Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa de Hortaliças Ministério da Agricultura e do Abastecimento

Comunicado Técnico da Tembrapa Hortaliças

Dezembro 1998

SISTEMA PARA DESINFESTAR SUBSTRATOS PARA PRODUÇÃO DE MUDAS, UTILIZANDO-SE VAPOR DE ÁGUA

João Bosco C. Silva 1

Loeni L. Falcão 2

Ivani T. Oliveira-Napoleão 3

Termos para indexação: Desinfestação de substrato; produção de mudas; termoterapia.

Index terms: Disinfestation of substrate; seedling production; thermotherapy.

INTRODUÇÃO

O tratamento sanitário de substrato é uma operação importante no processo de produção de mudas e no cultivo de plantas em vasos ou outros contentores. O tratamento visa eliminar organismos causadores de doenças que podem resultar na morte das mudas e/ou na contaminação do solo para onde forem transplantadas. Tradicionalmente no Brasil, tem-se utilizado o gás brometo de metila como agente destruidor desses organismos. Porém, na 7ª reunião das Partes do Protocolo de Montreal, ficou estabelecido que o uso deste gás deverá ser reduzido em 50% até o ano 2005 e suspenso até o ano 2010, forçando-se a busca de opções para o tratamento de solo e de substratos (Muller, 1998).

Outros processos utilizados no tratamento sanitário de substrato, tais como compostagem e solarização têm como principal vantagem a economia de energia. Entretanto, tem como desvantagens o tempo relativamente longo para sua execução, a desuniformidade do tratamento e pouca garantia da eficácia dos processos. Há também processos com equipamentos que utilizam microondas, radiação gama, ultra-violeta, ozônio e ultra-filtração desenvolvidos para desinfestação de solo e/ou solução nutritiva.

Uma alternativa em substituição ao gás brometo de metila é a aplicação de vapor de água ao substrato,

uma vez que a combinação de umidade e alta temperatura favorece a eliminação de microorganismos e sementes de plantas invasoras.

A aplicação de vapor de água para desinfestação de solos e substratos é uma opção ambientalmente correta e tem sido utilizada em vários países. É utilizado em praticamente todas indústrias de processamento de alimentos e nos processos laboratoriais, existindo inúmeros equipamentos para pasteurização ou esterilização tanto de matérias primas quanto de produtos processados.

Os equipamentos mais conhecidos que utilizam vapor de água são as autoclaves e as panelas de pressão. Embora sejam utilizados para esterilização de substrato para o cultivo de plantas, estes equipamentos não possuem mecanismos que forcem a circulação do vapor através das camadas internas da massa de substrato, ocorrendo um gradiente de temperatura entre a superfície que fica em contato direto com o vapor e as camadas internas da massa de substrato, o que exige um longo tempo de tratamento para que ocorra a uniformidade de temperatura. Esse inconveniente ocorre porque a massa úmida de substrato forma uma barreira à circulação do vapor e também porque o substrato possui geralmente alta proporção de material orgânico, que funciona como isolante térmico, dificultando a difusão do calor para as camadas internas. Além dessas desvantagens, nas autoclaves o vapor é aplicado sob alta pressão, apresentando riscos de acidente por falhas no sistema de segurança ou por manuseio inadequado do equipamento.

Alguns autores consideram que o tratamento térmico a 82° C por 30 minutos esteriliza o solo, pois os principais organismos fitopatogênicos são inativados pelo calor à temperatura próxima de 70° C, por um período aproximado de 30 minutos (Jarvis, 1993). Exemplo de temperatura e tempo para inativação de alguns patógenos são apresentados na Tabela 1. Alguns microrganismos, como vírus do mosaico do fumo e vírus do mosaico do pepino, são dificilmente inativados em temperaturas abaixo de 100° C. Algumas

espécies de *Pythium* e alguns isolados de *Fusarium* oxysporum são termotolerantes (Bollen, 1969; Jarvis, 1993). Outra ocorrência importante com o tratamento térmico é a eliminação de bactérias que transformam nitrogênio amoniacal em nitratos. Na ausência desse processo pode ocorrer a formação de nitritos que juntamente com quantidades elevadas de amônia, podem ter efeito fitotóxico (Sonneveld, 1979).

