
Novice Programmers’ Reasoning about Reversing Conditional
Statements

Cruz Izu
The University of Adelaide

Adelaide, Australia
cruz.izu@adelaide.edu.au

Claudio Mirolo
University of Udine

Udine, Italy
claudio.mirolo@uniud.it

Amali Weerasinghe
The University of Adelaide

Adelaide, Australia
amali.weerasinghe@adelaide.edu.au

ABSTRACT
Abstraction and the ability to understand and apply abstract con-
cepts, such as program behaviour, causes novice programmers
to struggle with both introductory and advanced programming
courses. Thus, evaluating students’ ability to reason about small
programs should be an important topic for CS education. Recent
work has explored the strategies used by a sample group of students
to reason about reversibility. That study showed many students
failed to correctly reason about reversing a seemingly simple con-
ditional statement. This work extends that study by assigning that
exercise to two cohorts of novice programmers as part of the final
exam paper.

We measured and analysed their ability to reason and/or reverse
conditional statements. Reasoning about reversibility requires stu-
dents to have a mental model of the state, which in the case of
conditional statements includes (1) identifying the changes of the
assignment, (2) evaluating any adjustments to its condition and
(3) recognizing potential overlaps over the two execution flows.
The evaluation showed 28% of them had that correct model, while
an additional 23% could write the code but failed to identify the
overlap.

KEYWORDS
programming; reasoning; reversibility; state.
ACM Reference format:
Cruz Izu, Claudio Mirolo, and Amali Weerasinghe. 2018. Novice Program-
mers’ Reasoning about Reversing Conditional Statements. In Proceedings of
SIGCSE 2018, Baltimore, Maryland, USA – Published article:, February 2018
(SIGSE), 6 pages.
https://doi.org/10.1145/3159450.3159499

1 INTRODUCTION
The ability to reason about program behavior is considered to be
an advanced ability that CS2 students should develop [12]. The cov-
erage of program behaviour in CS1 is usually focused on practical
abilities such as tracing and testing. Little guidance is given on how
to reason on the program behaviour as a whole, i.e. by considering
any possible state or dataflow caused by program execution.

Recent work has investigated on program comprehension of
CS2/CS3 students by exploring an abstract concept related to cod-
ing: reversibility [5]. Being able to determine reversibility of a code
segment as an indicator for mental development of novice program-
mers was first proposed by Lister [7]. Subsequently, Teague [16]

Pre-print of the paper (accepted manuscript) for the institutional repository and not
for redistribution. See terms of the ACM Copyright Transfer Agreement.
SIGSE, February 2018, Baltimore, Maryland, USA – Published article:
https://doi.org/10.1145/3159450.3159499

evaluated the coding ability of a large (n=603) group of CS1/CS2
students to reverse a small program. Later on, Izu[5] asked students
to identify reversibility in small fragments of code, thus testing stu-
dents’ ability to reason systematically about state transformation.
However, to test their full understanding we should combine both
reasoning and coding in one task.

Our study will use a task that requires students to reason and
code about the reversibility of conditional statements. We choose
that task for three reasons: (1) it relates to the core concept of state
that they have been exposed to, (2) it will force them to reason
about the overlaps of the two paths of a conditional statement and
(3) a similar task appeared to be a stumbling block in [5].

The exercise was part of the final examination for two cohorts
of first year students at different countries; thus the task had to be
simple and clear. We covered both how students reason about it,
and how well they can code it in the same task as follows: firstly
we asked them to decide if a conditional statement was reversible
or not; secondly they had to justify their decision by providing the
code that will undo the state if their answer was Yes, or an example
of a state (more specifically, the value of a variable) that cannot
be reversed if their answer was No. Deciding on reversibility force
dstudents to reason about program behaviour in terms of possible
changes to the program state.

This study addresses the following research questions:
• Can novice programmers reverse a conditional statement?
• How comprehensively can novice programmers envisage
the impact of conditionals in state variables?

The main contribution of this study is to evaluate for the first
time the understanding of novice programmers of the overall effect
that the alternative paths of a conditional statement can have on
program state.

