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Abstract. Building on previous work by Mummert, Saadaoui and Sovine ([MSS15]), we
study the logic underlying the web of implications and nonimplications which constitute
the so called reverse mathematics zoo. We introduce a tableaux system for this logic and
natural deduction systems for important fragments of the language.

1. Introduction

Reverse mathematics is a wide ranging research program in the foundations of math-
ematics: its goal is to systematically compare the strength of mathematical theorems by
establishing equivalences, implications and nonimplications over a weak base theory. Cur-
rently, reverse mathematics is carried out mostly in the context of subsystems of second-
order arithmetic and very often a specific system known as RCA0 is used as the base theory.

The earlier reverse mathematics research, leading to Steve Simpson’s fundamental mono-
graph [Sim09], highlighted the fact that most mathematical theorems formalizable in sec-
ond order arithmetic were in fact provable within RCA0 or equivalent to one of four other
specific subsystems, linearly ordered in terms of provability strength. This is summarized
by the Big Five terminology coined by Antonio Montalbán in [Mon11]. However in recent
years there has been a change in the reverse mathematics main focus: following Seeta-
pun’s breakthrough result that Ramsey theorem for pairs is not equivalent to any of the
Big Five systems, a plethora of statements, mostly in countable combinatorics, have been
shown to form a rich and complex web of implications and nonimplications. The first
paper featuring complex and non-linear diagrams representing statements of second order
arithmetics appears to be [HS07] (notice that the diagrams appearing in [CMS04, Mar07]

Date: September 6, 2016.
Marcone’s research was supported by PRIN 2012 Grant “Logica, Modelli e Insiemi.”

D’Agostino’s research was supported by the GNCS-INDAM Project “Algoritmica per il model checking e la
sintesi di sistemi safety-critica”.
The authors thank the anonymous referees for their valuable suggestions, in particular leading to a simplification
of the proof of Lemma 20.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/154284775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


are of a different sort, as they deal with properties of mathematical objects, rather than
with mathematical statements). Nowadays diagrams of this kind are a common feature
of reverse mathematics papers. This is called the zoo of reverse mathematics, a terminol-
ogy coined by Damir Dzhafarov when he designed “a program to help organize relations
among various mathematical principles, particularly those that fail to be equivalent to any
of the big five subsystems of second-order arithmetic”. This program is available at [Dzh].
Ludovic Patey’s web site features a manually maintained zoo ([Pat]). The recent mono-
graph [Hir15], devoted to a small portion of the zoo, features a whole chapter of diagrams.
These diagrams cover also situations where a different base theory (e.g. RCA, which is
RCA0 with unrestricted induction) is used, or where only the first order consequences are
considered.

Actually, the idea of a zoo is not peculiar to subsystems of second order arithmetic. For
example, the study of weak forms of the Axiom of Choice and the relationships between
them has a long tradition in set theory: [HR98] consists of a catalog of 383 forms of the
Axiom of Choice and of their equivalent statements. Connected to the book, there is also
the web page [How], which used to be able also to produce zoo-like tables (the site appears
to be no longer maintained).

Mummert, Saadaoui and Sovine in [MSS15] introduced a framework for discussing the
logic that is behind the web of implications and nonimplications in the reverse mathematics
zoo. They called their system s-logic, introducing its syntax and semantics and proposing a
tableaux system for satisfiability of sets of s-formulas, and inference systems for two frag-
ments of s-logic (called F1 and F2, with the first a subset of the second) that are important
in the applications.

The present paper can be viewed as a continuation of [MSS15]. Our goal is to improve
the systems introduced by Mummert, Saadaoui and Sovine and show how widespread au-
tomated theorem proving tools can be used to deal efficiently with s-logic. As a byproduct,
our analysis also points out that, notwithstanding the fact that the semantics for s-logic
borrows some ideas from the one for modal logic, s-logic is actually much closer to propo-
sitional logic than to modal logic.

Here is the plan of the paper. After reviewing s-logic, in Section 2 we make some obser-
vations about its semantics. Using these, in Section 3 we are able to simplify the tableaux
system of Mummert, Saadaoui and Sovine. Our formulation brings it closer to the familiar
tableaux systems for propositional logic, and thus, using an efficient implementation of
the latter, leads to more efficient algorithms. Moreover, in Section 4, we improve also the
treatment of the fragments F1 and F2 by proposing natural deduction systems for them. We
also consider a new natural fragment of s-logic F3, which includes F2 and for which we
provide a sound and complete natural deduction system. In Section 5 we show how logical
consequence between formulas of F2 (and hence of F1) can be treated by using standard
propositional Prolog: this provides an efficient way of answering queries about whether a
certain implication or nonimplication follows from a database of known zoo facts.

2. Basic observations about s-logic

For the reader’s convenience, we start with a brief review of s-logic as introduced in
[MSS15].

We start from a set of propositional variables and we build propositional formulas in the
usual way, using the connectives ¬, ∧, ∨, and →. An s-formula is a formula of the form
A J B or A 6J B, where A and B are propositional formulas. The first type of s-formula is
called positive or J s-formula, the second one is negative or 6J s-formula. Notice that the
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definition of s-formula is not recursive, and thus if α and β are s-formulas neither α∧β nor
α J β are s-formulas.

