of the same while-language is de-
veloped. One of these semantics is “natural”, clear but inefficient. The rules for

the while execution are the following:

M ⇒ true [C]([while M do C]N) ⇒ n

[while M do C]N ⇒ n

M ⇒ false N ⇒ n

[while M do C]N ⇒ n

This semantics needs to backtrack and to re-evaluate the test expression if it does
not match the required value in the assumption. The second semantics overcomes
this drawback by introducing an auxiliary judgment, dw (“do while”):

M ⇒a m dw m M C N n

[while M do C]N ⇒a n

[C]([while M do C]N) ⇒a n

dw true M C N n

N ⇒a n

dw false M C N n

Here, backtracking and double evaluation are not needed any more.
Adopting a technique used by Michaylov and Pfenning for functional lan-

guages ([14]), we can prove the equivalence between these two semantics by en-
coding in Elf a judgment, naeq :

∏

M,m∈Expr (M ⇒ m) → (M ⇒a m) → Type.
This judgment represents the equivalence between “natural” and “algorithmic”
computation traces. Asking Elf about queries of the form ?- naeq D D′ where
one of D, D′ is instantiated to a derivation in one semantics, the system auto-
matically gives us the equivalent derivation in the other semantics. In this way
we have defined a bijection between the computation traces of the two semantics.

We can think the former semantic as the “theoretical” semantics of the lan-
guage, and the latter as the real implementation. Thus, the formal equivalence
proved in Elf between them can be seen as the backbone of a proof of compiler
correctness. (For compiler correctness in LF see also [10]).

7 Concluding remarks

In this paper we have described the expressive power of the Natural Opera-
tional Semantics formalism. We have seen that this formalism handles success-
fully languages which do not allow variable aliasing, or sharing, We have shown
some of these languages: functional languages extended with a restricted form
of commands and procedures, blocks, complex declarations, modules à la ML

(structures and signatures) and modules à la Morris.
This formalism improves abstractness and modularizability of Plotkin’s Struc-

tural Operational Semantics and Kahn’s Natural Semantics. Furthermore, such
a operational description can be easily encoded in LF. Such encodings can be
used within implementations of LF (LEGO and Elf), giving us powerful tools for
developing language semantics formally, for checking correctness of translators
and for proving semantic properties.

Unfortunately, so far we have not been able to give the semantics of a truly
imperative language using this formalism. It seems that one cannot represent
simultaneously both the store and the environment by means of assumptions.
Without encoding a store we cannot describe usual imperative phenomena like
side-effects with aliasing, argument passage of parameters by-reference and so
on. Therefore, this formalism seems not general enough to deal with expressions

with side-effects, functions with local state variables or memoization, Pascal
procedures (procedures with global variables and call-by-reference).

We think that exception handling can be added to LMF
quite easily ([4]).

The real lack of our languages w.r.t. ML is the absence of the store: ML is a
store-based language. Therefore, in order to capture fully the semantics of ML
(and encode it in LF) we have to find some representation of the store. This is
a task remaining to be done. Ideally, we would like to extend the formalism as
much as is needed to describe the semantics of an untyped λ-calculus extended
by primitives for manipulating side-effects, like ML’s ref, ! and := ([16]). The
NOS of this language should be easily extended to that of ML.

A Syntax

A.1 Syntax of LP

Syntactic class Id

x ::= i0 | i1 | i2 | i3 | . . .

Syntactic class Expr

M ::= 0 | succ | plus | true | false |≤
| nil | M :: N | hd | tl
| lambda x.M | MN
| let x = M in N
| letrec f(x) = M in N
| [on R do C]M

Syntactic class ProcId

P ::= p1 | p2 | p3 | . . .