The rest of the paper is organised as follows: section 2 reviews
related work, section 3 describes the methodology used, section 4
presents the results, section 5 discusses the findings, followed by
conclusions.

2 RELATEDWORK
Reversibility is the mental process of determining if a set of events
can be undone to return to the original state. In Piaget’s theory
of cognitive development, reversibility is a key step toward more
advanced thinking: it represents the change from using and manipu-
lating symbols to extending their meaning and making an increased
use of logical thinking. Moreover, according to a neo-Piagetian per-
spective, corresponding learning stages are relevant independently
of the age when approaching new knowledge domains [15].

There is a limited number of studies that focus on understand-
ing program behaviour as a whole. Pennington [11] investigated

https://doi.org/10.1145/3159450.3159499
https://doi.org/10.1145/3159450.3159499

SIGSE, February 2018, Baltimore, Maryland, USA – Published article: C. Izu, C. Mirolo and A. Weerasinghe

different types of information available when analyzing a program:
Operations, Control flow, Dataflow, State, and Function. Note these
concepts are inter-related, for example Dataflow is about transfor-
mations that data objects undergo during execution; these transfor-
mations result from the combination of control flow and operations
that change the object state. From this perspective, our reversibility
task relates to both Dataflow and State. The task asks students to
consider how to undo a given dataflow transformation, so they
return the variable to its original state.

Of course, there is a large number of CS education papers that
discuss various aspects of program behaviour such as code compre-
hension [3], ability to read code [9] andmental models [2]. However,
their emphasis is not on reasoning about program behaviour as a
whole, but on supporting students to learn complex concepts and
improve their programming skills. For example, Ragonis et al. [12]
discussed the difficulties students have in comprehending program
flow under the object oriented paradigm, and suggested support
required, such as visualisation, to improve comprehension. Lister
et al., focused on reading code segments and being able to express
the program focus or goal in one sentence, i.e. the ability to do
chunking [8].

In regards to studies that explore the behaviour of conditional
statements, it is worthmentioning what Cherenkova et al. report [4]
while discussing the most frequent sources of students’ problems
with conditionals:

A significant fraction of the students do have
trouble with basic structural issues of syntax
and indentation. [...] However, a significant num-
ber [...] exhibit the common errors of failing to
check the border condition [26.7%] or reversing
the conditional [28.5%].

3 METHODOLOGY
3.1 Task
Valid assessment of higher order thinking skills requires that stu-
dents be unfamiliar with the given task. Accordingly, on their tu-
torial or class exercises students were not exposed to reversibility.
At different points of the course, however, they have been asked
to evaluate the outcome of small pieces of code. Thus, they should
have sufficient prior knowledge to complete the proposed task. For
the purpose of our investigation, we selected a mixed method ap-
proach that combines the three item/task formats useful in measur-
ing higher order skills [6]: firstly, students use selection to identify
whether a code segment is reversible or not, then they either use
explanation by providing an example of a state not being reversible,
or they use creation by writing the code to undo the reversible
command. The exam question is shown in Figure 1. Note in the
exam paper the question is preceded by a basic introduction on
reversibility with examples, not shown here due to space limita-
tions.1

The code block inside each conditional statement is simple and
clearly reversible. Adding or subtracting a constant value is easily
reversed, as explained in the introduction to the task. The key
insight required to analyse the reversibility of the given statements
is that there are two flows of control whose outcomes may overlap:
1Both versions will be included as an additional file to the final paper.

Analyze the following code fragments and determine if they are reversible:
• if your answer is Yes, reversible (i.e. the command is reversible), write
a piece of code which restores the original state of the program
variables.

• If your answer is No (i.e. it is not always possible to undo the effect),
provide an example where it is not possible to infer the original
state from the outcome.

(i)
// int x;
if (x > 10) {

x = x - 1;
}

(ii)
// int x;
if (x > 10) {

x = x + 1;
}

Figure 1: Exam’s reversibility question.