The intended meaning of A J B is that statement A implies statement B, over the fixed
weak base theory. On the other hand A 6J B asserts that A J B does not hold. In practice,
this happens when we have a model of the base theory in which A holds and B does not (a
counterexample to A J B).

The semantics of s-logic is based on the notion of frame, which is just a nonempty set
of valuations. Here by valuation we mean the usual notion for propositional logic, i.e. a
function assigning to every propositional variable one of the truth values T and F.

A frame W satisfies the positive s-formula A J B if for every valuation v ∈ W such that
v(A) = T we have also v(B) = T . W satisfies the negative s-formula A 6J B if there exists a
valuation v ∈ W such that v(A) = T and v(B) = F.

Once we have the notion of satisfaction we can introduce in the usual way notions such
as satisfiability of a set of s-formulas Γ (there exists a frame satisfying every member of
Γ) and logical consequence between a set of s-formulas Γ and a given s-formula α (every
frame satisfying Γ satisfies also α): for the latter we use the notation Γ |=s α.

We point out that although → and J (and their negations) are superficially similar,
there are important difference between them. For example, if X and Y are propositional
variables, the set of s-formulas {X 6J Y,Y 6J X} is satisfiable (by a frame with two valu-
ations), while the “corresponding” set of propositional formulas {¬(X → Y),¬(Y → X)}
is unsatisfiable. Expressing the same example in terms of logical consequence, we have
that although ¬(X → Y) |= Y → X in propositional logic, it is certainly not the case that
X 6J Y |=s Y J X.

Mummert, Saadaoui and Sovine introduced also the following fragments of s-logic:

Definition 1. The fragments F1, F2 of s-logic are:

• F1 is the set of all s-formulas of the forms X J Y and X 6J Y, where X,Y are
propositional variables;

• F2 is the set of all s-formulas of the forms A J Y and A 6J Y, where A is a
nonempty conjunction of propositional variables and Y is a single propositional
variable.

As pointed out in [MSS15], F1 captures the basic implications and nonimplications
in reverse mathematics, while in F2 we can express also results such as the equivalence
between Ramsey Theorem for pairs with two colors and the conjunction between the same
theorem restricted to stable colorings and the cohesiveness principle. Notice that we do
not need to consider also s-formulas with conjunctions of propositional variables after J,
as Γ |=s A J X ∧ Y if and only if Γ |=s A J X and Γ |=s A J Y , while Γ |=s A 6J X ∧ Y if
and only if Γ |=s A 6J X or Γ |=s A 6J Y .

Note also that in the example above comparing → and J we use s-formulas from the
fragment F1.

We introduce another fragment of s-logic, which is a natural generalization of the frag-
ment F2, and captures some implications between members of the reverse mathematics zoo
escaping F2. Recall that [FSY93, Bel15] contain several equivalences to the disjunction of
weak König’s lemma and Σ0

2-induction.

Definition 2. F3 is the set of all s-formulas of the forms C J D and C 6J D, where C and
D are a nonempty conjunction of propositional variables and a nonempty disjunction of
propositional variables, respectively.
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Here we do not need to consider also s-formulas with disjunctions of propositional
variables before J, as Γ |=s X ∨ Y J A if and only if Γ |=s X J A and Γ |=s Y J A, while
Γ |=s X ∨ Y 6J A if and only if Γ |=s X 6J A or Γ |=s Y 6J A.

We now make a couple of useful basic observations about the semantics of s-logic which
use the following definition.

Definition 3. Given a set of s-formulas Γ, the set of s-formulas Γ+,Γ− are defined as

Γ+ := {A J B : A J B ∈ Γ}, Γ− := {A 6J B : A 6J B ∈ Γ},

while Γ+
prop is the set of propositional formulas

Γ+
prop := {A→ B : A J B ∈ Γ}.

Lemma 4. Let Γ be a set of s-formulas. The following are equivalent:

(1) Γ is satisfiable;
(2) the set of s-formulas

Γ+ ∪ {A 6J B}

is satisfiable, for each A 6J B ∈ Γ−;
(3) the set of propositional formulas

Γ+
prop ∪ {A,¬B}

is satisfiable (in the usual sense of propositional logic), for each A 6J B ∈ Γ−.

Proof. (1) implies (2) is immediate.
To prove that (2) implies (3) fix A 6J B ∈ Γ−. Since Γ+ ∪ {A 6J B} is satisfiable, there

exists a frame W which validates this set of s-formulas; hence there exists a valuation
v ∈ W with v(A) = T , v(B) = F. Since W |= X J Y for all X J Y ∈ Γ+ we have
that v(X) = T implies v(Y) = T for each such s-formula. Hence v satisfies the set of
propositional formulas Γ+

prop ∪ {A,¬B}.
For (3) implies (1), suppose (3) holds, and for each A 6J B ∈ Γ− let wA6JB be a valuation

satisfying the set of propositional formulas Γ+
prop ∪ {A,¬B}. Let W be the frame consisting

of all these valuations: W = {wA 6JB : A 6J B ∈ Γ}. It is easily seen that W satisfies Γ. �

Corollary 5. A set of s-formulas Γ is unsatisfiable if and only if there exists A 6J B ∈ Γ−

such that Γ+ |= A J B. In particular, every set of positive s-formulas is satisfiable.

