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Free energy is the key quantity to describe the thermodynamics of biological systems.

In this perspective we consider the calculation of free energy, enthalpy and entropy from

end-point molecular dynamics simulations. Since the enthalpy may be calculated as the

ensemble average over equilibrated simulation snapshots the difficulties related to free

energy calculation are ultimately related to the calculation of the entropy of the system

and in particular of the solvent entropy. In the last two decades implicit solvent models

have been used to circumvent the problem and to take into account solvent entropy

implicitly in the solvation terms. More recently outstanding advancement in both implicit

solvent models and in entropy calculations are making the goal of free energy estimation

from end-point simulations more feasible than ever before. We review briefly the basic

theory and discuss the advancements in light of practical applications.

Keywords: free energy, enthalpy, entropy, molecular dynamics simulations, implicit solvent, continuum solvent,

MM/GBSA

1. INTRODUCTION

Free energy is the key quantity in the description of the thermodynamics of biological systems, and
therefore an important objective of biomolecular simulations. In spite of its relevance, free energy
calculations are not performed for every simulation performed although most often concepts like
(local) stability are used to describe the results of the simulation suggesting a thermodynamic
description.

The difficulties arise obviously from the calculation of the entropy of the systemwhich cannot be
immediately computed as an ensemble average over simulation snapshots, contrary to the enthalpy.
The free energy G can be formally related to an ensemble average:

G = RT log
〈

exp(βU)
〉

(1)

where R is the gas constant, T the temperature, β is equal to 1
RT , U is the potential energy

and 〈〉 indicates thermodynamic ensemble average. However, as pointed out many years ago
(Beveridge and DiCapua, 1989), this formula is of no practical use unless all configurational
space enters (implicitly or explicitly) the average, because lowest probability configurations
display the highest value contribution to the average and there cannot be convergence for upper
unbound potentials. In molecular simulations typically only near-equilibrium configurations are
sampled.
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For this reason free energy differences calculation is
performed using methods, like umbrella sampling (Torrie
and Valleau, 1977), thermodynamic integration (Straatsma and
McCammon, 1991) ormetadynamics (Laio and Parrinello, 2002),
that compute by various methods the free energy along a pathway
connecting end-point states, even if it is often just the difference
in free energy between the latter points that is actually needed.

If the two end-points are close enough a simulation of one or
both end-points may be performed and free energy differences
obtained by free energy perturbation (Zwanzig, 1954), but this is
not possible in general.

The problem with the computation of the entropy from a
single MD simulation is that only part of the configurational
space is accessed by simulation.

In this short perspective we remark that the long sought
calculation of free energies from end point simulations may be
afforded with reasonable accuracy from implicit solvent end-
point simulations. In particular, some recent developments in the
way entropy is calculated in fact allow to compute free energy
from a single simulation, so it is worth to review briefly the theory
here and to provide simple formulae to compute free energy,
entropy and enthalpy from implicit solvent simulations.

2. THEORY

We consider here simulations sampling different states of a
system A in solution. This can be done by different simulations
if the states are kinetically well separated, or by post-processing
a single simulation to divide microstates belonging to different
states.

If the simulation is extensive enough most probable
microstates are sampled and representative thermodynamic
ensembles are generated for the different states which include
samples of all microstates whose probability density is higher
than a threshold.

Enthalpy can be computed as the energy ensemble average,
whereas entropy is problematic, in particular for what concerns
solvent degrees of freedom. Although solvent entropy has been
taken into account in some studies (e.g., De Simone et al., 2005)
the extensive correlation among solvent molecules makes solvent
entropy estimation a difficult task. In order to get rid of this
problem we treat the system using an implicit solvent model.

2.1. Implicit Solvent Models
Following the excellent reviews available (Gilson et al., 1997;
Roux and Simonson, 1999; Wereszczynski and McCammon,
2012) we write the standard chemical potential, or molar free
energy, in the following form:

G0
A = −RT log

(
∫

exp(−βU(ErA, ErS))dErAdErS
∫

exp(−βU(ErS))dErS

)

+ C (2)

where ErA and ErS are the solute and solvent coordinates.C includes
the integrals over the reference state (1M, random orientation)
and the momentum integrals (independent of conformation)
that cancel when comparing different states of the same system
and the term P0V̄A, with P0 the standard pressure and V̄A the

partial volume of the solute, whose dependence on conformation
provides negligible effects at standard pressure. For a derivation
see Gilson et al. (1997).

For this reason in the following C will not be considered
further.