7 87 9 10 11 12 13 14

7 8 9 10 11 12 13 14

7 87 9 10 11 12 13 14

7 8 9 10 11 12 13 14

Change of state for (i)

Change of state for (ii)

no action

no action

x = x – 1;

x = x + 1;

Figure 2: Change of state for the two code fragments

the if path, when the condition is true and the else or empty path
when the condition is false.

Figure 2 illustrates how these two paths “merge” or “separate”.
When the two paths don’t overlap, as in conditional statement (ii)
the code is reversible. To reverse the code we may need to adjust
the condition so that it reflects the change of state of its variables.
When the two paths overlap, as in conditional statement (i) the code
is not reversible for that set of values, for example for the value 10
which has two orginal states: 10 and 11. Thus, the statement is not
reversible as a whole.

Note it may be possible to reverse the effect of the conditional
statement for the range of values that do not overlap. For example,
if 𝑥 ’s current value is 15 we could deduce or calculate its original
value to be 16. Similarly, if 𝑥 ’s current value is 8 we could deduce
its original value was still 8. Thus, to identify reversibility we need
to focus on the borderline cases.

3.2 Data collection
We collected the exam answers from two first year CS undergradu-
ate cohorts at universities located in different countries. Each exam
paper answer was anonymised and scanned prior to analysis.

Cohort UN1, comprising 73 students, have taken a full year
programming course (24 weeks: overall about 80 hours of lessons +
60 hours of Lab and classroom exercises) based on a functional-first
approach with Scheme (functional programming) and then Java
(imperative programming and basic notions of object-orientation).
The reversibility task included 6 questions—only the first two are
anlysed here—and was the first one of four exercises on the final
exam; it was worth 25% of the marks.

Novice Programmers’ Reasoning about Reversing Conditional StatementsSIGSE, February 2018, Baltimore, Maryland, USA – Published article:

Cohort UN2, comprising 155 students, were taking a 12-week
semester course focused on Object Oriented Programming in C++.
The exercise was part of the fourth question in the exam and was
worth 5% on their exam. UN2 is a mixed cohort in terms of program-
ming experience: 56% are following it after a 12-week introductory
programming course, thus having a full year of instruction; 28% of
them taking this as their first programming course at undergrad-
uate level (assuming to have basic programming skills) and 15%
doing this course 3 or more semesters later that their first introduc-
tory programming course, due to degree transfers or late start of a
double degree. We should also note 17% of students are repeating
this course as it is core to their degrees.

3.3 Analysis
Firstly, a quantitative analysis was carried out to classify each stu-
dent selection (reversible or not reversible), plus their explanation
or code as correct/incorrect. This measures how many students
have mastered the concept tested.

However, it is also very important to understand the mental mod-
els or misconceptions that caused students to fail. Thus, in order to
gain insight into their level of mastery of the task, we conducted
a qualitative analysis based on their two combined answers. The
SOLO taxonomy [1] has been used [9, 14, 17] to classify student
answers to coding (read/write) questions. As Shuhidan’s concluded
“[...] we recommend the SOLO Taxonomy, to measure the novices’
understanding of the particular concepts tested. The SOLO Taxon-
omy provides a means of evaluating cognitive or mental models,
to see if the novices are able to make connections between what
they have learnt, if any exist.” In other words, besides classifying a
task at a given level, it helps to observe the progress made by each
student towards that top level.

We considered the proposed task to be at the Relational level for
novice programmers; thus, we mapped each student’s answer into
SOLO levels in accordance with the criteria listed in Table 1.

Two of the researchers assessed all students’ answers and per-
formed a deductive content analysis [10] based on the four SOLO
categories. Overall, the rate of agreement was about 93%. By consid-
ering each category separately, the percentage of agreement varied
from about 95% (multistructural level) to almost 99% (prestructural
level). Cohen’s Kappa measure of the intercoder reliability was in
the range 0.83–0.96. Eventually, further discussion led to the final
classification summarized in Table 3, to be discussed in the next
section.