Lemma 4 suggests a fairly simple algorithm for the satisfiability problem for sets of
s-formulas. In fact given the set of s-formulas Γ one needs only to check whether for each
A 6J B ∈ Γ− the set of propositional formulas Γ+

prop ∪ {A,¬B} is satisfiable. Given the
constant improvement in the efficiency of SAT-solvers (see e.g. [MSL14, ST13]), this is in
fact a quite efficient way of dealing with the problem.

Corollary 6. The problem of satisfiability for a (finite) set of s-formulas has the same
complexity as propositional satisfiability, i.e. it is NP-complete.

Proof. The problem is in NP because, if we fix a finite set of s-formulas Γ and set n = |Γ|

and k = |Γ+|, using the last point of the previous Lemma, we can reduce the satisfiability
of Γ to the satisfiability of n − k sets of propositional formulas each of cardinality k + 1.

The problem is NP-complete because it essentially contains propositional satisfiability.
�
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The previous corollary implies that with respect to complexity s-logic is more similar
to propositional logic than to modal logic (recall that satisfiability for propositional logic
is NP-complete, while satisfiability for the modal logic K is PSPACE-complete).

Next, we consider logical consequence among s-formulas.

Lemma 7. Let Γ be a satisfiable set of s-formulas. For any propositional formulas A and
B we have:

(i) Γ |=s A J B if and only if Γ+ |=s A J B if and only if Γ+
prop |= A→ B;

(ii) Γ |=s A 6J B if and only if there exists an s-formula E 6J F ∈ Γ− such that

Γ+, A J B |=s E J F,

if and only if there exists an s-formula E 6J F ∈ Γ− such that

Γ+
prop, A→ B |= E → F.

Proof. (i) If Γ |=s A J B then Γ ∪ {A 6J B} is unsatisfiable. By Lemma 4, there exists
E 6J F ∈ Γ− ∪ {A 6J B} such that Γ+ ∪ {E 6J F} is unsatisfiable. Since Γ is satisfiable,
E 6J F must be A 6J B, and hence Γ+ |=s A J B. The converse is obvious. The equivalence
between Γ+ |=s A J B and Γ+

prop |= A→ B follows easily from Lemma 4.
As for (ii), Γ |=s A 6J B iff the set of s-formulas Γ ∪ {A J B} is unsatisfiable iff (by

Lemma 4) there exists E 6J F ∈ Γ− such that Γ+ ∪ {A J B} ∪ {E 6J F} is unsatisfiable iff
there exists E 6J F ∈ Γ− such that Γ+, A J B |=s E J F iff Γ+

prop, A→ B |= E → F. �

The previous Lemma says that only positive s-formulas are needed to check whether
a positive s-formula is logical consequence of a satisfiable set of s-formulas. Moreover,
if only positive s-formulas are considered, their logic does not differ substantially from
propositional logic, because J behaves exactly as→.

If we want to prove that a negative s-formula is logical consequence of a satisfiable set
of s-formulas then differences with propositional logic do appear. The previous Lemma
tells us that the collection of 6J s-formulas which are logical consequences of some 6J s-
formulas (i.e. typically from the existence of different models showing that the implications
fail) and some J s-formulas is just the union of the consequences of a single 6J s-formula
and the given set of J s-formulas. In other words, having two models available simul-
taneously does not give more negative information than having the two models available
separately. This might again suggest that s-logic is not substantially different from proposi-
tional logic. Nevertheless, the deductive meta-properties of s-logic and propositional logic
differ, as shown by the following example, which relies on the interplay between positive
and negative s-formulas.

Example 8. In propositional logic, if A, B,C,D are propositional variables and α is a for-
mula, we have:

Γ, A→ C |= α and Γ, B→ C |= α then Γ, A ∧ B→ C |= α.

This is not the case in s-logic because, for example:

A 6J D, B 6J D, A J C |=s C 6J D,

A 6J D, B 6J D, B J C |=s C 6J D

but
A 6J D, B 6J D, A ∧ B J C 2s C 6J D.
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In fact the set of s-formulas {A 6J D, B 6J D, A ∧ B J C,C J D} is satisfied e.g. by the
frame W = {v1, v2} with v1(A) = v2(B) = T , v1(B) = v2(A) = v1(D) = v2(D) = v1(C) =

v2(C) = F.
This example is not just abstract: by taking A to be ACA0, B to be Π1

2-IND, C to be RT
(i.e. Ramsey Theorem for all exponents), and D = A∧B we see the conditions to hold when
v1 represents a non ω-model of ACA0 where RT fails and v2 is the ω-model of computable
sets.