Syntactic class Declarations

R ::= 〈〉 | x = M ; R

Syntactic class Commands

C ::= x := M | C; D | nop
| if M then C else D
| beginnew x = M ; C end
| proc P (x, y) = C in D
| while M do C | P (x, M)

A.2 Syntax of LD

Syntactic class Expr

M ::= . . . | let R in M
Syntactic class Declarations

R ::= . . . | R; S | R and S

A.3 Syntax of LMF

Syntactic class LongId

u ::= x | u.x

Syntactic class Commands

C ::= . . . | u := M

Syntactic class Expr

M ::= . . . | sig x1 . . . xk end
| struct x1 = M1; . . . ; xk = Mk end
| M : N | open u in M

A.4 Syntax of LMI

Syntactic class ModId

T ::= t1 | t2 | t3 | . . .

Syntactic class Expr

M ::= . . . | T.f

Syntactic class Commands

C ::= . . . | T.P (M)
| module T is x = M ;

proc P (y) = C; func f = N
in D

B Rules for the NOS

B.1 NOS of LP

Rules for judgment ⇒ For the mean-
ing of E(·, ·, ·), see Sect.2.1. For typo-
graphical reasons, lambda will be some-
times abbreviated with λ and [〈〉|C]N
with [C]N .

(x′ ⇒ n)
...

value n M ′ ⇒ m′

[n/x]M ⇒ m
E(x, M, m) (1)

value m

m ⇒ m
(2)

N ⇒ n [n/x]M ⇒ m

let x = N in M ⇒ m
(3)

(closed x)
...

closed M

lambda x.M ⇒ lambda x.M
(4)

(closed y)
...

y ⇒ n lambda x.M ⇒ m

lambda x.M ⇒ [n/y]m
(5)

M ⇒ m N ⇒ n m · n ⇒ p

MN ⇒ p
(6)

[n/x]M ⇒ p

(lambda x.M) · n ⇒ p
(7)

value n [m′/x](m · n) ⇒ p

([m′/x]m) · n ⇒ p
(8)

value n

(plus · 0) · n ⇒ n
(9)

(plus ·m) · n ⇒ p

(plus · (succ ·m)) · n ⇒ succ · p
(10)

let f = (lambda x.letrec
f(x) = N in N) in M ⇒ p

letrec f(x) = N in M ⇒ p
(11)

M ⇒ m N ⇒ n

M :: N ⇒ m :: n
(12)

value m

hd · (m :: n) ⇒ m
(13)

value n

tl · (m :: n) ⇒ n
(14)

D > I free C I [D|C]N ⇒ n

[on D do C]N ⇒ n
(15)

M ⇒ m [m/x]([D|C]N) ⇒ n

[x = M ; D|C]N ⇒ n
(16)

N ⇒ n [n/x]M ⇒ m

[x := N]M ⇒ m
(17)

[C]([D]M) ⇒ m

[C; D]M ⇒ m
(18)

M ⇒ true [C]N ⇒ n

[if M then C else D]N ⇒ n
(19)

M ⇒ false [D]N ⇒ n

[if M then C else D]N ⇒ n
(20)

M ⇒ true

[C]([while M do C]N) ⇒ n

[while M do C]N ⇒ n
(21)

M ⇒ false N ⇒ n

[while M do C]N ⇒ n
(22)

N ⇒ n [[n/x]cC]M ⇒ m

[beginnew x = N ; C end]M ⇒ m
(23)

(x′ ⇒ n)
...

value n [C ′]M ⇒ m′

[[n/x]cC]M ⇒ m
E(x, C, m) (24)

value n

(≤ ·0) · n ⇒ true
(25)

value n

(≤ ·(succ · n)) · 0 ⇒ false
(26)

(≤ ·n) ·m ⇒ p

(≤ ·(succ · n)) · (succ ·m) ⇒ p
(27)

[[lambda x, y.C/P]pcD]M ⇒ m

[proc P (x, y) = C in D]M ⇒ m
(28)

(P ′ ⇒p λx, y.C)
...

freec C (x, y) [D′]M ⇒ m′

[[λx, y.C/P]pcD]M ⇒ m
E(P, D, m)

(29)
P ⇒ λx, y.C M ⇒ m z ⇒ p

[p/x][m/y][C]x ⇒ v [v/z]N ⇒ n

[P (z, M)]N ⇒ n
(30)

(closed P)

free C (x, y)
...