A completa esterilização do substrato cria um "vácuo biológico" que pode ser preenchido tanto por organismos saprófitas quanto por patógenos que podem

Tabela 1 – Temperatura e tempo de inativação de alguns patógenos

Patógeno	Temperatura (° C)	Tempo de exposição (min)
Botrytis cinera	55	15
Cylindrocarpon destructans	50	30
Didymella lycopersici	50	30
Fusarium oxysporum f. sp. dianthi	60	30
Fusarium oxysporum f.sp. gladioli	57	30
Phialophora cinerescens	50	. 30
Phytophthora cryptogea	50	30
Pythium sp.	53	30
Pythium irregulare	53	30
Pythium ultimum	46	20-40
Rhizoctonia sp.	52	30
Rhizoctonia solani	53	30
Sclerotinia sclerotiorum	50	5
Sclerotium rolfsii	50	30
Thielaviopsis basicola	48	30
Verticillium albo-atrum	53	30
Verticillium dahliae	58	30
Meloidogyne incognita	48	10
Heterodera marioni	48	15
Pratylenchus penetrans	49	10
onte: Jarvis (1993)		

colonizar rapidamente o substrato, pela ausência de organismos supressores com potencial controle biológico. Pode ocorrer casos em que a severidade da doença é maior em solos tratados (Rowe et al, 1977).

O tratamento com vapor a temperaturas superiores a 80° C promove a liberação de íons de manganês fixados no solo, podendo levar a níveis tóxicos quando os teores forem superiores a 12 mg/kg de Mn solúvel no solo. O excesso de Mn contribui também para ocorrência de deficiência de ferro (Jarvis, 1993). A ocorrência tanto de níveis tóxicos de Mn quanto da deficiência de Fe depende da composição do substrato.

Para o tratamento sanitário de substrato para produção de mudas desenvolveu-se na Embrapa Hortaliças, um sistema que utiliza o vapor de água a baixa pressão, produzido por uma caldeira dotada de sistemas de segurança. O vapor é aplicado sob a massa de substrato colocada dentro de um depósito cilíndrico com capacidade para 2.000 litros.

O tempo de aquecimento é de aproximadamente 3 h e o calor armazenado durante este período mantém a massa de substrato aquecida a temperaturas consideradas desinfestantes, por até 4 h após a aplicação do vapor.

Foram realizados testes de eficácia do sistema, utilizando-se estruturas propagativas e de sobrevivência dos patógenos Ralstonia solanacearum, Fusarium oxysporum e Sclerotinia sclerotiorum, constatando-se que a aplicação de vapor por apenas uma hora, não considerando o período de aquecimento, resultou na eliminação de todos os patógenos testados.

CONSTRUÇÃO DO PROTÓTIPO

O sistema instalado na Embrapa Hortaliças é composto por uma caldeira de pequeno porte que fornece vapor para aquecer a massa de substrato colocada em um depósito cilíndrico. O vapor é injetado a baixa pressão no centro do fundo do depósito, passa por uma camada de 10 cm de brita grossa coberta por uma tela metálica com malha de 2 mm, o que faz com que ele seja distribuído uniformemente na massa de substrato.

O depósito é confeccionado com chapa metálica de 4 mm de espessura, formando um cilindro de 1,5 m de diâmetro e 1,2 m de altura, com capacidade para tratar partidas de 2.000 L de substrato. Possui uma janela lateral com 0,9 m de largura, que é fechada com seis tábuas sobrepostas de 20 cm de largura e 4 cm de espessura. As tábuas se apoiam em trilhos fixados nas bordas laterais da janela (Figuras 1 e 2). Por esta janela se faz o carregamento e o descarregamento do material a ser tratado. Para evitar que parte do vapor se perca através das frestas entre as tábuas, um filme plástico é colocado entre a massa de substrato e as tábuas, no momento do enchimento do depósito. O conjunto é , coberto por um filme plástico, para evitar parcialmente a liberação de vapor na superfície do material.

O vapor é fornecido por uma caldeira com capacidade de evaporação de 30 kg/h de água, consumindo cerca de 3 kg/h de gás GLP. Embora o equipamento forneça vapor à pressão de até 7 kgf/cm² (100 libras), durante a aplicação a pressão de vapor é de 1,5 kgf/cm², que é a força necessária para vencer a resistência da massa de substrato à passagem do vapor. É possível utilizar caldeiras com outras características, sendo que quanto maior a capacidade de produção de vapor, menor o tempo de aquecimento da massa de substrato e portanto maior capacidade de tratamento, permitindo instalar uma bateria de depósitos para o tratamento.

