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A recently introduced time domain method for the numerical solution of Maxwell’s equations on unstructured grids is reformulated
in a novel way, with the aim of implementation on Graphical Processing Units (GPUs). Numerical tests show that the GPU
implementation of the resulting scheme yields correct results, while also offering an order of magnitude in speedup and still
preserving all the main properties of the original Finite Difference Time Domain (FDTD) algorithm.

Index Terms—Discrete Geometric Approach, Wave Propagation, Parallel computing, FDTD

I. INTRODUCTION

THE extension of Yee’s original FDTD algorithm [1] to
unstructured grids is a topic of intense research in com-

putational electromagnetics. Unstructured grids, differently
from the cartesian grids used in the original FDTD, allow to
easily handle the complex geometries arising in applications
from both experimental science and industry. However, to
be successful, FDTD-like algorithms on unstructured grids
must retain the properties that make the original algorithm
so ubiquitous. One of these is its uniform and small stencil,
which makes the idea of a numerical time domain solution of
huge wave propagation problems on machines with parallel
computing capabilities very appealing. In practice, the algo-
rithm has thus seen its performance bottleneck getting more
and more linked to the memory bandwith of the underlying
hardware architecture. For this reason the focus of FDTD
code developers has recently shifted from multicore CPUs to
Graphical Processing Units (GPUs) [3], [4], which provide
typically an order of magnitude more bandwidth than high
performance CPUs for the price of a medium budget laptop.

On unstructured grids, a parallel implementation using a
cluster of GPUs has been presented in [5] based on the time
domain application of the Discontinuous Galerkin (DG) Finite
Element Method. However, DG formulations exhibit spurious
mode solutions due to violation of charge (and possibly
energy) conservation [6].

In the present paper we will use the approach of [7],
based on the Discrete Geometric Approach (DGA), which
yields a conditionally stable, explicit and consistent scheme
on tetrahedral grids. Furthermore the algorithm, to which we
will refer as the DGATD in the following, is stencil-based
as the original FDTD. The accuracy and performance of this
approach on single-core CPU architectures have already been
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studied in [8]. The aim of this paper is instead to present a
reformulation of this approach which also exhibits the same
promise for exploiting hardware parallelization as the original
FDTD method.

The paper is organized as follows: in Section II the space
and time discretization approach is outlined in detail, in
Section III a brief stability analysis for the resulting numer-
ical scheme is given, in Section IV the correctness of the
implementation is assessed on a test case with known analyt-
ical solution, in Section V implementation and performance
related details within the NVIDIA Compute Unified Device
Architecture (CUDA) programming model are given. Finally,
in Section VI, some conclusions are drawn.

II. FRACTIONED GRID FORMULATION

We wish to solve the initial value problem for Maxwell’s
equations

µ
∂h

∂t
= −∇× e, (1)

ε
∂e

∂t
= ∇× h, (2)

in a bounded region Ω ⊂ R3, in which we assume no
conductive losses. In the framework of the Discrete Geometric
Approach (DGA), electromagnetic quantities are discretized
into degrees of freedom (DoFs) by their integrals over geo-
metric elements of two dual grids: a primal tetrahedral mesh
G and a polyhedral dual mesh (dual complex) G̃ obtained by
barycentric subdivision of G. In the DGA, discrete differential
operators are encoded by the incidence matrices between
geometric elements in each mesh: in (1) the flux of the curl of
e through any triangle of G equals the (oriented) sum of the
circulations of e over the edges in its boundary; similarly in
(2) the flux of the curl of h through any face of G̃ equals
the (oriented) sum of the circulations of h over the dual
edges in its boundary. A remarkable consequence is that for
Maxwell’s equations written in integral form the curl operator
discretization is exact.
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Fig. 1. Hexahedron Ωr is the element on which the basis functions are
defined.