Due to the difficulties in estimating the entropy of highly
correlated solventmolecules the solvation potential of mean force
(1W(ErA,T)) is defined by integrating out the solvent degrees of
freedom.

exp(−β1W(ErA,T)) =

∫

exp(−β(UAS(ErA, ErS)+ US(ErS)))dErS
∫

exp(−βUS(ErS))dErS
(3)

where UAS denotes the energy terms that couple the solute and
the solvent and US is the solvent energy.

With this definition and the assumptions made above we have:

G0
A = −RT log

(∫

exp(−β(U(ErA)+ 1W(ErA,T)))dErA

)

(4)

where the dependence on the temperature of the solvation energy
1W has been made explicit.

Implicit solvent models provide a functional form and
parameters for 1W(ErA,T).

Although the implicit solvent model based on the Poisson-
Boltzmann equation (Fogolari et al., 2002) and the solvent
accessible surface area (PBSA) could be used in molecular
dynamics simulations (Fogolari et al., 2003), themethod based on
the Generalized Born model and solvent accessible surface area
(GBSA) is the method of choice for its computational efficiency
(Still et al., 1990; Onufriev et al., 2004). Limitations of both
methods include treatment of small crevices and cavities, where
water could not display bulk solvation properties, and neglection
of curvature dependence of surface tension coefficient (Nicholls
et al., 1991). For GBSA an additional limitation could be due to
the dependence of empirical parameters on molecular shape (see
e.g., Fogolari et al., 2015a). Compared to approaches simulating
the solutes in explicit solvent and post-processing the trajectory
in implicit solvent (Kollman et al., 2000), methods that generate
the configurational ensemble using the same implicit solvent used
for energy calculations are more consistent because they don’t
suffer from possible mismatches between the implicit and explicit
solvent models.

In recent years some of the available implicit solvent models
(including forcefield and set of parameters used (Swanson et al.,
2005, 2007)) have been shown to be extremely accurate in the
treatment of protein thermodynamics, as demonstrated by the
study by Simmerling and coworkers, where 16 out of 17 proteins
could be correctly folded using the GB-Neck2 implicit solvent
model and for 14 of them the native fold was preferred over the
misfolded one (Mongan et al., 2007; Nguyen et al., 2014).

2.2. Enthalpy in Implicit Solvent Models
The molar enthalpy is obtained as:

H0
A = G0

A + TS0A = G0
A − T

∂G0
A

∂T
(5)
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When the derivation is performed, taking into account that also
1W(ErA,T) depends on the temperature, we obtain:

H0
A =< U + 1W > −T <

∂1W

∂T
> (6)

where the symbol <> indicates the ensemble average of the
quantity within brackets, i.e., the average over the simulation of
the same quantity.

The above equation shows that the enthalpy, which is obtained
as the energy ensemble average in MD simulations, is directly
related to the ensemble average of the implicit solvent model
potential energy. The difference is expressed by the −T <
∂1W
∂T > term which may however be obtained by explicit

derivation with respect to the temperature of the solvation energy
terms in the implicit solvation model.

In the GBSA model the solvation energy is the sum of an
electrostatic (1Wel) and a surface tension (1WSA) term:

1W = 1Wel + 1WSA =
1

2

(

1

ǫ(T)
−

1

ǫin

)

∑

i,j

qiqjfij + γ (T)A

(7)
where ǫ(T) and ǫin are the solvent and molecular (typically 1)
dielectric constants, respectively, qi is the charge of the i

th atom,
fij a pairwise function depending on all atoms’ coordinates, γ (T)
is a surface tension and A is the solvent-accessible surface area.
The dependence on temperature of the solvent dielectric constant
and of the surface tension has been made explicit in the above
equation. The contributions to the derivative of1W with respect
to temperature are easily obtained from the electrostatic and
surface tension solvation energy terms, when the temperature
dependence of the parameters of the implicit solvent model is
known:

∂1W

∂T
=

∂1Wel

∂T
+

∂1WSA

∂T

= 1Wel

(

ǫin

ǫ(ǫ − ǫin)

)

∂ǫ

∂T
+ 1WSA 1

γ

∂γ

∂T
(8)

2.3. Entropy in Implicit Solvent Models
The entropy is linked to the configurational solute probability
distribution.

First consider that the probability density distribution in the
implicit solvent model is:

ρ(ErA,T) =
exp(−β(U(ErA)+ 1W(ErA,T)))

(
∫

exp(−β(U(ErA)+ 1W(ErA,T)))dErA)
(9)

When the derivation of the free energy is performed the entropy
can be written as:

S0A = −
∂G0

A

∂T
(10)

= −R

∫

ρ(ErA,T) log(ρ(ErA,T))dErA− <
∂1W

∂T
> (11)

s = −R < log(ρ(ErA,T)) > − <
∂1W

∂T
> (12)

Rewriting the entropy in terms of probability density allows to
rewrite the free energy in turn as the sum of an ensemble average
and a configurational entropy term, which is itself an ensemble
average:

G0
A =< U + 1W > +RT < log(ρ(ErA,T)) > (13)

As said above the difficulty in estimating free energies resides
in the entropy estimation which requires consideration of both
sampled and non-sampled configurational space. Similarly, to
estimate ρ(ErA,T), consideration of non-sampled configurational
space is needed. Implicit solvent models circumvent the problem
treating solvent entropy implicitly, through the parameters and
their temperature dependence.