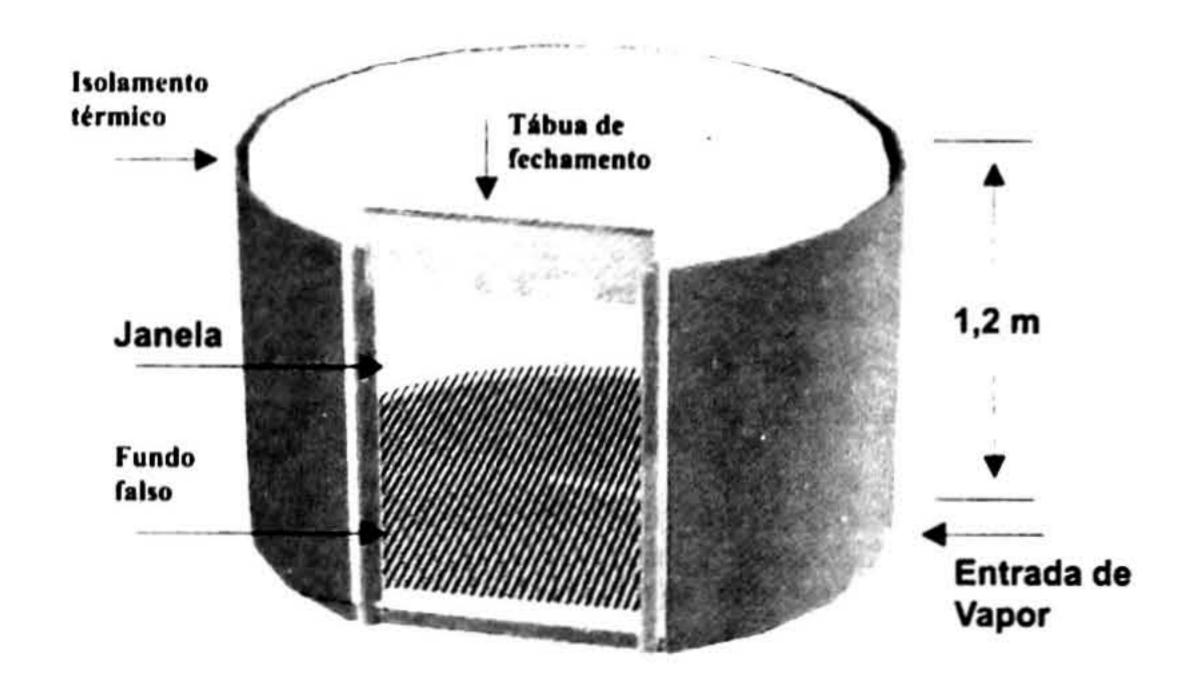


Figura 1 – Detalhes do depósito do sistema para desinfestação de substrato com vapor de água. Brasília, Embrapa Hortaliças, 1998.