Let us take any disjoint intersection Ωr between a tetrahe-
dron τn of G and a dual volume τ̃v of G centered in any of
the four vertices v of τn (see Fig. 1). By construction, Ωr
is always a hexahedron. Furthermore, τn is the union of four
disjoint hexahedra, while τ̃v is the union of a variable number
of disjoint hexahedra (equal to the number of tetrahedra in
which v is a vertex). We will define fractioned DoFs in each
Ωr as

f̂r =

 h · ã1
r

h · ã2
r

h · ã3
r

 , ûr =

 e · a1
r

e · a2
r

e · a3
r

 ,

where ã1
r , ã2

r , ã3
r are the tangent vectors of the portions of the

three edges of τ̃v in the boundary of Ωr (as oriented in Fig.
1) and a1

r , a2
r , a3

r are the tangent vectors of the portions of the
three edges of τn in the boundary of Ωr (as oriented in Fig.
1). These DoFs are the main difference with respect to [7] and
will lead to a different, although equivalent, structure in the
resulting algorithm. Furthermore we define a local face-edge
incidence matrix in Ωr

Cr =

 0 −1 1
1 0 −1
−1 1 0

 ,
and two distinct sets of uniform valued basis functions w̃i

r(r)
and wi

r(r), with i = 1, 2, 3, which have compact support and
can be written as

w̃i
r(r) =

ãjr × ãkr

ãir × ãjr · ãkr
, (3)

wi
r(r) =

ajr × akr

air × ajr · akr
, (4)

in which i, j, k is any permutation of 1, 2, 3. Finally we define
two local mass matrices, whose element at the i-th row and
j-th column is

Mµ
r (i, j) =

∫
Ωr

w̃i
r(r) · µ(r)w̃j

r(r) dr,

Mε
r (i, j) =

∫
Ωr

wi
r(r) · ε(r)wj

r(r) dr.

Since Mµ
r and Mε

r are 3 × 3 symmetric, positive-definite
matrices we are easily tempted to discretize Eqs. (1)–(2) in
each Ωr. To impose continuity of tangential field components

Fig. 2. Procedure of assembling local mass matrices: detail of two adjacent
tetrahedra.

as in the original FDTD, we proceed thinking in global
variables terms: the set of unknowns of the discrete problem
comprises the set û, i.e. the circulations of e over each half
of each edge of G without repetitions, and the set f̂ , i.e. the
circulations of h over each half of each edge of G̃, again
without repetitions (we split a full dual edge at the barycenter
of the triangle it crosses). To get a consistent discretization
of (1), we have to glue together the contributions of the four
Ωr-like hexahedra in τn. Take for example the simple case of
Fig. 2 in which G is just two tetrahedra: the yellow and the
red hexahedra are in the same tetrahedron, so their local Mµ

r

can be assembled to contribute to the local mass matrix of a
full tetrahedron. If we do likewise for the other two Ωr-like
hexahedra in the same tetrahedron we get

Mµ
τn

f̂
n+ 1

2
τn − f̂n−

1
2

τn

∆t
= −Cτnû

n,

where Mµ
τn is a 4 × 4 matrix and f̂τn is a column vector

of size 4. Matrix Cτn is a (very sparse) superposition of
the appropriate Cr matrices, and again can be constructed
efficiently.

Referring again to Fig. 2, the yellow and the blue hexahedra
are instead in two different tetrahedra, therefore they contribute
to separate Mµ

τn . Yet these two hexahedra share a vertex
v of G, so they will contribute the a local mass matrix
Mε

τ̃v
, associated to the volume of G̃ centered in v. Then,

to get a consistent discretization of (2), we glue together the
contributions of all the Ωr-like hexahedra in a dual τ̃v

Mε
τ̃v

ûn+1
τ̃v
− ûnτ̃v

∆t
= C̃τ̃v f̂

n+ 1
2 ,

where Mε
τ̃v

is a d̃× d̃ matrix, ûτ̃v is a column vector of size
d̃, where d̃ is the number of edges of G which contain v and
|v| is the number of tetrahedra of G which contain v. Matrix
C̃τ̃v is a (very sparse) superposition of the appropriate set
of CT

r matrices and can be constructed efficiently. We note
the remarkable fact that, by requiring tangential continuity
of e and h and exploting the properties of (3)–(4), matrices
Mµ