3. Tableaux for s-logic

Another application of Lemma 4 regards the existence of a tableaux system to check
unsatisfiability of finite set of s-formulas. In [MSS15], the authors introduce a tableaux
system which keeps track of valuations in the syntax. For this reason the tableaux are
unusual compared e.g. to the standard tableaux described in a textbook such as [BA12] (see
§2.6, where they are called semantic tableaux). In fact to deal with strict non-implication
the system considers not only s-formulas, but also so-called world formulas, that is, pairs
(A, v) where A is a propositional formula and v represents a variable for a propositional
evaluation. The tableaux system of [MSS15] contains e.g. the following rule (where Γ is a
set of s- and world formulas, and v does not appear in Γ):1

Γ, A 6J B
Γ, (A, v), (¬B, v)

The tableaux system of [MSS15] has also the peculiarity of not discharging the formulas
which are used in a step (this is instead a common feature of tableaux systems for propo-
sitional logic, see [BA12, Algorithm 2.64]). This is motivated by the fact that positive
s-formulas are in fact universal assertions about the collection of all possible worlds, and
thus might be used again on a different world. However Lemma 4 shows that this pre-
caution is superfluous, because the unsatisfiability of a set of s-formulas depends only on
a single world, the one witnessing the satisfiability of one of the negative s-formulas that
imply the unsatisfiability of the whole set.

A straightforward application of Lemma 4 leads to a more traditional tableaux system,
which has the advantage of dealing only with propositional formulas, except for the first
(root) step. This system can be described as follows. The rules of the system are given by
the standard rules of a traditional tableaux system for propositional logic plus the 6J-rule,
which is:

Γ, A 6J B
Γ+

prop, A,¬B
,

subsuming the rule
Γ

Γ+
prop

when Γ− = ∅.
Notice that, starting from Γ, A 6J B,C 6J D, the 6J-rule allows to derive either Γ+

prop, A,¬B
or Γ+

prop,C,¬D.

Definition 9. A tableau for a set of s-formulas Γ is a finite tree T such that:
(a) the root of T is labeled by Γ, while the inner nodes are labelled by sets of propositional

formulas;

1here and below we adopt the convention that the premisses of a rule are above their consequence, while in
[MSS15] the reverse convention is adopted
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(b) the label of the child of the root is obtained from the label of the root by an application
of the 6J-rule;

(c) the label of every other node is obtained from the label of its parent by one of the
standard propositional tableaux inference rules (see e.g. [BA12, Algorithm 2.64]).

A path through a tableau is closed if it contains a node for which the label contains both A
and ¬A for some propositional formula A. A tableau is closed if every maximal branch is
closed.

Notice that, in contrast with the propositional case, a given set of s-formulas might have
both closed and non-closed tableaux. In fact to obtain a closed tableau we must pick the
“right” negative s-formula when we apply the 6J-rule to construct the child of the root, as
is easily seen for the set of s-formulas {A 6J A, A 6J B}.

Applying Lemma 4 we immediately obtain:

Corollary 10. A set of s-formulas Γ is unsatisfiable if and only if there exists a tableau for
Γ in which every branch is closed.

The previous corollary is useful in practice, because to check satisfiability of s-formulas
after the first step we use a standard tableaux system for propositional logic.

However, the tableaux system presented here and the one proposed in [MSS15] are
hybrid systems, where s-formulas and propositional formulas coexist. Hence neither sys-
tem is appropriate to study s-logic for itself, and compare its deductive properties with the
ones of propositional logic, as we did in Example 8. What are the rules of s-logic, and
can we have a calculus dealing exclusively with s-formulas? As in [MSS15], we answer
these questions for some fragments of s-logic which are relevant to the practice of reverse
mathematics. In our case these are the ones introduced in Definition 1 (considered also in
[MSS15]) but also the fragment F3 introduced in Definition 2.

4. Natural deductions for fragments of s-logic

Lemma 7 is especially useful when dealing with the fragments of Definitions 1 and 2.
In [MSS15] sound and complete deductive systems for F1 and F2 are presented.

The system for F1 consists of the following axioms and rules:
(Axiom): X J X, where X is a propositional variable;
(HS): From Z J X and X J Y deduce Z J Y;
(N): From X 6J Y , X J W and Z J Y deduce W 6J Z.

The system for F2 consists of the following axioms and rules:
(Axiom): X J X, where X is a propositional variable;
(W): From A J Y , deduce B J Y , where A and B are conjunctions such that every

conjunct of A is also a conjunct of B;
(HS): From X ∧ B J Y and A J X, deduce A ∧ B J Y;
(N): From A 6J X, A ∧ Z J X, and A J Y for each conjunct Y of B, deduce B 6J Z.

We propose natural deduction calculi for F2 and for F1, differing from the systems in
[MSS15] because of a simpler rule for negative s-formulas. We also introduce a natural
deduction system for F3. These systems are presented in a style similar to [HR04] (see
§1.2.3 for a summary of natural deduction for propositional logic).

4.1. A Natural Deduction Calculus for F2. The Natural Deduction Calculus for F2 has
the following axioms and rules, where X,Y,Z, Xi, . . . are propositional variables, A, B,C, . . .
are arbitrary (possibly empty) conjunctions of propositional variables, α is an arbitrary F2
formula, and Γ is a set of F2 s-formulas:
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(Axiom): X J X

Γ
O

X1 ∧ . . . ∧ Xn J Y(conj):
Xi1 ∧ . . . ∧ Xik J Y ,

where {Xi1 , . . . , Xik } ⊇ {X1, . . . , Xn} as sets of propositional variables.