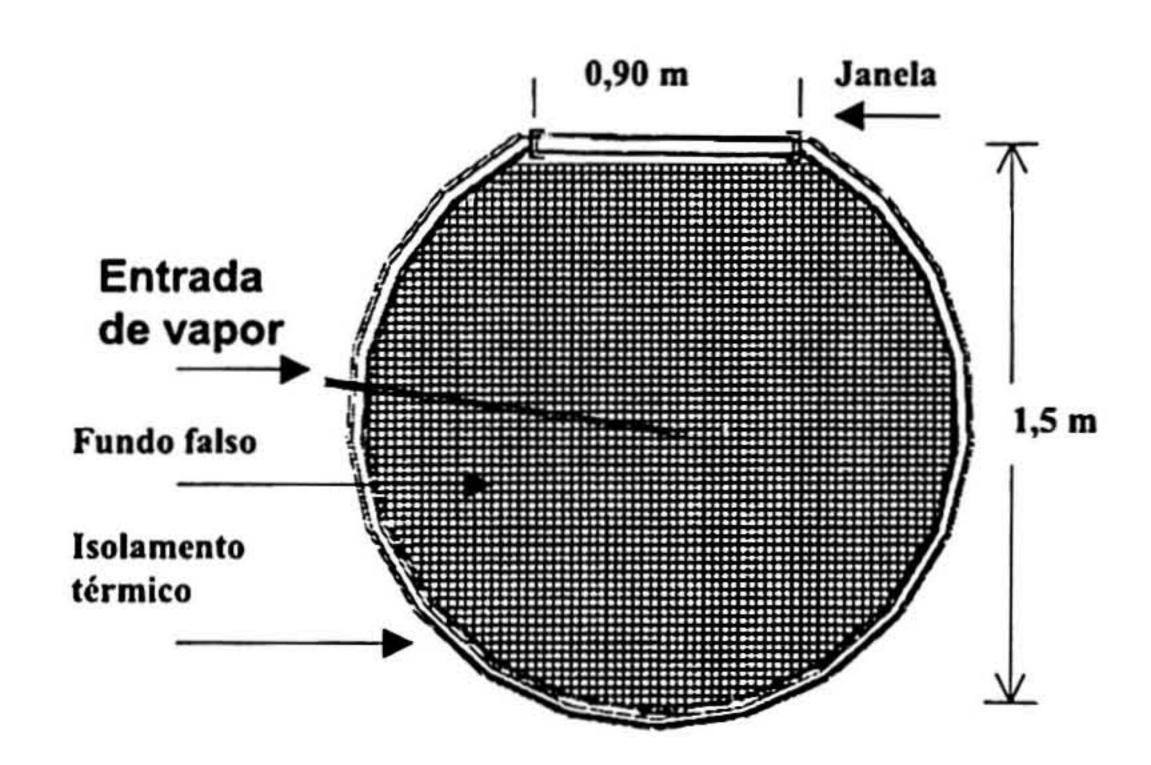


Figura 2 – Corte transversal do depósito do sistema para desinfestação de substrato com vapor de água. Brasília, Embrapa Hortaliças, 1998.

O sistema instalado na Embrapa Hortaliças requer, em média, três horas de aplicação de vapor para aquecimento, observando-se então a liberação de vapor por toda a superfície da massa de substrato. Recomendase prosseguir com a aplicação de vapor por mais uma hora, para garantir a eficácia do tratamento.

Para melhor utilização da capacidade da caldeira, instalou-se um segundo depósito, permitindo tratar cerca de 4.000 L de substrato por dia.

AVALIAÇÃO DO PROTÓTIPO

Com o depósito cheio de substrato foi avaliada a evolução da temperatura durante o aquecimento e até quatro horas após a aplicação do vapor, realizando-se amostragem nas posições centro, próximo à janela e na lateral do depósito, às profundidades de 10 e 20 cm da superfície. Aplicou-se vapor até ocorrer a sua liberação em toda a superfície do substrato, o que demorou cerca de 3 h, e considerou-se este momento como início do tratamento térmico. Prosseguiu-se com a aplicação do vapor por uma hora e mediu-se a temperatura de hora em hora. O substrato utilizado foi composto por três partes de terra, uma parte de esterco de bovinos e duas partes de casca de arroz carbonizada, além de corretivo e fertilizante.

Durante a aplicação do vapor a temperatura foi de 100° C em todos os pontos de amostragem e se reduziu lentamente, com pequena diferença entre os três pontos, nas duas profundidades. Quatro horas após a aplicação do vapor a temperatura ainda era superior a 83° C à profundidade de 10 cm e 90° C a 20 cm (Figuras 3 e 4).