τn and Mε
τ̃v

are locally and globally exactly divergence
preserving matrices for piecewise-constant fields e = eτ̃v
and h = hτn (see [7] for the proof). Furthermore they are
symmetric positive-definite, small, sparse and can be inverted
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Fig. 3. Result of the FFT on the computed electric field in the cylindrical
resonator. The resonances match the theoretically predicted frequency values.

locally, yielding

f̂
n+ 1

2
τn = f̂

n− 1
2

τn −∆t(Mµ
τn)−1Cτnû

n ∀τn ∈ G, (5)

ûn+1
τ̃v

= ûnτ̃v + ∆t(Mε
τ̃v )−1C̃τ̃v f̂

n+ 1
2 ∀τ̃v ∈ G̃, (6)

which is a valid, explicit, time marching scheme. We remark
that the local curl matrices Cτn , C̃τ̃v are very sparse and their
product with global field vectors can be performed in parallel.
We will refer to (5)–(6) as the fractioned Discrete Geometric
Approach Time Domain (fractioned DGATD) method in the
rest of the paper. We remark that (5)–(6) is a reformulation
of the scheme of [7], and that the two yield exactly the same
solution up to machine precision.

III. STABILITY ANALYSIS

The fractioned DGATD is conditionally stable due to the
properties of its mass matrices [7]. Simulations with more than
300 000 time steps do not show any late time instabilities, as
also the test case of section IV will show. If we pack the
system of equations in (5)–(6) by appending all the local mass
matrices into global block-diagonal, matrices Mµ−1

τ , Mε−1

τ̃ ,
by appending all the local curl matrices, and by appending all
the field unknowns in column vector format, the scheme reads

f̂ n+ 1
2 = f̂ n−

1
2 −∆tMµ−1

τ Cτ û
n, (7)

ûn+1 = ûn + ∆tMε−1

τ̃ C̃τ̃ f̂
n+ 1

2 , (8)

where we have dropped the subscripts on τ and τ̃ to stress
that the constitutive matrices are not restricted any more to a
particular primal or dual volume, respectively. Likewise Cτ

and C̃τ̃ are obtained by appending all the Cτn and Cτ̃v ,
respectively. Eq. (8) can be rewritten as

ûn+1 = 2ûn − ûn−1 + ∆tMε−1

τ̃ C̃τ̃

(
f̂ n+ 1

2 − f̂ n− 1
2

)
,

from which, using (7), it ensues

ûn+1 =
(

2I−∆t2Mε−1

τ̃ C̃τ̃M
µ−1

τ Cτ

)
ûn − ûn−1.

The timestepping structure is thus shown to be equivalent to
the one proposed on standard Finite Elements in [9]. For a
given grid, the fractioned DGATD scheme is stable provided
that ∆t < 2/

√
ρK, where ρK is the spectral radius of the ma-

trix K = Mε−1

τ̃ C̃τ̃M
µ−1

τ Cτ . This means that the maximum

Fig. 4. Zoom in frequency. The theoretically predicted peak at 245.06 MHz
is below the noise floor if the simulation is too short.

allowed ∆t can be efficiently estimated using algorithms based
on the power iteration method.

IV. CORRECTNESS ANALYSIS

The proposed formulation was tested on a problem with
known analytical solution inspired from [10]. We tested the
algorithm on a cylindrical resonator (height h = 0.5m and
radius r = 1m) filled with air. The resonator is excited via
external coupling with a broad Gaussian pulse. Thus we wish
to solve an eigenvalue problem in the time domain, since it is
known that the resonant frequencies are given by