4 RESULTS
4.1 Quantitative analysis
Table 2 shows the student responses for the task shown in Figure 1.
The percentages of students that provided the correct answer for the
first code fragment is similar, close to 50% in both cohorts, although
UN1 student are more precise at explaining the overlap that is the
cause of the code not being reversible. Note that the previous study
[5], using a small sample reported only 20% of them identify code (i)
as not reversible. Thus, there is a significant improvement on both
cohorts after 12/24 weeks of instruction. This indicates reasoning
about reversibility is within the reach of novice programmers.

Table 1: SOLO Classification of answers

SOLO Level Conditional statement and state

Prestructural
(P)

poor answer that shows lack of understanding of
the task, poor programing skills or
misinterpretation of what reversiblity means.

Unistructural
(U)

partial understanding of reversibility; student
makes a simplistic attempt to reverse the code
inside the if.

Multistructural
(M)

clear understanding of the reversibility task, but
one of the two exercises fail in some way, such as
being able to correctly reverse the second
conditional statement, but failing to identify or
explain the overlap between the two paths.

Relational
(R)

concept well understood and applied correctly to
both questions: they explain the overlap for (i) and
provide code to reverse (ii).

Table 2: Student answers - Is this code reversible?

(i) not
reversible

explains
overlap

(ii)
reversible

correct
code

UN1 49.3% 39.7% 97.3% 89.0%
UN2 49.0% 27.7% 83.2% 51.0%

Table 3: Classification of students’ answers.

SOLO Level UN1 UN2

Relational 38.4% 23.2%
Multistructural 43.8% 34.8%
Unistructural 12.3% 15.5%
Prestructural 5.5% 16.8%
Empty 0.0% 9.7%
SOLO mean 3.15 2.45

4.2 Qualitative analysis
Next, we look at the outcome of applying the SOLO taxonomy crite-
ria outlined in subsection 3.3 to classify the answers. The results are
summarized in table 3, where the means are obtained by assigning
a value in the range 1–4 to each SOLO level (1 = Prestructural and
4 = Relational), or 0 if the answer is empty or without justification,
and then averaging over the assigned values.

Relational answers amount to 28.1% of the rated sheets overall.
They were provided by students that answered both questions
correctly and accurately. Figure 3 shows an example of a well-
formulated answer at the Relational level. As educators, however,
we are particularly interested in identifying common patterns and
misconceptions that prevent students from reaching the relational
level. Thus, in the rest of this section we will describe the range of
answers, from the lowest level up.

SIGSE, February 2018, Baltimore, Maryland, USA – Published article: C. Izu, C. Mirolo and A. Weerasinghe

Figure 3: Example pertaining to the Relational level

4.2.1 Prestructural answers. Prestructural answers (13.2% over-
all) have poor code or vague explanations and mostly indicate lack
of preparation for a programming exam. However, some of them
illustrate a poor understanding of the reversibility task. The first
example of figure 4 shows how a student approached the task by
flipping the condition "x > 10" to "x <10", which indicates a very
superficial grasping of reversibility. A few students attempted to
reverse the action inside the original code as shown in the middle
excerpt of Figure 4, and a couple of them tried to prove it can be
reversed for all values by including a for loop in their code as sown
in the last example of figure 4. The 3 examples represent students
that have mastered the C++ syntax, but have a very superficial
grasp of the corresponding semantics.

4.2.2 Unistructural answers. Students at this SOLO level (14.5%)
have a naive view of reversibility and their answers reflect their
belief that they can just focus on the block inside the conditional
statement and ignore the control flow. Figure 5 shows a few vari-
ations of this theme. Students may just report the command they
modify, or they will copy the rest of the if conditional as provided.
Most of them answer “Yes” to both question as in three or the four
sample answers shown in Figure 5. The last answer says “No” to the
first question, but the logic is flawed as there is no risk of underflow.
Moreover, its second answer fits the pattern describe above.