P ⇒p λx, y.C λz.M ⇒ m

λz.M ⇒ [λx, y.C/P]pem
(31)

value n [Q/P]pe(m · n) ⇒ p

([Q/P]pem) · n ⇒ p
(32)

(P ′ ⇒p Q)
...

freec C (x, y) M ′ ⇒ m′

[λx, y.C/P]peM ⇒ m
E(P, M, m)

(33)

Rules for judgment value

value m
m is a constant (34)

M ⇒ m

value m
(35)

Rules for judgment >

〈〉 > nil
(36)

Dl > I

x = M ; Dl > x :: I
(37)

Rules for judgment closed

closed m
m is a constant (38)

closed M closed N

closed(MN)
(39)

closed m closed n

closed(m · n)
(40)

(closed x)
...

closed N closed M

closed(let x = N in M)
(41)

(closed f, closed x) (closed f)
...

...
closed N closed M

closed(letrec f(x) = N in M)
(42)

(closed x)
...

closed M

closed(lambda x.M)
(43)

(closed x)
...

closed n closed M

closed([n/x]M)
(44)

closed m closed n

closed(m :: n)
(45)

D > I free C I closed [D|nop]M

closed [on D do C]M
(46)

closed M

closed [〈〉|nop]M
(47)

(closed x)
...

closed N closed [R|nop]M

closed [x = N ; R|nop]M
(48)

(closedp P)
...

free C (x, y) closed M

closed [lambda x, y.C/P]peM
(49)

Rules for judgment free

free x (x, m)
(50)

free x m

free x (y, m)
(51)

free M m free N m

free (M N) m
(52)

free M m free N x :: m

free (let x = M in N) m
(53)

free M x :: m

free (lambda x.M) m
(54)

free M m free N m

free (M ·N) m
(55)

free M m free N m

free (M :: N) m
(56)

free n m free M x :: m

free ([n/x]M) m
(57)

free C (x, y, m)

(closedp P)
...

free M m

free ([lambda x, y.C/P]M) m
(58)

free C m free M m

free ([C]M) m
(59)

free C m free D m

free (C; D) m
(60)

free M m free C m free D m

free (if M then C else D) m
(61)

free M m free C m

free (while M do C) m
(62)

free M m free C x :: m

free (beginnew x = M ; C end) m
(63)

free C (x, y, m)

(closedp P)
...

free D m

free (proc P (x, y) = C in D) m
(64)

closedp(P) free x m free M m

free (P (x, M)) m
(65)

free n m free C x :: m

free ([n/x]C) m
(66)

free C (x, y, m)

(closedp P)
...

free D m

free ([lambda x, y.C/P]D) m
(67)

B.2 NOS of LD

Rules for judgment ⇒

R ⇒d r {r}M ⇒ m

let R in M ⇒ m
(68)

M ⇒ m

{nil}M ⇒ m
(69)

[n/x]M ⇒ m

{x 7→ n}M ⇒ m
(70)

{r}({s}M) ⇒ m

{r :: s}M ⇒ m
(71)

Rules for judgment ⇒d

(x′ ⇒ n)
...

value n R′ ⇒d m

[n/x]dR ⇒d m
E(x, n, R, m) (72)

M ⇒ m

x = M ⇒d x 7→ m
(73)

R ⇒d r S ⇒d s

R and S ⇒d r :: s
(74)

R ⇒d r {r}dS ⇒d s

R; S ⇒d r :: s
(75)

R ⇒d r

{nil}dR ⇒d r
(76)

[n/x]dR ⇒d r

{x 7→ n}dR ⇒d r
(77)

{r}d({s}dR) ⇒d r

{r :: s}dR ⇒d r
(78)

Rules for judgment closed

closed M

closed {nil}M
(79)

closed [n/x]M

closed {x 7→ n}M
(80)

closed {r}{s}M

closed {r :: s}M
(81)

closed m

closed x 7→ m
(82)

R � m closed 〈m〉M

closed(let R in M)
(83)

(closed x)
...