Γ
O

A J Y

Γ
O

Y ∧ B J Z(trans):
A ∧ B J Z

Γ

∇

A J Y

Γ

∇

A 6J Y(⊥): α
For negative s-formulas we want a rule allowing to construct of a proof of A 6J X from

hypothesis Γ,C 6J Y , whenever we have a proof of C J Y from hypothesis Γ, A J X:

Γ
O

C 6J Y

Γ, [A J X]
O

C J Y(neg):
A 6J X

Let Γ BF2 α denote the existence of a natural deduction proof (in the system just de-
scribed) of the F2 s-formula α from hypotheses in the set of F2 s-formulas Γ.

Example 11. Here is a deduction showing that

A 6J X, A ∧ Z J X, A J Y1, . . . , A J Yn BF2 Y1 ∧ · · · ∧ Yn 6J Z,

corresponding to rule (N) in the F2 system of [MSS15]:

A 6J X

A J Yn

A J Y2

A J Y1 [Y1 ∧ . . . ∧ Yn J Z]
A ∧ Y2 ∧ · · · ∧ Yn J Z

A ∧ Y3 ∧ · · · ∧ Yn J Z
...

A ∧ Yn J Z
A J Z A ∧ Z J X

A J X
Y1 ∧ . . . ∧ Yn 6J Z

Here double lines indicate combined applications of (conj) and (trans), the top step consists
of an application of (trans), and the last step is an application of (neg).

One can easily prove that all F2 rules are sound with respect to s-logical consequence.
As for completeness, we divide the proof into cases, depending on the satisfiability of the
set of premisses Γ.
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Lemma 12. If Γ is a satisfiable set of F2 s-formulas and α is an F2 s-formula such that
Γ |=s α then Γ BF2 α.

Proof. To prove the Lemma we rely on Theorem 17 from [MSS15], which says that if Γ is
satisfiable2 and Γ |=s α then α is derivable from Γ using the rules (Axiom), (W), (HS), and
(N). Hence, to show that α is derivable in our system it is enough to show the existence of
natural deduction proofs for rules (W), (HS), and (N). The only nontrivial case is rule (N),
which is dealt with in Example 11. �

To finish the completeness proof for BF2 , we have to consider the case when Γ is unsat-
isfiable, where we need to prove that Γ BF2 α, for any F2 s-formula α.

Lemma 13. If Γ is unsatisfiable, then for any F2 s-formula α we have Γ BF2 α.

Proof. By Corollary 5, if Γ is unsatisfiable then there exists A 6J B ∈ Γ− such that Γ+ |=s

A J B. Since Γ+ is satisfiable (again by Corollary 5), by Lemma 12 we have Γ+BF2 A J B.
Hence Γ BF2 A J B, and Γ BF2 α follows by rule (⊥). �

Putting all the results of this subsection together, we obtain:

Theorem 14. If Γ is a set of F2 s-formulas and α is a F2 s-formula, then

Γ |=s α ⇔ Γ BF2 α.

4.2. A Natural Deduction Calculus for F1. The Natural Deduction Calculus for F1 has
the following axioms and rules (where X,Y,Z are propositional variables, α is a F1 s-
formula, and Γ is a set of F1 s-formulas):

(Axiom): X J X

Γ
O

X J Y

Γ
O

Y J Z(trans):
X J Z

Γ
O

Y 6J Z

Γ, [X J Y]
O

Y J Z(neg):
X 6J Y

Γ

∇

A J B

Γ

∇

A 6J B(⊥): α

Let Γ BF1 α denotes the existence of a natural deduction proof (in the system just de-
scribed) of the F1 s-formula α from hypothesis in the set of F1 s-formulas Γ.

2actually, the hypothesis in [MSS15] is that Γ is consistent, but an inspection of the proof reveals that the right
hypothesis is the one of satisfiability.
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Example 15. Here is a deduction showing that

X 6J Y, X J W,Z J Y BF1 W 6J Z,

corresponding to rule (N) in the F1 system of [MSS15]:

X J W [W J Z]
X J Z Z J Y

X J Y X 6J Y
W 6J Z

Here we employed (trans) twice and (neg) for the last step.

As for the case of the F2 system, the soundness of BF1 is easily proved, and left to the
reader. For completeness, we may follow the same line of the completeness proof for BF2 ,
dividing the proof into cases, depending on whether Γ is a satisfiable set of F1 s-formulas
or not. The case where Γ is satisfiable can be dealt using Theorem 20 from [MSS15], and
consists in proving the F1 rules of [MSS15] in our system. The only nontrivial case is
rule (N), which is dealt with in Example 15. In the case where Γ is unsatisfiable, we may
proceed using rule ⊥ as we did for BF2 . Hence:

Theorem 16. If Γ is a set of F1 s-formulas and α is a F1 s-formula, then

Γ |=s α ⇔ Γ BF1 α.

4.3. A Natural Deduction Calculus forF3. We now consider the fragmentF3 introduced
in Definition 2. In considering an F3 s-formula C J D or C 6J D we denote by Ci a
propositional variable which is a C-conjunct and by D j a propositional variable which is a
D-disjunct.

In order to capture derivability in fragment F3, we consider our natural deduction calcu-
lus for F2 with rules applied to disjunctive formulas on the right (instead of propositional
variables), and add the following two rules:

Γ
O

A J B(disj1):
A J D

where {B1, . . . , Bn} ⊆ {D1, . . . ,Dh} as sets of propositional variables.

Γ

∇

A J B

Γ, [A J B1]
∇

C J E . . .