4.2.3 Multistructural answers. Answers at this level (37.7%) are
above the naive pattern but still are incorrect in some way. Most of
them fall into two patterns: in the first case the students think both
conditionals are reversible, and in the second case they identify the
first conditional as not reversible. The first pattern (answer Yes-Yes,
23.2% of the sheets) is shown in the leftmost example of figure 6.
They change the assignment, as seen in the unistructural level, but
they also adjust the condition accordingly. The answer for (ii) is
correct, but that for (i) misses the overlap.

The second pattern (answer No-Yes, 11.0%) is shown by the
middle example in figure 6. In this case, the students have realised
that the typical naive solution found at the unistructural level does
not work when the original value of x was 11. So, their reasoning
is partially correct, but they fail to identify the overlap as the key
reason for not being reversible. A longer description of this kind
of reasoning for item (i) is provided in the last example of figure 6.
This group of students get the correct No-Yes choices, but they do
not adjust the condition of the second conditional. Note the code
they wrote will work, as if the original value was 11, it will now be
12 and therefore greater than 10; thus, it is not clear from the exam
papers if they are aware of this or not.

There remain about 3.5% of the answers which do not match to
the two patterns outlined above. In a couple of them, for example,
we can also find non-legitimate pieces of code introducing a new
variable to save the initial value of 𝑥 in order to restore it directly,
after the execution of the given conditional statement.

5 DISCUSSION
We now revisit the research questions in light of the results just
presented. To answer our first question, “Can novice programmers
reverse a conditional statement?” we need to look at how many
students succeeded in reversing part (ii).

Based on the quantitative data, 63% of students were able to
reverse the code correctly. However, this figure considers all varia-
tions of code that return to the original state, including those using
the original condition “x > 10”. On the other hand, based on the
qualitative analysis, if we take into account the students at the mul-
tistructural level that adjusted the condition to reflect the change
of state, plus those at the relational level, then the answer is 51.3%.
Note the unistructural students could not use their knowledge of
the conditional semantics to complete the task successfully.

In regards to the second question, “How comprehensively can
novice programmers envisage the impact of conditionals in state
variables?” we have addressed this issue using the SOLO taxonomy.
As both the code and the answers implied by the assigned task are
brief, the key differences are in the students’ awareness of the two
alternate paths of execution, and in the quality of their explanations.

In SOLO scale terms, a SOLO mean of 2.68 across the two co-
horts is similar to or above that reported in other studies that use
this taxonomy to evaluate first year undergraduate performance.
More specifically Sheard [13] reported a mean score of 2.15 for a
reading skill task that required students to explain the effect of code
that contains a loop over an array (the code checks if the array is
in order). Shuhidan’s evaluation [14] of a simple vector iteration
resulted in a mean score of 2.51. Note this reasoning task was new
in the exam, as well as the concept of reversibility which was not
covered previously during instruction. Thus, we had lower expecta-
tions compared with other coding exercises which they are familiar
with, as they have received instruction and feedback during the
semester(s). In particular, the UN1 cohort exceeded expectations
with a SOLO mean score of 3.15 for an unfamiliar task.

Finally, in terms of understanding reversibility, both student
cohorts show much better performance compared to the results
reported by Teague and Lister [16] for a range of cohorts with 12/24
weeks of class instruction. Their best class had only 32% correct
answers for reversing a vector operation inside the loop; on average
they provide 25% correct answers for a coding-only exercise.

Limitations. When students decide the code is reversible, we are
not aware of their reasoning as we only asked them to provide the
code. Thus, for the second task they may get it right and still have
a shallow understanding of reversibility.

A second limitation for the UN2 cohort was the time constraints
and the low percentage of marks (5% of final result) for the question
that influenced students to skip over it as shown by its percentage of
empty answers. Other students may have rushed on their answers
to put their time onto the more familiar formatted questions.

Novice Programmers’ Reasoning about Reversing Conditional StatementsSIGSE, February 2018, Baltimore, Maryland, USA – Published article:

Figure 4: Examples of Prestructural answers

Figure 5: Examples of Unistructural answers

Implications for educators. We want our students to become
both self-diected learners, and to develop higher-order thinking
skills needed to reason about programs as a whole. This work
demonstrates that the concept of reversibility can be used to explore
program comprehension using low-ceiling tasks such as variations
of the question used in this study.