closed M

closed 〈x〉M
(84)

closed 〈m〉(〈n〉M)

closed 〈m :: n〉M
(85)

Rules for judgment �

〈〉 � nil
(86)

R � m S � n

R and S � m :: n
(87)

(closed x)
...

closed M R � n

x = M ; R � x :: n
(88)

B.3 NOS of LMF

Rules for judgment ⇒

struct end ⇒ nil
(89)

M ⇒ m [m/x]struct Bstr ⇒ l

struct x = M Bstr ⇒ (x 7→ m, l)
(90)

M ⇒ m N ⇒ t proj m (t) n

M : N ⇒ n
(91)

u ⇒ m (x 7→ p) in m

u.x ⇒ p
(92)

u ⇒ l {l}M ⇒ m

open u in M ⇒ m
(93)

M ⇒ m u ⇒ l
upd l x m l′ [u := l′]N ⇒ n

[u.x := M]N ⇒ n
(94)

Rules for judgment value

value(sig Bsig)
(95)

Rules for judgment closed

closed sig Bsig

(96)

closed M closed N

closed M : N
(97)

closed struct end
(98)

(closed x)
...

closed M closed(struct Bstr)

closed(struct x = M Bstr)
(99)

closed u

closed u.x
(100)

closed u closed M

closed(open u in M)
(101)

Rules for judgments in, proj, upd

m in (m :: l)
(102)

m in l

m in (p :: l)
(103)

proj l (sig end) nil
(104)

(x 7→ m) in l proj l (sig Bsig) l′

proj l (sig x Bsig) (x 7→ m, l′)
(105)

upd (x 7→ n, l) x m (x 7→ m, l)
(106)

upd l x m l′

upd (y 7→ n, l) x m (y 7→ n, l′)
x 6= y

(107)

B.4 NOS of LMI

Rules for judgment closed

closed T

closed T.f
(108)

Rules for judgment �

(closed T)
...

R � I

[p/T]mR � I
(109)

Rules for judgment free

free R m free M m

free R.P (M)
(110)

free R m

free R.f m
(111)

free p m free N (R, m)

free [p/R]mN m
(112)

free M m free C (x, y) free N (x) free D (R, m)

free (module R is x = M ; proc P (y) = C; func f = N in D) m
(113)

Rules for judgment ⇒

M ⇒ m free C (x, y) free N (x)

R′ ⇒m (m, R′)
(R′, P) ⇒mp λx, y.C
(R′, f) ⇒mf λx.N

...
[D′]N ⇒ n′

[module R is x = M1; proc P (y) = C; func f = M2in D]N ⇒ n
E(R, D, m)

(114)
R ⇒m (p, R′) (R′, P) ⇒mp lambda x, y.C

M ⇒ m [p/x][m/y][C]x ⇒ p′ [p′/R]mN ⇒ n

[R.P (M)]N ⇒ n
(115)

(R′ ⇒m (p, T))
...

value p R ⇒m (, T) N ′ ⇒ n′

[p/R]mN ⇒ n
E(R, N, n) (116)

R ⇒m (p, T) (T, f) ⇒mf lambda x.M [p/x]M ⇒ m

R.f ⇒ m
(117)

C Denotational semantics

C.1 Denotational semantics of LP

Semantic domains

V = (N + T + U + P + F)>⊥
N = Nat (the domain of natural numbers)
T = Truth (the domain of truth values)
U = Unit (the one-element domain)

P = V× V

F = V → V

E = ((Id → V)× (ProcId → Q))>

Q = (Id → V → E → E)>

Operators

newenv = (λx.>, λp.>) : E

update = λx.λn.λ(ρv, ρp).([x 7→ n]ρv, ρp) : Id → V → E → E

access = λx.λ(ρv, ρp).ρv(x) : Id → E → V

procupdate = λp.λq.λ(ρv, ρp).(ρv, [p 7→ q]ρp) : ProcId → Q → E → E

procaccess = λp.λ(ρv, ρp).ρp(p) : ProcId → E → Q

overlay = λρ1.λρ2.λx.if is>(ρ2(x)) → ρ1(x) [] ρ2(x) : E → E → E

Semantic functions

E : Expr → E → V

C : Commands → E → E

D : Declarations → E → E

Q : Procedures → E → Q

E [[x]] = λρ.access[[x]]ρ E [[0]] = λρ.inN(zero) E [[nil]] = λρ.inU()