Γ, [A J Bn]
∇

C J E(disj2):
C J E

where B = B1 ∨ · · · ∨ Bn and Γ is a set of positive s-formulas.

Lemma 17. Rules (disj1) and (disj2) are sound in s-logic.

Proof. Soundness of rule (disj1) is immediate.
As for rule (disj2), suppose Γ is a positive set of F3 s-formulas and B = B1 ∨ · · · ∨ Bn is

such that:

• Γ |=s A J B;
• Γ, A J Bi |=s C J E for each i = 1, . . . , n.

10



We want to prove that Γ |=s C J E. Since Γ contains only positive s-formulas, by Corollary
5 each set Γ, A J Bi is satisfiable. Hence we may apply Lemma 7 obtaining:

Γ+
prop, A→ Bi |= C → E.

Similarly we obtain Γ+
prop |= A → B, that is Γ+

prop, A |= B. By propositional reasoning it
follows that Γ+

prop |= C → E. Hence, by Lemma 7 again, Γ |=s C J E. �

Notice that the restriction to positive set of s-formulas Γ in rule (disj2) is necessary
because without this hypothesis the rule is no longer sound. To see this consider e.g. the
set

Γ = {A J B1 ∨ B2, A 6J B1, A 6J B2}.

Γ is satisfiable, while each set Γ ∪ {A J Bi}, for i = 1, 2, is unsatisfiable. It follows that
any formula C J D (with C,D new for Γ) is a s-consequence of both sets Γ ∪ {A J Bi}.
Moreover, Γ |=s A J B1 ∨ B2, but C J D is not a s-consequence of Γ.

We denote F3-derivability by BF3 . To study BF3 we need the following Lemma.

Lemma 18. Let Γ be a set of s-formulas and A J B an s-formula, all belonging to F3. If
Γ BF3 A J B then one of the following possibilities holds:

(1) Γ+ BF3 A J B;
(2) Γ trianglerightF3C J D and Γ BF3 C 6J D for some F3 s-formula C J D.

Proof. The proof is by induction on the height of the derivation tree showing that ΓBF3 A J
B. The base case corresponds to an application of (Axiom), and in this case (1) holds. In
the induction step we consider the last rule applied to derive A J B. If this rule is one of
(conj), (trans), or (disj1) then the induction hypothesis immediately carries over. If the last
rule is (⊥) then we are in case (2). If we last apply (disj2) then Γ+ = Γ and hence (1) holds.
Notice that (neg) cannot be the last rule used to derive A J B. �

In proving the completeness of the F3 system we shall use also the following two rules,
that will be shown to be derivable in our system in the next Lemma.

Γ

∇

B J A

Γ

∇

C J B1
. . .

Γ

∇

C J Bn(r2):
C J A

where B = B1 ∧ · · · ∧ Bn.

Γ

∇

D J E

Γ

∇

D ∧ E1 J F . . .

Γ

∇

D ∧ En J F(r3):
D J F

where E = E1 ∨ · · · ∨ En.

Lemma 19. (r2) and (r3) are derived rules in the F3 system.

Proof. First, we provide a proof for (r2) in the F3 system.
11



Γ

∇

B1 ∧ . . . ∧ Bn J A

Γ

∇

C J B1

C ∧ B2 ∧ . . . ∧ Bn J A

Γ

∇

C J B2

C ∧ B3 ∧ . . . ∧ Bn J A
...

C ∧ Bn J A

Γ

∇

C J Bn

C J A

where in the first step we apply (trans) and then, in correspondence of each double line, we
use a combination of applications of (trans) and (conj).

We now show how to derive (r3) in the F3 system. Assume we have Γ BF3 D J E,
Γ BF3 D ∧ E1 J F, . . . , Γ BF3 D ∧ En J F. By Lemma 18 either Γ BF3 G J H and
ΓBF3 G 6J H for some F3 s-formula G J H, in which case ΓBF3 D J F follows using (⊥),
or we have Γ+ BF3 D J E, Γ+ BF3 D ∧ E1 J F, . . . , Γ+ BF3 D ∧ En J F. In the latter case
we can use the following deduction

Γ+

∇

D J E
[D J E1]

Γ+

∇

D ∧ E1 J F
D J F . . .

[D J En]

Γ+

∇

D ∧ En J F
D J F

D J F

Again, double lines indicate a combination of applications of (trans) and (conj), while
in the final step we use (disj2), which is allowed because Γ+ consists only of positive
formulas. �

In order to prove the completeness of F3-derivability we need a preliminary Lemma.

Lemma 20. Suppose Γ is a set of positive F3 s-formulas such that Γ 7F3 C J E. Then
there exists a set of positive F3 s-formulas ∆, closed under BF3 , such that:

• ∆ ⊇ Γ;
• ∆ 7F3 C J E;
• for all positive F3 s-formulas A J B ∈ ∆ there exists i such that A J Bi ∈ ∆.

Proof. Without loss of generality, we may suppose that Γ is closed under BF3 . Fix an enu-
meration {α1, α2, . . . } of the positive F3 s-formulas which repeats every formula infinitely
often. Let α j = A j J B j.