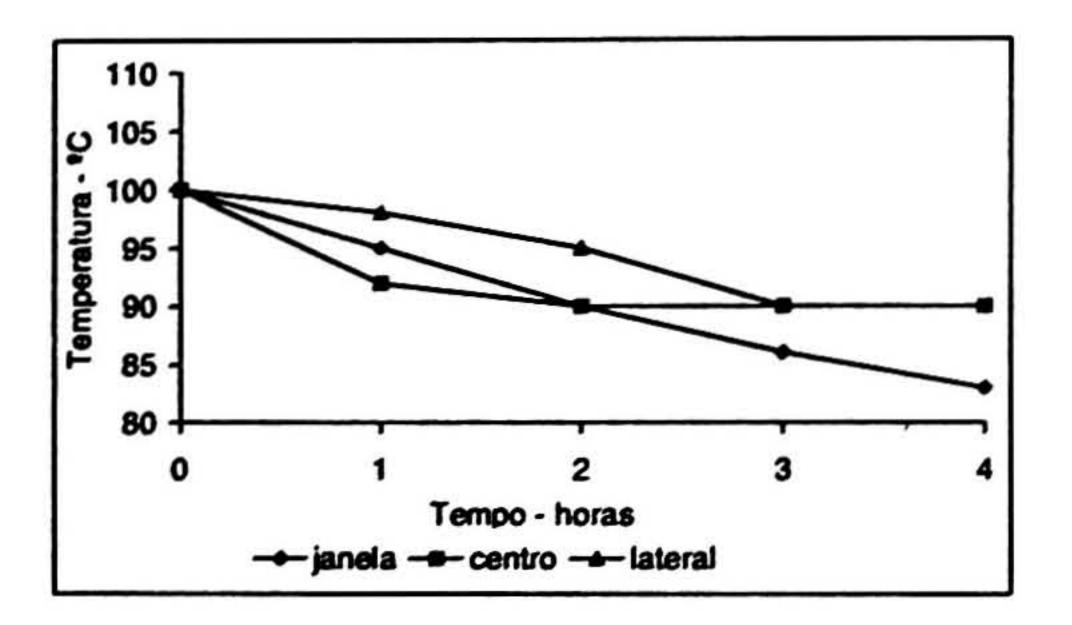


Figura 3 – Temperatura da massa de substrato a 10 cm da superfície, após a aplicação o vapor de água por uma hora. Brasília, Embrapa Hortaliças, 1998.

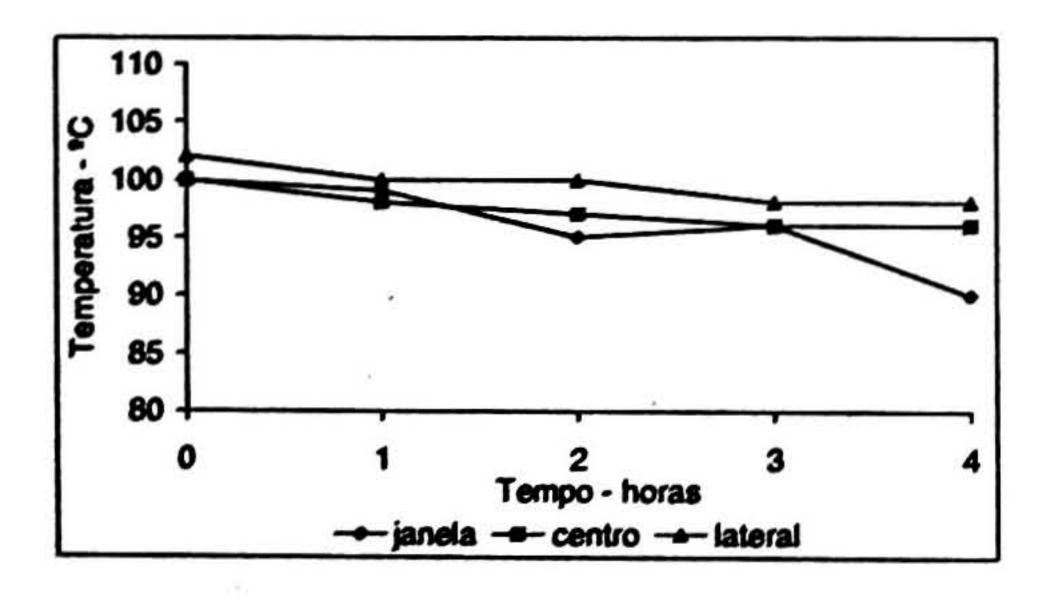


Figura 4 – Temperatura da massa de substrato a 20 cm da superfície, após a aplicação do vapor de água por uma hora. Brasília, Embrapa Hortaliças, 1998.

A temperatura do substrato observada durante o tratamento, inclusive durante a fase de resfriamento pode ser considerada como desinfestante, pois superou

a temperatura de inativação dos principais patógenos, conforme levantamento feito por Jarvis (1993), resumido na Tabela 1.