E [[true]] = λρ.inT(true) E [[false]] = λρ.inT(false)

E [[let x = M in N]] = λρ.let v = E [[M]]ρ in E [[N]](update [[x]] v ρ)

E [[letrec f(x) = M in N]] = λρ.let g = fix (λg.λv.E [[M]](update [[f]] g ρ)) in
E [[N]](update [[f]] g ρ)

E [[lambda x.M]] = λρ.inF(λv.E [[M]](update [[x]] v ρ))

E [[M N]] = λρ.cases E [[M]]ρ of isF(f) → f(E [[N]]ρ)[]>end

E [[M :: N]] = λρ.let v1 = E [[M]]ρ in let v2 = E [[N]]ρ in inP((v1, v2))

E [[[m/x]N]] = λρ.let v = E [[m]]ρ in E [[N]](update [[x]] v ρ)

E [[m · n]] = λρ.cases E [[m]] of isF(f) → f(E [[n]]ρ)[]>end

E [[[on x̄ = M̄ do C]N]] = λρ.if (maxfree [[C]](x̄)) → C[[C]](D[[x̄ = M̄]]ρ)[]>

where maxfree : Commands → Id∗ → T; the meaning of
“maxfree [[C]] s = true” is simply “every free identifier of C is in s”. maxfree is
trivially defined on the syntactic structure of commands; we omit its definition.
D[[〈〉]] = λρ.newenv

D[[x = M ; R]] = λρ.let v = E [[M]]ρ in
let τ = D[[R]](update [[x]] v ρ) in

overlay τ (update [[x]] v newenv)

D[[[n/x]dR]] = λρ.let v = E [[n]]ρ inD[[R]](update [[x]] v ρ)

C[[x := M]] = λρ.let v = E [[M]]ρ in update [[x]] v ρ

C[[while M do C]] = fix (F)

where F : (E → E) → (E → E) F = λf.λρ.cases E [[M]]ρ of
isT(t) → if t → f(C[[C]]ρ) [] ρ
[]>

end

C[[beginnew x = M ; C end]] = λρ.let ρ′ = update [[x]] (E [[M]]ρ) ρ in
let ρ′′ = C[[C]]ρ′ in

update [[x]] (access [[x]] ρ) ρ′′

C[[proc P (x, y) = C in D]] =
λρ.let ρ′ = procupdate [[P]] (Q[[lambda x, y.C]]ρ) ρ in

let ρ′′ = C[[D]]ρ′ in
procupdate [[P]] (procaccess [[P]] ρ) ρ′′

C[[P (x, M)]] = λρ.let v = E [[M]]ρ in ((procaccess [[P]] ρ) [[x]] v ρ)

Q[[lambda x, y.C]] =
λρ.if maxfree [[C]] ([[x]], [[y]])emptysign)) →

λi.λvy.λτ.let vx = (access i τ) in
let ρ′ = C[[C]](update [[y]] vy (update [[x]] vx ρ)) in

update i (access [[x]] ρ′) τ
[]>

E [[[Q/P]peM]] = λρ.E [[M]](procupdate [[P]] Q[[Q]]ρ ρ)

C.2 Denotational semantics of LD

Semantic functions O : SyntEnvir → E → E

E [[let R in N]] = λρ.E [[N]](overlay (D[[R]]ρ) ρ)

E [[{r}M]] = λρ.E [[M]](O[[r]]ρ) = E [[M]] ◦ O[[r]]

D[[R and S]] = λρ.overlay (D[[S]]ρ) (D[[R]]ρ)

O[[x 7→ n]] = λρ.update (E [[n]]ρ) ρ

O[[r :: s]] = O[[s]] ◦ O[[r]]