We now recursively define a sequence Γ0 = Γ ⊆ Γ1 ⊆ · · · ⊆ Γn . . . of sets of positive F3
s-formulas, each closed under BF3 , with the following properties:

• Γn 7F3 C J E;
• if Γn BF3 αn, then there exists h such that An J Bn

h ∈ Γn+1.
We start by setting Γ0 = Γ. Suppose now we already defined Γn such that Γn 7F3 C J E.

If Γn 7F3 αn, we define Γn+1 := Γn; if Γn BF3 αn, there must exist an index h such that

Γn, An J Bn
h 7F3 C J E.

In fact, if this were not the case, using rule (disj2), we would obtain that Γn BF3 C J E. We
let Γn+1 be the closure of Γn ∪ {An J Bn

h} under BF3 . This proves the claim.
Finally, it is straightforward to check that ∆ =

⋃
n Γn has the required properties. �
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We split the proof of the completeness of BF3 into cases, depending on the satisfiability
of Γ and on the type of the formula to be derived. We start with:

Lemma 21. Suppose Γ is a satisfiable set of F3 s-formulas and C J E is a positive F3
s-formula such that Γ |=s C J E. Then Γ BF3 C J E.

Proof. We reason by contradiction. If Γ 7F3 C J E then Γ+ 7F3 C J E, either. By
applying the previous Lemma to Γ+ we find a set of positive F3 s-formulas ∆ ⊇ Γ+, closed
under BF3 , such that

∆ 7F3 C J E,

and for all F3 s-formulas A J B, if A J B ∈ ∆ then there exists i with A J Bi ∈ ∆.
Let w be the valuation defined by setting, for each propositional variable X:

w(X) =

T if C J X ∈ ∆;
F if C J X < ∆.

We claim that w(∆) = T , and w(C J E) = F.
If A J B ∈ ∆ and w(A) = T , then, since A = A1 ∧ · · · ∧ An, we have w(Ai) = T for all

i. By definition of w, for all i it holds C J Ai ∈ ∆, and by rule (r2) we obtain C J B ∈ ∆.
By the property of ∆ there exists i such that C J Bi ∈ ∆. Hence w(Bi) = T and therefore
w(B) = T as well. This proves that w(A J B) = T , for all A J B ∈ ∆.

Let us now show that w(C J E) = F. Since w(C) = T , it suffices to prove that
w(Ei) = F, for all i. If w(Ei) = T for some i, then C J Ei ∈ ∆ and C J E ∈ ∆ would
follow by rule (disj1).

Having established the claim, we conclude the proof as follows. For all negative F3
s-formulas α = A 6J B ∈ Γ, let vα be a valuation such that vα(Γ) = T , vα(A) = T and
vα(B) = F. Such a vα exists, because by hypothesis Γ is satisfiable. Then the frame
W = {w} ∪ {vα : α ∈ Γ−} is such that W |= Γ and W 2 C J E, contradicting our
hypothesis. �

Next, we consider the case in which Γ is satisfiable, but the formula to be derived is
negative.

Lemma 22. Suppose Γ is a satisfiable set of F3 s-formulas and C 6J G is a negative F3
s-formula such that Γ |=s C 6J G. Then Γ BF3 C 6J G.

Proof. This proof follows the corresponding proof in [MSS15] with minor adjustments.
We reason again by contradiction supposing (without loss of generality) that Γ closed under
BF3 and C 6J G < Γ. For any α = D 6J E ∈ Γ−, we will find a valuation wα with
wα(Γ+) = T , wα(D) = T and wα(E) = F, and either wα(C) = F or wα(G) = T . Once this is
done, we may set

W = {wα : α ∈ Γ−}

and find a contradiction, since W is a frame satisfying Γ but failing to satisfy C 6J G.
Fix α = D 6J E ∈ Γ−. Since Γ is satisfiable, there exists a valuation w with w(Γ+) = T ,

w(D) = T , and w(E) = F. In order to find wα we may suppose that all the valuations w
with these properties satisfy also w(C) = T (otherwise we may choose such a w for wα).
Consider the set of positive s-formulas Γ+ ∪ {C J G}. Then

Γ+ ∪ {C J G} 7F3 D J E,

otherwise, since Γ BF3 D 6J E, we would have Γ BF3 C 6J G by the (neg) rule. By Lemma
20 there exists a set of positive formulas ∆ ⊇ Γ+ ∪ {C J G}, closed under BF3 , such that
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∆ 7F3 D J E, and for all A, B, if A J B ∈ ∆ then there exists i with A J Bi ∈ ∆. We claim
that D J Ci ∈ ∆ for every i. To see this, we consider the valuation w defined as

w(X) =

T if D J X ∈ ∆;
F if D J X < ∆.

As in Lemma 21, it is not difficult to check that w(∆) = T , and w(D J E) = F. By the
previous hypothesis, we have w(C) = T , that is, w(Ci) = T for all i. By definition of w this
implies D J Ci ∈ ∆.

Next, consider the valuation vi defined as

vi(X) =

T if D ∧Gi J X ∈ ∆;
F if D ∧Gi J X < ∆.

We claim that there exists i with vi(E) = F. Otherwise, we have vi(E) = T , for all i. This
means that for all i there exists j with vi(E j) = T , that is, by definition of vi, D∧Gi J E j ∈

∆. It follows that, for all i, D ∧ Gi J E ∈ ∆. Consider the following natural deduction,
which uses first (r2) and then (r3);

∆

∇

C J G

∆

∇

D J C1
. . .