In the above equation the configurational entropy is written
formally as an ensemble average of the probability density. In this
respect a convenient description of systems containing proteins is
the bond, angle, torsion (BAT) representation (Go and Scheraga,
1976), because bonds, and to some extent also angles, contribute
very little to changes in entropy for different states of proteins
(e.g., notably, bound and non-bound) (Karplus et al., 1987).
For this reason entropy is estimated often considering to a first
approximation only torsional degrees of freedom and possibly
external rotation and translation degrees of freedom.

Other descriptions, e.g., in cartesian coordinates, have been
used and the entropy has been calculated assuming the
system is moving harmonically or anharmonically about the
energy minimum (see recent reviews Polyansky et al., 2012;
Wereszczynski andMcCammon, 2012). This approximationmay
however be poor for loops or other unrestrained parts of the
molecules.

A particularly attractive method to compute entropy is the
approach proposed by Singh et al. (2003) which was further
developed by the same authors and others (Hnizdo et al., 2003,
2007, 2008; Darian et al., 2005; Numata et al., 2007; Wang
et al., 2009; Mukherjee, 2011; Fenley et al., 2014; Huggins, 2014;
Fogolari et al., 2015b, 2016). In practice the probability density
ρ(x1, x2, ..., xs) may be estimated considering a ball of radius ri
around each configurational sample Exi up to the k-th nearest
neighbor (Figure 1), then the local probability density (ρ̂(Exi)) is
obtained by dividing the number k of the n samples which are
found inside the ball over the volume of the ball Vi and n, i.e.,:

ρ̂(Exi) =
1

Vi

k

n
(14)

The idea is very simple and can be made rigorous (Singh
et al., 2003). When equation 14, or its exact form, is substituted
in equation 13 the free energy may be estimated easily from
configurational samples.

The discrepancy between naive and exact treatment is limited.
Note that the volume around each configurational sample is
tuned to match the local density and there is no need consider
regions where no configurational sample is found. Obviously the
dimensionality of a protein system is large and it is not possible
in practice to consider a probability density without actually
assuming that most degrees of freedom are decoupled from each
other.
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FIGURE 1 | Pictorial illustration of the k-th nearest neighbor estimation of

entropy. See text.

The groups of Gilson (Killian et al., 2007) and Tidor (King
and Tidor, 2009; King et al., 2012) have proposed treatments of
mutual information that provide a practical estimate of global
entropy (actually, an upper bound) considering only single
degrees of freedom and pairwise mutual information. Depending
on the number of samples the approach can be easily extended to
higher orders of correlation.

3. CONCLUSION

We have recapitulated above the fundamentals of implicit solvent
free energy calculations from end-point simulations, recalling the
relationship between explicit and implicit solvent models, and
showing how entropy and enthalpy can be obtained from implicit
solvent simulations.

From a practical point of view we can estimate free energy
from implicit solvent simulations using equation 13:

G0
A =< U + 1W > +RT < log(ρ(ErA,T)) >

The ensemble average of U + 1W is provided by the
potential energy in the implicit solvent model used, whereas the
entropy −R < log(ρ(ErA,T)) > must be computed from the
conformational ensemble.

The available implicit solvent models and parameters,
together with forcefield parameters, have been shown to be
accurate enough to reproduce complex phenomena like protein
folding giving confidence in the accuracy of the implicit solvent
potential of mean force. The average of the potential energy over
an implicit solvent molecular dynamics trajectory thus provides
the first term in the above equation.

The entropic term may be estimated using the nearest
neighbor method which is emerging as an accurate entropy
estimator, with many advantages over more traditional
methods, including lack of hypothesis on non-sampled
conformational space, no need to consider explicitly

non-sampled conformational space and sound theoretical
basis.

To make the application of the method straightforward
we have implemented the nearest-neighbor method in two
programs, PDB2ENTROPY and PDB2TRENT, available through
the git-hub repository (URL: https://github.com/federico-
fogolari) which allow to compute conformational and rotational-
translational entropy directly from the conformational ensemble
in PDB format.

In summary, the recent advancements in solvationmodels and
entropy calculation, based on the nearest-neighbor method, are
making computation of free-energy from end-point simulations
significantly more accurate than before, with many possible
applications in the next future.
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