C.3 Denotational semantics of LMF

Semantic domains

V = (N + U + P + F + B + S)>⊥
U = Unit

P = V× V

F = V → V

B = Id × V

S = Id∗ = ES + CS

ES = Unit

CS = Id × S

Operators

emptystruct = inU() : V

consstruct = λx.λv.λc.inP(inB([[x]], v), c) : Id → V → V → V

emptysign = inES() : V

conssign = λi.λt.inCS((i, t)) : Id → S → S

accessstruct = see below : Id → V → V

applystruct = see below : V → E → E

projection = see below : V → S → V

longupdate = see below : LongId → V → E → E

projection = λs.λt.cases t of
isES() → inU()
[] isCS(i, t′) →

let v = accessstruct i s in
let s′ = projection s t′ in consstruct i v s′

end

Semantic functions E [[struct end]] = λρ.emptystruct

E [[x 7→ n]] = λρ.let v = E [[n]]ρ in inB([[x]], v)

E [[struct x = M Bstr]] = λρ.let v1 = E [[M]]ρ in
let v2 = E [[struct Bstr]](update [[x]] v1 ρ) in

consstruct [[x]] v1 v2

E [[sig end]] = λρ.inS(emptysign)

E [[sig x Bsig]] = λρ.cases E [[sig Bsig]]ρ of
isS(s) → inS(conssig [[x]] s)
[]>

end

E [[M : N]] = λρ.let s = E [[M]]ρ in
cases E [[N]]ρ of

isS(t) → projection s t
[]>

end

E [[open u in M]] = λρ.let s = E [[u]]ρ in E [[M]](applystruct s ρ)

E [[u.x]] = λρ.accessstruct [[x]] (E [[u]]ρ)

C.4 Denotational semantics of LMI

Semantic domains

E = (IM× PM×MM)>

IM = Id → V

PM = ProcId → Q

Q = (Id → V → E → E)>

MM = ModId → M

M = (V×QM × FM)>

QM = V → V → V

FM = V → V = F

Operators

newenv = (λx.>, λp.>, λr.>) : E

update = λx.λn.λ(ρv, ρp, ρm).([x 7→ n]ρv, ρp, ρm) : Id → V → E → E

access = λx.λ(ρv, ρp, ρm).ρv(x) : Id → E → V

procupdate = λp.λq.λ(ρv, ρp, ρm).(ρv, [p 7→ q]ρp, ρm) : ProcId → Q → E → E

procaccess = λp.λ(ρv, ρp, ρm).ρp(p) : ProcId → E → Q

modupdate = λr.λq.λ(ρv, ρp, ρm).(ρv, ρp, [r 7→ m]ρm) : ProcId → Q → E → E

modaccess = λr.λ(ρv, ρp, ρm).ρm(r) : ProcId → E → Q

Semantic functions

C[[module R is x = M ; proc P (y) = C; func f = N in D]] =

λρ.if maxfree [[C]] (conssign [[x]] (conssign [[y]]emptysign)) →

if maxfree [[N]] (conssign [[x]] emptysign) →

let m = E [[M]]ρ in

let q = λvx.λvy.access [[x]] C[[C]](update [[y]] vy (update [[x]] vx ρ)) in

let g = λvx.E [[N]](update [[x]] vx ρ) in

let ρ′ = modupdate [[R]] (m, q, g) ρ in

modupdate [[R]] (modaccess [[R]] ρ) C[[D]]ρ′

[]>

[]>

C[[R.P (M)]] = λρ.let (n, q, g) = modaccess [[R]] ρ in
let n′ = q n (E [[M]]ρ) in

modupdate [[R]] (n′, q, g) ρ

E [[R.f]] = λρ.let (n, q, g) = modaccess [[R]] ρ in (g n)

E [[[n/R]mM]] = λρ.let (, q, g) = modaccess [[R]] ρ in
let m′ = E [[n]]ρ in E [[M]](modupdate [[R]] (m′, q, g) ρ)

Acknowledgments

Many of the ideas in this paper were first presented in [15]. I am most grateful to
Furio Honsell for his invaluable and patient support and for directing my thesis
work. I wish to acknowledge Randy Pollack and Frank Pfenning for several
useful discussions and for making accessible via ftp the LEGO and Elf systems
respectively. I would like to thank also the anonymous referees for the useful
comments on the earlier version of this paper.