We also need to investigate what types of instruction is required
to make students aware they need to consider the potential overlap
between the two execution paths of the conditional statement so
they will be able to understand the range of possible state changes
caused by the conditional statement as a whole.

When giving feedback about coding exercises, we should focus
not only on the lines the students did wrong but give more em-
phasis to their reasoning or lack of about program behaviour. In
other words, we should look for opportunities like this exercise for
students to become aware and improve their higher-order thinking

skills. This will be useful for those working at levels closer to the
correct answer.

A possible way to help students to explore their reasoning is
to provide peer review activities that ask them to reason about
reversing or debugging, again with a focus on explaining instead
of correcting code.

6 CONCLUSIONS
Although most novice programmers understand the semantics of
conditional statements and are able to read and explain them, recent
work has indicated students may fail to reason comprehensively
and understand as a whole the impact that a conditional statement
can have on the state of the variable it modifies.

Two first year undergraduate cohorts from different countries
were asked to complete a reasoning and coding task on a simple if

SIGSE, February 2018, Baltimore, Maryland, USA – Published article: C. Izu, C. Mirolo and A. Weerasinghe

Figure 6: Examples of Multistructural answers

statement as part of their final exam paper. Reversibility was intro-
duced through examples, which required students to understand
this abstract concept and to envisage how to apply it to small code
statements.

This study has evaluated in depth the students’ ability to reason
about and reverse conditional statements. In spite of the minimal
dataflow overlap, 28% of students showed that they understood how
multiple flows (decrementing a variable 𝑥 versus doing nothing)
can result in the same final value. In addition, more than half of the
participants involved in our investigation—i.e. at least 51%—appear
to be definitely able to devise correct code for undoing a reversible
conditional statement. On the other hand, the answers classified
at the lowest prestructural level of the SOLO taxonomy, indicating
serious lack of understanding of the reversibility concept and/or
of the semantics of very basic programming constructs, amount to
only 13% overall.

Finally, as a future direction of work, we plan to extend our inves-
tigation on reversibility to address different code fragments, namely
conditional with both branches made explicit (if-else statements)
and simple loops, as well as to include other student cohorts.

REFERENCES
[1] J. B. Biggs and K. F Collis. 1982. Evaluating the quality of learning: The SOLO

taxonomy (Structure of the Observed Learning Outcome). Academic Press, New
York, NY, USA.

[2] R. Bornat, S. Dehnadi, and D. Barton. 2012. Observing Mental Models in Novice
Programmers. In Proc. 24th Annual Workshop of the Psychology of Programming
Interest Group (ACE ’12). 77–86. http://www.ppig.org/papers/24/8.Observing_
mental_models-Richard%20Bornat.pdf

[3] Ibrahim Cetin. 2015. Student’s Understanding of Loops and Nested Loops in
Computer Programming: An APOS Theory Perspective. Canadian Journal of
Science, Mathematics and Technology Education 15, 2 (Feb. 2015), 155–170. https:
//doi.org/10.1080/14926156.2015.1014075

[4] Yuliya Cherenkova, Daniel Zingaro, and Andrew Petersen. 2014. Identifying
Challenging CS1 Concepts in a Large Problem Dataset. In Proceedings of the 45th
ACM Technical Symposium on Computer Science Education (SIGCSE ’14). ACM,
New York, NY, USA, 695–700. https://doi.org/10.1145/2538862.2538966

[5] Cruz Izu, Cheryl Pope, and Amali Weerasinghe. 2017. On the Ability to Reason
About Program Behaviour: A Think-Aloud Study. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE

’17). ACM, New York, NY, USA, 305–310. https://doi.org/10.1145/3059009.3059036
[6] FJ King, L Goodson, and F Rohani. 1998. Higher order thinking skills: Definitions,

strategies, assessment. A publication of the Educational Services Program (now
known as the Center for Advancement of Learning and Assessment). Retrieved
December 4 (1998), 2014. http://www.cala.fsu.edu/files/higher_order_thinking_
skills.pdf

[7] Raymond Lister. 2011. Concrete and other neo-piagetian forms of reasoning in
the novice programmer. Conf. Res. Pract. Inf. Technol. Ser. 114 (2011), 9–18.