fmnp =
c

2π
√
µrεr

√(χmn
r

)2

+
(pπ
h

)2

,

where χmn is the m-th zero of the n-th cylindrical Bessel
function, p is a non-negative integer and c is the speed of
light in vacuum. We can retrieve spectral behaviour (Figs. 3,4)
for an arbitrarily large frequency interval after a single time
domain simulation by computing the FFT on the interpolated e
in one element of G. We know from the analysis that we should
see spectral peaks in Fig. 3 at frequencies f1 = 114.75 MHz,
f2 = 182.84 MHz, f3 = 245.06 MHz, f4 = 263.38 MHz. The
peaks at f1, f2, and f4 are visible in Fig. 3. The peak at f3

seems to be missing, but is actually retrieved by zooming in the
range between 240 and 270 MHz (see Fig. 4). We remark that,
to resolve the peak at f3 from the nearest peak, a rather high
sampling frequency is needed, even after applying Hamming
windowing on the input waveform. This constraint translates
into a longer simulation (a further motivation for exploiting
parallelism).

V. PERFORMANCE ANALYSIS

The method was implemented in C++. For the single-core
CPU version we used the original DGATD of [7], running on a
Xeon E5-2687Wv4 processor with Eigen 3.3.1 for linear alge-
bra operations. The CUDA C++ code was tested on a TESLA
C2075 accelerator. Two reasonable approaches are possible
in implementing the algorithm on the GPU. The first, more
abstract approach, is to still use the original formulation of
[7], which features huge sparse matrix vector multiplications
as its only conspicuous floating point operation, and adapt it to
use the cuSparse library provided by NVIDIA, which provides
a sparse matrix vector multiplication (SpMV) function. On the
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Fig. 5. Average computational cost of a single time step vs. number of DoFs
of the problem. x axis in linear scale, y axis in logarithmic scale.

test case described in Section IV, somewhat surprisingly, this
rather naive GPU implementation already provides an order
of magnitude of speedup with respect to CPU based one,
as shown in of Table I. However, SpMV produces memory
access patterns that are not optimal on GPUs [11]. This
detail was actually the motivation for the reformulation of
the algorithm presented in Section II, in which we try to
exploit the block-diagonal structure of the mass matrices to
improve performance. The key insight is the following: high
latency access to the global memory of the GPU is optimized
if consecutive threads access consecutive locations of global
memory. By looking at the right-hand side of Eq. (5) we
are presented with a set of local 4×6 matrices which can
be stored using column-major ordering. This allows adjacent
matrix values to be loaded in shared memory by adjacent
threads, obtaining full memory coalescing. Local matrix vector
products are then computed using one thread per row.

TABLE I
SPEEDUPS

DoFs CPU SpMV Cust
854752 1 13.42 16.58

2625360 1 15.84 19.50

Experiments on our accelerator, which provides a memory
bandwidth of roughly 102 GB/s, show that a matrix multiplica-
tion kernel based on this insight reaches a sustained rate of 98
GB/s. The global speedup achieved with this implementation
is shown again in Table I. Unfortunately the same approach
does not perform equally well on Eq. (6), as the variable size
of the local mass matrix makes the logic to be added trickier
and heavier. For the aims of this paper, we decided to settle
for an implementation exploiting a specific kernel only for
Eq. (5), relying on cuSparse for the remaining computations.
In Fig. 5 we show the average single time step computational
time versus the number of unknowns of the problem for two
different meshes. In Fig. 6 we show the speedup achieved by
using the fractioned grid formulation in Eq. (5), with respect
to the original formulation of [7]. We remark that the fact that
there is a speedup is non-trivial, since by using the fractioned
DGATD formulation we are somewhat increasing the number
of DoFs in the problem.
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Fig. 6. Average computational cost of a single execution of the kernel for
Faraday’s law vs. number of DoFs of the problem. Both axes in linear scale.

VI. CONCLUSIONS

We presented a reformulation of the DGATD algorithm on
tetrahedral grids. The formulation is amenable to paralleliza-
tion on a GPU, achieving an order of magnitude of speedup.
We are currently investigating improved data layouts to further
increase performance; those improvements will be the subject
of a subsequent work.
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