References

1. H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
grams. The MIT Electrical Engineering and Computer Science Series. MIT Press,
Cambridge, Massachusetts, 1985.

2. A. Avron. Simple consequence relations. Information and Computation, 92:105–
139, Jan. 1991.

3. A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using Typed Lambda Calculus
to implement formal systems on a machine. Journal of Automated Reasoning,
9:309–354, 1992.

4. R. Burstall and F. Honsell. Operational semantics in a natural deduction setting.
In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 185–214. Cambridge
University Press, June 1990.

5. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

6. J. Despeyroux. Proof of translation in natural semantics. In Proceedings of the
First Conference on Logic in Computer Science, pages 193–205. The Association
for Computing Machinery, 1986.

7. J. E. Donahue. Locations considered unnecessary. Acta Informatica, 8:221–242,
July 1977.

8. G. Gentzen. Investigations into logical deduction. In M. Szabo, editor, The col-
lected papers of Gerhard Gentzen, pages 68–131. North Holland, 1969.

9. J. J. Hannan. Proof-theoretical methods for analysis of functional programs. Tech-
nical Report MS–CIS–89–07, Dep. of Computer and Information Science, Univer-
sity of Pennsylvania, Dec. 1988.

10. J. J. Hannan and F. Pfenning. Compiler verification in LF. In Seventh Annual
IEEE Symposium on Logic in Computer Science, pages 407–418, Santa Cruz, Cal-
ifornia, June 1992. IEEE Computer Society Press.

11. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, Jan. 1993.

12. G. Kahn. Natural Semantics. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science, number 247 in Lecture Notes in Computer Science,
pages 22–39. Springer-Verlag, 1987.

13. Z. Luo, R. Pollack, and P. Taylor. How to use LEGO (A Preliminary User’s Man-
ual). Department of Computer Science, University of Edinburgh, Oct. 1989.

14. S. Michaylov and F. Pfenning. Natural Semantics and some of its Meta-Theory in
Elf. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings of
the Second International Workshop on Extensions of Logic Programming, number
596 in LNAI, pages 299–344, Stockolm, Sweden, Jan. 1991. Springer-Verlag.

15. M. Miculan. Semantica operazionale strutturata ad ambienti distribuiti – teoria
e sperimentazione. Undergraduate thesis, Università di Udine, Udine, Italy, July
1992. In italian.

16. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
Cambridge, Massachusetts, 1990.

17. E. Moggi. Notions of computation and monads. Information and Computation, 1,
1993.

18. J. H. Morris, Jr. Types are not sets. In Conference Record of the ACM Symposium
on Principles of Programming Languages, pages 120–124, Boston, Oct. 1973. The
Association for Computing Machinery.

19. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s Type
Theory: An Introduction, volume 7 of International Series of Monograph on Com-
puter Science. Oxford University Press, 1990.

20. F. Pfenning. Elf: A language for logic definition and verified metaprogramming. In
Fourth Annual Symposium on Logic in Computer Science, pages 313–322. IEEE,
June 1989. Also available as ERGO Report 89–067, School of Computer Science,
Carnegie Mellon Univ., Pittsburgh.

21. G. D. Plotkin. A structural approach to operational semantics. DAIMI FN-19,
Computer Science Department, Århus University, Århus, Denmark, Sept. 1981.

22. G. D. Plotkin. Notes about semantics. Unpublished notes given at CSLI, Stanford,
Aug. 1985.

23. D. A. Schmidt. Denotational Semantics. Allyn & Bacon, 1986.
24. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Tech-

nical Report TR91–160, rev.2, Department of Computer Science, Rice University,
Houston, Texas, 1991.

This article was processed using the LaTEX macro package with LLNCS style