A eficácia do protótipo quanto à capacidade de eliminação de patógenos foi avaliada em quatro testes, utilizando-se substrato artificialmente contaminado com os patógenos: Ralstonia solanacearum, causador da murcha bacteriana, escleródios do fungo Sclerotinia sclerotiorum, causador do mofo branco e esporos do fungo Fusarium oxysporum, causador da murcha-defusario. Tanto nos testes laboratoriais quanto nos ensaios com plantas, foi comprovada a eliminação dos patógenos, inclusive nas amostras que foram submetidas a apenas uma hora de tratamento térmico.

Nos testes laboratoriais com os substratos tratados, observou-se o desenvolvimento de diversas colônias de microorganismos, mas sem a presença de colônias típicas dos patógenos inicialmente adicionados, indicando que o tratamento não é esterilizante, mas foi suficiente para a eliminação dos patógenos testados. Assim sendo, não ocorreu o "vácuo biológico" que acontece quando se faz a completa esterilização.

UTILIZAÇÃO DO SISTEMA

O sistema de tratamento passou a ser utilizado rotineiramente no processo de produção do substrato utilizado nas atividades de pesquisa da Embrapa Hortaliças, sendo a capacidade de tratamento aumentada com a instalação de uma segundo depósito, sendo tratados cerca de 20.000 L de substrato por mês, e não têm sido observados problemas fitossanitários que sejam diretamente relacionados com o processo de desinfestação do substrato.

Inicialmente, a água da caldeira não recebia nenhum tratamento. Ao se utilizar os produtos alcalitec-80 e tecplus-60, recomendados pelo fabricante para evitar o encrostamento interno na câmara de vaporização do equipamento, observou-se morte de mudas de tomate transplantadas para substrato tratado, e também sintomas de toxidez causada por excesso de sódio presente no substrato. Esse elemento é componente dos produtos citados e, provavelmente, ocorreu o arraste de gotículas da solução do produto formada pelo intenso processo de ebulição, que ocorre principalmente no momento que se abre o registro para liberação da pressão de vapor.

Como forma de contornar o problema, passou-se a utilizar a dose mínima recomendada pelo fabricante e a efetuar a drenagem completa da caldeira a cada dia, com o objetivo de evitar a concentração do produto pela evaporação da água. Passou-se também a liberar gradativamente a pressão de vapor para evitar o processo de ebulição intensa na câmara de vaporização.

Para testar-se o efeito dessas medidas, coletouse amostra da água de condensação que se acumula no fundo do depósito, e com esta água fez-se a irrigação de mudas de tomate, não se observando os sintomas anteriormente ocorridos. Outra ocorrência importante foi a toxidez e morte de plantas quando se utilizou esterco que não estava completamente curtido. O tratamento térmico seguido do resfriamento lento, provavelmente acelerou a decomposição da matéria orgânica, acarretando a formação de gases tóxicos (provavelmente metano) que teriam ficado retidos nos espaços vazios do substrato tendo sua dissipação dificultada por estarem em vasos plásticos. Esta hipótese é bastante provável porque, ao se realizar nova semeadura nos mesmos vasos, não se observou a repetição dos sintomas.

Não têm sido observados outros sintomas de distúrbios nutricionais. Entretanto alerta-se para o fato de que o excesso de calor no tratamento de substratos pode promover a liberação de manganês e ferro. Portanto, se o material utilizado para a confecção do substrato tiver alto teor destes elementos, pode ocorrer fitotoxidez. Caso se observe o crescimento anormal das plantas, cloroses, necroses ou outros distúrbios, recomenda-se fazer análise química do substrato, incluindo análise de micronutrientes. Comprovada a presença de níveis altos destes elementos, recomendase redimensionar o depósito, objetivando reduzir o tempo de aquecimento da massa de substrato. Outra providência é fazer a descarga do depósito logo após o tratamento térmico, proporcionando resfriamento mais rápido do material.

Agradecimentos:

A Edgar Rocha Carvalho, pelos desenhos.

Ao Engº Agrº Reginaldo Napoleão, pelo fornecimento de material biológico.

Aos serralheiros José A. de Moura e Francisco F. Romeiro, pelas melhorias realizadas durante a confecção do equipamento.