[8] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and
Christine Prasad. 2006. Not Seeing the Forest for the Trees: Novice Pro-
grammers and the SOLO Taxonomy. SIGCSE Bull. 38, 3 (June 2006), 118–122.
https://doi.org/10.1145/1140123.1140157

[9] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships Between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In Proc. 4th Int. Workshop on Computing Education Research (ICER ’08).
ACM, New York, NY, USA, 101–112. https://doi.org/10.1145/1404520.1404531

[10] Philipp Mayring. 2014. Qualitative content analysis: theoretical foundation, basic
procedures and software solution. Klagenfurt.

[11] Nancy Pennington. 1987. Empirical Studies of Programmers: Second Workshop.
Ablex Publishing Corp., Norwood, NJ, USA, Chapter Comprehension Strategies
in Programming, 100–113. http://dl.acm.org/citation.cfm?id=54968.54975

[12] Noa Ragonis and Mordechai Ben-Ari. 2005. On Understanding the Statics and
Dynamics of Object-oriented Programs. SIGCSE Bull. 37, 1 (Feb. 2005), 226–230.
https://doi.org/10.1145/1047124.1047425

[13] Judy Sheard, Angela Carbone, Raymond Lister, Beth Simon, and Errold Thomp-
som. 2008. Going SOLO to assess novice programmers. In ITICSE’08. 209–213.
https://doi.org/10.1145/1597849.1384328

[14] Shuhaida Shuhidan, Margaret Hamilton, and Daryl D’Souza. 2009. A Taxonomic
Study of Novice Programming Summative Assessment. In Proc. 11th Australasian
Conf. on Computing Education - Volume 95 (ACE ’09). Australian Computer Society,
Inc., 147–156. http://dl.acm.org/citation.cfm?id=1862712.1862734

[15] Peter Sutherland. 1999. The application of Piagetian and Neo-Piagetian
ideas to further and higher education. International Journal of Lifelong
Education 18, 4 (1999), 286–294. https://doi.org/10.1080/026013799293702
arXiv:http://dx.doi.org/10.1080/026013799293702

[16] Donna Teague and Raymond Lister. 2014. Programming : Reading , Writing And
Reversing. Proc. 19th ACM Conf. Innov. Technol. Comput. Sci. Educ. - ITiCSE ’14
(2014), 285–290. https://doi.org/10.1145/2591708.2591712

[17] Jacqueline Whalley, Tony Clear, Phil Robbins, and Errol Thompson. 2011. Salient
elements in novice solutions to code writing problems. Conferences in Research
and Practice in Information Technology Series 114 (2011), 37–45.

http://www.ppig.org/papers/24/8.Observing_mental_models-Richard%20Bornat.pdf
http://www.ppig.org/papers/24/8.Observing_mental_models-Richard%20Bornat.pdf
https://doi.org/10.1080/14926156.2015.1014075
https://doi.org/10.1080/14926156.2015.1014075
https://doi.org/10.1145/2538862.2538966
https://doi.org/10.1145/3059009.3059036
http://www.cala.fsu.edu/files/higher_order_thinking_skills.pdf
http://www.cala.fsu.edu/files/higher_order_thinking_skills.pdf
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1145/1404520.1404531
http://dl.acm.org/citation.cfm?id=54968.54975
https://doi.org/10.1145/1047124.1047425
https://doi.org/10.1145/1597849.1384328
http://dl.acm.org/citation.cfm?id=1862712.1862734
https://doi.org/10.1080/026013799293702
http://arxiv.org/abs/http://dx.doi.org/10.1080/026013799293702
https://doi.org/10.1145/2591708.2591712

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Task
	3.2 Data collection
	3.3 Analysis

	4 Results
	4.1 Quantitative analysis
	4.2 Qualitative analysis

	5 Discussion
	6 Conclusions
	References