∆

∇

D J Ck

D J G

∆

∇

D ∧G1 J E . . .

∆

∇

D ∧Gn J E
D J E

This contradicts ∆ 7 D J E.
Thus we can pick i such that vi(E) = F. We have vi(D) = T , vi(E) = F, and vi(G) = T ,

since D∧Gi J Gi ∈ ∆ and G is a disjunction. Moreover, as before, vi(∆) = T : if A J B ∈ ∆

and vi(A) = T , then D ∧ Gi J A j ∈ ∆, for all j. By rule (r2) we obtain D ∧ Gi J B ∈ ∆,
and by the properties of ∆ there exists h with D ∧ Gi J Bh ∈ ∆; hence, vi(Bh) = T , and
vi(B) = T . It follows that vi(Γ+) = T , and we may choose such a vi as wα, finishing the
proof. �

The two previous results prove that, if Γ is a satisfiable set of F3 s-formulas, then for
any F3 s-formula α such that Γ |=s α we have Γ BF3 α.

To finish the completeness proof for BF3 , we still have to consider the case when Γ is
unsatisfiable. In this case we have to prove that Γ BF3 α, for any F3 s-formula α, and we
may repeat the proof of Lemma 13. Hence:

Lemma 23. If Γ is unsatisfiable, then for any F3 s-formula α we have Γ BF3 α.

Putting all results of this section together, we obtain:

Theorem 24. If Γ is a set of F3 s-formulas and α is a F3 s-formula, then

Γ |=s α ⇔ Γ BF3 α.

5. F2 and Prolog

In this section we show how standard Prolog may be used to deal with logical conse-
quence in F2. Since some readers might be unfamiliar with Prolog, we recall here the
basic constructs of this programming language (restricting ourselves to the propositional
setting), following [NS97] (see §I.10, and especially Definition 10.4).
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Propositional Prolog deals with Horn clauses (finite sets of literals containing at most
one positive literal), thought as disjunctions of their elements. When the Horn clause
contains (exactly) one positive literal {Y,¬X1, . . . ,¬Xn} it is a program clause and we write
Y :− X1, . . . , Xn. If n > 0 we think of the program clause as representing X1∧ · · · ∧Xn → Y
and we call it a rule. If in the program clause we have n = 0 it is a fact and we write Y :− .
If the Horn clause has only negative literals {¬X1, . . . ,¬Xn} we call it a goal and write
:− X1, . . . , Xn. A Prolog program is a set of program clauses. The basic tool for combining
Horn clauses is the resolution rule:

{Y,¬X1, . . . ,¬Xn} {W,¬Y,¬Z1, . . . ,¬Zm}

{W,¬X1, . . . ,¬Xn,¬Z1, . . . ,¬Zm}

The typical situation is that we are given a Prolog program, and we want to know
whether a conjunction of facts Y1, . . . ,Yk is logical consequence of the given facts and
rules. To this end we add the goal {¬Y1, . . . ,¬Yk} to the program and ask whether the
resulting set of Horn clauses is unsatisfiable. This is the case if and only if applying the
resolution rule repeatedly to the elements of the set starting with the goal we obtain the
empty clause. Prolog works by searching all possible ways of applying the resolution rule
with these constraints: if the search succeeds we have a refutation of the goal from the
program.

We can now go back to our study of the F2 fragment of s-logic.

Definition 25. Given a set Γ ofF2 s-formulas, define Prolog(Γ+) to be the following Prolog
program:

Prolog(Γ+) = {Z :− A1, . . . , An | A1 ∧ . . . ∧ An J Z ∈ Γ+}.

We have:

Lemma 26. Let Γ be a set of F2 s-formulas and A J Y be a F2 s-formula, where A =

A1 ∧ · · · ∧ An.

(i) Γ |=s A J Y if and only there is a refutation of the goal :− Y from the Prolog program

Prolog(Γ+) ∪ {A1 :− , . . . , An :− };

(ii) Γ |=s A 6J Y if and only if there exists Z1 ∧ · · · ∧ Zn 6J W ∈ Γ− and a refutation of the
goal :− W from the Prolog program

Prolog(Γ+) ∪ {Y :− A1, . . . , An,Z1 :− , . . . ,Zn :− }.

Proof. (i) From Lemma 7.i we have that Γ |= A J Y if and only if Γ+
prop, A |= Y . Since

Γ is a set of F2-formulas, the elements in Γ+
prop are (essentially) rules, while A is

equivalent to the conjunction of the facts A1 :− , . . . , An :− . Since Y is a positive
literal, the equivalence follows from the completeness of Propositional Prolog.

(ii) From Lemma 7.ii we have that Γ |= A 6J Y if and only if there exists Z1 ∧ · · · ∧ Zn 6J
W ∈ Γ− such that

Γ+
prop, A→ Y,Z1 ∧ · · · ∧ Zn |= W.

As before, the equivalence follows from interpreting this logical consequence in
terms of Prolog and applying the completeness of Propositional Prolog. �

Lemma 26 suggests an efficient way of checking logical consequence between F2 s-
formulas based on a well-known programming language such as Prolog, and actually only
for the special case of goals consisting of a single literal.
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