REFERÊNCIAS BIBLIOGRÁFICAS:

- BOLLEN, G.J. The selective effect of heat treatment on the microflora of a greehouse soil. *Netherlands Journal of plant pathology*, v.75, n. 1 / 2, p.157-163, 1969. *Review of applied mycology*, v.48, n.6, 1969. Abstract 1542.
- JARVIS, W.R., Managing diseases in greenhouse crops.

 St. Paul: The American Phytopathological Society,

 1993. 288 p.
- MÜLLER, J. Alternativas ao uso de brometo de metila. Circuito Agrícola, v. 6, n. 54, p. 20, 1998.
- ROWE, R.C.; FARLEY, J.D.; COPLIN, D.L. Airborn spore dispersal and recolonization of steamed soil by Fusarium oxysporum in tomato greenhouse. Phytopathology, v. 67, p.1513-1517, 1977.
- SONNEVELD, L.E. Changes in chemical properties of soil caused by steam sterilization. In: MULDER, D., ed. *Soil disinfestation*, Amsterdan: Elsevier, 1979. p. 39-50.

PUBLICAÇÕES DO CENTRO NACIONAL DE PESQUISA DE HORTALIÇAS

SÉRIE INSTRUÇÕES TÉCNICAS

- Cultivo da Ervilha;
- Cultivo do Alho;
- Tratamento de sementes de hortaliças para controle de doenças;
- Cultivo do Chuchu;
- Cultivo de Hortaliças;
- Cultivo da Batata-doce;
- Cultivo da Batata;
- Cultivo da Lentilha;
- Cultivo da Mandioquinha-salsa;
- Cultivo do Tomate;
- Cultivo do Tomate para Industrialização;
- Cultivo da Cenoura;
- Cultivo do Grão-de-bico.

SÉRIE CIRCULAR TÉCNICA

- Manejo de plantas daninhas em hortaliças;
- Manejo da cultura da batata para o controle de doenças;
- Determinação da condutividade hidráulica e da curva de retenção de água no solo com método simples de campo;
- Manejo integrado das doenças da batata;
- O controle biológico de pragas e sua aplicação em cultivos de hortaliças;
- Manejo integrado da mosca branca Bemisia argentifolii;
- Irrigação de hortaliças em solos cultivados sob proteção de plásticos;
- Seleção de sistemas de irrigação para hortaliças;
- Produção de sementes híbridas de abóbora do tipo tetsukabuto.

SÉRIE DOCUMENTOS (LIVROS)

- Anais do seminário sobre a cultura da batatadoce;
- Diagnose de desordens nutricionais em hortaliças;
- Índice de patógenos de sementes de hortaliças não detectadas no Brasil;
- Protótipos de equipamentos para produção de hortaliças;
- Doenças da ervilha;
- Anais do Seminário Internacional sobre Qualidade de hortaliças e frutas frescas;
- Doenças do tomateiro;
- Doenças bacterianas de hortaliças;
- Manejo da irrigação em hortaliças;
- Impactos Socioeconômicos da Pesquisa de Cenoura no Brasil;
- Bibliografia do alface;
- Manipulação e comercialização de hortaliças;
- Manejo cultural da Mandioquinha-salsa.

BIBLIOGRAFIAS

- Bibliografia de alface;
- Bibliografia de entomologia;
- Bibliografia de mandioquinha-salsa;
- Bibliografia brasileira de irrigação e manejo de água em hortaliças;
- Bibliografia brasileira de sementes de hortaliças;
- Bibliografia brasileira de tomate;
- Bibliografia brasileira de pós-colheita de hortaliças.

PUBLICAÇÕES DO CENTRO NACIONAL DE PESQUISA DE HORTALIÇAS

SÉRIE PESQUISA EM ANDAMENTO

- Biologia da mosca branca em tomate e repolho;
- Caracterização de acessos de batata-doce através dos danos causados nas raízes por crisomelídeos e pela broca da raíz;
- Caracterização da coleção de germoplasma da berinjela;
- Fração de água infiltrada durante a lavação de segmentos de raízes de batata-doce e considerações sobre seus perigos;
- Introdução e avaliação de cultivares e populações de cenoura e características agronômicas e indicadores de qualidade de raiz.
- Resposta de Cultivares de Tomateiro para Processamento Industrial à Fertirrigação por Gotejamento Subterrâneo;

SÉRIE PESQUISA EM ANDAMENTO

- Impacto Econômico da Adoção do Manejo Racional da Irrigação em Tomateiro Industrial;
- Susceptibilidade de Populações de Traça-das-Crucíferas à Chlorfluazuron;
- Esverdeamento de Tubérculos de Batata de Clones Avançados da Embrapa Hortaliças;
- Competição de cultivares de pepino tipo "Japonês" sob cultivo protegido e a campo aberto;
- Morte prematura de plantas de quiabeiro causados por associação de nematóides das galhas Meloidogyne javanica e sclerotium rolfsii;
- Perda de produtividade de tomateiro por infecção de população mista de Meloidogyne incognita RAÇA 1 e M. javanica;
- Reação de cultivares de batata à infecção por nematóides das galhas Meloidogyne javanica.

SÉRIE PESQUISA EM ANDAMENTO

- Coleta de germoplasma de abóboras e morangas;
- Desenvolvimento de um sistema para desinfestação de substratos para produção de mudas, utilizando vapor de água;
- Caracterização morfológica do germoplasma da batata doce mantido pela EPAGRI;
- Introdução e avalição de cultivares e populações de cenoura - características agronômicas e indicadores de qualidade de raiz - 1998;
- Organização do Banco de Sementes Botânicas do Banco Ativo de germoplasma de batata-doce, para conservação de "Pool Gênico" a longo prazo;
- Estimativa do rendimento do tomateiro usando modelos estatísticas com teores iniciais de P no solo e níveis de adubação fosfatada.

SÉRIE COMUNICADO TÉCNICO

- Besouro do Colorado;
- Processamento mínimo de hortaliças;
- Manejo da água do solo no cultivo da batata;
- Traça das Crucíferas;
- Aspecto sanitário da água para fins de irrigação;
- Multiplicação, caracterização e conservação de germoplasma de tomate.

Pedidos de publicações poderão ser feitos através de vale postal ou cheque nominal à Embrapa Hortaliças, no valor total da aquisição, enviados para o seguinte endereço: Área de Comunicação e Negócios Tecnológicos (ACN) - Caixa Postal 218, CEP: 70359-970, Brasília-DF.

Serão também atendidos pedidos feitos por telefone ou fax mediante depósito bancário antecipado no valor do pedido mais despesas de envio. Maiores informações pelo telefone: (061) 385-9009 ou pelo fax: (061) 556-2384 ou 556-5744.

O Centro Nacional de Pesquisa de Hortaliças da Empresa Brasileira de Pesquisa Agropecuária, órgão vinculado ao Ministério da Agricultura e do Abastecimento, foi criado em 1981 com o objetivo de pesquisar e apoiar o desenvolvimento de tecnologias de cultivo de hortaliças para diversas regiões brasileiras. Sua missão é executar, promover e articular atividades científicas e tecnológicas para o desenvolvimento do Sistema Produtivo de Hortaliças no Brasil. Conta com uma equipe técnica de 50 pesquisadores, atuando principalmente nas áreas de: Melhoramento Genético, Fitopatologia, Entomologia, Fitotecnia, Biotecnologia, Solos e Nutrição de Plantas, Tecnologia Pós-Colheita, Irrigação, Tecnologia de Sementes e Difusão de Tecnologia.

Localizado em Brasília, dispõe de um campo experimental de 115 hectares irrigáveis e área construída de 22.000 m², incluindo laboratórios, casas-de-vegetação, telados, câmaras frias, unidade de beneficiamento de sementes, biblioteca, auditório, salas de aula e outras instalações de apoio.

O Centro Nacional de Pesquisa de Hortaliças mantém convênios com instituições públicas e privadas, nacionais e internacionais, constituindo-se em um centro de referência na pesquisa de hortaliças.

A série Comunicado Técnico da Embrapa Hortaliças é destinada a agentes de fomento, assistência técnica, extensão rural, produtores rurais, estudantes, professores, pesquisadores, editores de revistas de informação rural e outras pessoas interessadas no assunto.

Tratamento Editorial: Área de Comunicação e Negócios Tecnológicos

1ª Impressão - Dezembro/98 Tiragem: 1.000 exemplares

